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Introduction
Compensation for increased insulin demand includes key mechanisms ranging from either an increase 
in insulin secretion, expansion in β cell mass, or both. The latter occurs as a consequence of  the balance 
between cell growth (proliferation, hypertrophy, neogenesis) and cell loss (apoptosis, atrophy, autophagy) 
(1–7). Typically, the inability of  β cells to successfully handle the increased demand for insulin triggers overt 
diabetes mellitus. Therefore, understanding the mechanisms of  this compensatory response will inform 
potential approaches to therapeutically enhance functional β cell mass to counter all forms of  diabetes.

In addition to proliferation of  preexisting β cells (8), other mechanisms such as β cell hypertrophy and 
neogenesis have also been reported to contribute to β cell compensation in rodents (3). Among these mech-
anisms, neogenesis, described as the differentiation of  progenitors to form new β cells (9), has been reported 
to occur in the neonatal period (10). However, several reports, including a study from our group (7), argue 
for neogenesis as a contributor to β cell compensation even in adult mammals (mouse and human) in the 
face of  increased insulin demand (3). In our previous study, we superimposed pregnancy to further increase 
insulin demand in a model that already exhibits an increase in β cell mass, such as the unique genetically 
engineered liver-specific insulin receptor-KO (LIRKO) mouse, to demonstrate that pancreatic ducts are a 
dynamic source of  insulin-secreting cells (7).

Here, we explored the mechanisms underlying the contribution of  the ductal epithelium to adaptive 
β cell mass, using single-nucleus RNA-Seq (snRNA-Seq), a technique we recently optimized as a reliable 
alternative when single-cell RNA-Seq (scRNA-Seq) is not suitable to examine archived frozen human 
islet grafts (11). In the current study, we undertook snRNA-Seq of  snap-frozen human islet and duct 
graft samples obtained from nonpregnant, pregnant control, or genetically engineered insulin-resistant 

Adaptation to increased insulin demand is mediated by β cell proliferation and neogenesis, 
among other mechanisms. Although it is known that pancreatic β cells can arise from ductal 
progenitors, these observations have been limited mostly to the neonatal period. We have 
recently reported that the duct is a source of insulin-secreting cells in adult insulin-resistant 
states. To further explore the signaling pathways underlying the dynamic β cell reserve 
during insulin resistance, we undertook human islet and duct transplantations under the 
kidney capsule of immunodeficient NOD/SCID-γ (NSG) mouse models that were pregnant, 
were insulin-resistant, or had insulin resistance superimposed upon pregnancy (insulin 
resistance + pregnancy), followed by single-nucleus RNA-Seq (snRNA-Seq) on snap-frozen 
graft samples. We observed an upregulation of proliferation markers (e.g., NEAT1) and 
expression of islet endocrine cell markers (e.g., GCG and PPY), as well as mature β cell markers 
(e.g., INS), in transplanted human duct grafts in response to high insulin demand. We also 
noted downregulation of ductal cell identity genes (e.g., KRT19 and ONECUT2) coupled with 
upregulation of β cell development and insulin signaling pathways. These results indicate that 
subsets of ductal cells are able to gain β cell identity and reflect a form of compensation during 
the adaptation to insulin resistance in both physiological and pathological states.
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mice (control NOD/SCID-γ–Lox [NSG-Lox] or genetically engineered insulin-resistant NSG-LIRKO, 
respectively, described below), to analyze the effects of  pregnancy, insulin resistance, or a combination of  
pregnancy and insulin resistance — the latter hereinafter referred to as “combined model.” snRNA-Seq 
analyses of  human ductal clusters revealed unique gene signatures, including the presence of  mature and 
immature β cell markers, poly-hormonal islet endocrine cell markers, an upregulation in β cell develop-
ment, and insulin signaling pathways coupled with downregulation of  markers of  ductal cell identity 
together supporting neogenesis. These data provide genetic evidence for the duct as a source of  β/β-like 
cells in the compensatory response to insulin resistance.

Results
snRNA-Seq reveals insulin-related transcriptional diversity among clusters. To identify the origin of  new insulin- 
expressing cells during increased insulin demand, we followed up on a model that was created to study 
human ductal epithelium–derived β/β-like cells (7). Briefly, we compared control (NSG-Lox) with genet-
ically engineered insulin-resistant (NSG-LIRKO) mice (Figure 1, A and B). Both groups were rendered 
pregnant following transplantation of  100 human ductal “aggregates,” along with 1000 human islet equiv-
alents (IEQs) from the same donor (for donor information, see Supplemental Table 1; supplemental mate-
rial available online with this article; https://doi.org/10.1172/jci.insight.153877DS1). After 15.5 days, the 
grafts were harvested from mice in nonpregnant or pregnant states and stored frozen until analyses. One half  
of  the frozen engrafted human islet and duct samples were subsequently thawed and processed to isolate 
nuclei for snRNA-Seq, as reported previously (11). We began analyses by using Cellbender (https://doi.
org/10.1101/791699) and Doubletfinder (12) algorithms to eliminate the contribution of  contaminant RNA 
and multiplets (i.e., beads containing > 1 nucleus), respectively, from the sequencing outputs, as previously 
described (11). The proportion of  ambient RNA in the beads was estimated to be ~14% in all groups and 
was, therefore, excluded from subsequent analyses (Supplemental Figure 1). This enabled only high-quality 
nuclei to be used for cell-clustering analysis. Profiling of  human islet and ductal cell grafts was performed 
on data from snRNA-Seq (4788 nuclei) using Uniform Manifold Approximation and Protection (UMAP), 
a dimension-reduction technique used to cluster cells/nuclei that show similar transcriptional profiles (13) 
(Figure 1C). We identified a total of  11 clusters (numbered 0–10) composed of  islet endocrine and non-
endocrine cells (Figure 1C). In particular, we observed nuclei expressing high levels of  insulin gene (INS)  
(log2CPM [count per million] ≥ 5) localized to cluster 3 (Figure 1, C and D). Mature markers that define 
β cells, such as MAF bZIP transcription factor A (MAFA) or chromogranin A (CHGA), were expressed 
exclusively in cluster 3 (Figure 1, C and D). High-level expression of  glucagon gene (GCG), the hormone 
expressed by α cells, was observed in clusters 3 and 4 (log2CPM ≥ 2) (Figure 1, C and D). Nevertheless, INS 
and GCG transcripts were also detected, albeit at lower levels, in nuclei grouped in additional clusters (Fig-
ure 1, C and D). For example, low levels of  INS (log2CPM < 5) were detected in clusters 0, 4, 7, 8, 9, and 
10, while low expression of  GCG (log2CPM < 2) were observed in clusters 6, 8, and 9 (Figure 1, C and D), 
suggesting the presence of  transcripts in poly-hormonal states. These data demonstrate that snRNA-Seq of  
transplanted human islets and ductal aggregates recapitulate the expression of  islet endocrine cells.

Ductal cells exhibit insulin+ or insulin/glucagon double-positive expression. Moving forward, we focused 
our studies on clusters defined as ductal cells and used HNF1 homeobox B (HNF1B), keratin 19 (KRT19), 
and SRY-box transcription factor 9 (SOX9) as ductal marker genes (14). We identified cluster 2 as a major 
ductal cluster, with nuclei expressing relatively high levels of  ductal markers (HNF1B log2CPM ≥ 1,  
KRT19 log2CPM ≥ 1, and SOX9 log2CPM ≥ 1), and we identified cluster 4 as a partial ductal clus-
ter, including specimens with relatively lower expression of  duct-specific genes (HNF1B log2CPM ≤ 1, 
KRT19 log2CPM ≤ 1, and SOX9 log2CPM ≤ 1) (Figure 1, C, E, and F). Detailed analysis of  cluster 2 
revealed the presence of  ductal nuclei expressing both insulin and glucagon (Figure 2A).

A notable observation was that GCG expression in ductal clusters 2 and 4 could be divided into sub-
groups suggesting heterogeneity (Figure 2A). These results prompted us to search for ductal cell groups 
that are a potential source of  insulin-secreting β/β-like cells. Indeed, analysis of  individual human grafts 
from the mouse models (pregnant, insulin-resistant, or combined groups) further supported our prem-
ise regarding subgroups among ductal cells. For example, a specific ductal subpopulation enriched in 
INS/GCG double-positive nuclei within cluster 2, was evident in the pregnant, insulin-resistant, or com-
bined models (Figure 2B; small black circle within the dotted oval, and Supplemental Figure 2; shown 
with red arrows). Furthermore, confocal and fluorescence microscopy analyses of  kidney sections of  
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the transplanted grafts containing human ducts and islets revealed cells coexpressing the ductal marker  
CK19 and insulin (Supplemental Figure 3A and Supplemental Figure 4, A–D), CK19 and glucagon (Sup-
plemental Figure 3B), or insulin and glucagon (Supplemental Figure 3C). Notably, we did not detect 
groups of  nuclei, which expressed CHGA, MAFA, and PAX6 (Figure 1D), in the human islet and duct 
graft samples from the nonpregnant NSG-Lox model (Figure 2B). Taken together, these data suggest that 
a specific subset of  ductal cells has the potential to be mobilized to differentiate toward β-like cells only 
during increased insulin demand either in physiological or pathological states.

We next focused on identifying differentially expressed genes (P < 0.05) within the major and the par-
tial ductal clusters, namely clusters 2 and 4, respectively. We observed enrichment of  the α cell hormone 
GCG in the major ductal nuclear cluster (cluster 2) in the pregnancy model and GCG and PPY in the insulin- 
resistant model (Figure 3, A and B). Moreover, the ATPase Na+/K+ transporting subunit α 1 (ATP1A1) was 

Figure 1. Single-nucleus RNA-Seq reveals presence of insulin and glucagon double-positive ductal cells. (A and B) Experimental strategy and the 3 experi-
mental groups (pregnancy model, insulin-resistant model, and combined [insulin resistance + pregnancy] model) showing female NSG-Lox (black) and  
NSG-LIRKO (red) mice transplanted with human islets (1000 IEQs) and duct aggregates (obtained from the same donor; n = 4 donors) under the kidney 
capsule. Ten days after transplantation, mice were rendered pregnant and sacrificed on gestation day 15.5 (G15.5) for collection of human grafts. Nonpreg-
nant female mice transplanted with human islets and ducts were used as controls. The experimental groups include nonpregnant NSG-Lox (NP NSG-Lox, 
lean back mice, n = 4), pregnant NSG-Lox mice (P NSG-Lox, wide black mice, n = 4), nonpregnant NSG-LIRKO (NP NSG-LIRKO, lean red mice, n = 4), and preg-
nant NSG-LIRKO (P NSG-LIRKO, wide red mice, n = 4). The effect of pregnancy was evaluated by comparing pregnant NSG-Lox mice (P NSG-Lox) with the 
nonpregnant NSG-Lox animals (NP NSG-Lox) and defined as pregnancy model. The effect of insulin resistance was determined by comparing nonpregnant 
NSG-LRKO mice (NP NSG-LIRKO) with nonpregnant NSG-Lox mice (NP NSG-Lox) and defined as insulin-resistant model. The effect of insulin resistance + 
pregnancy was considered a combined model and evaluated by comparing pregnant NSG-LIRKO models (P NSG-LIRKO) with nonpregnant NSG-Lox mice (NP 
NSG-Lox). (C) Global UMAP plot of 4788 profiled nuclei colored by the 11 clusters. Clusters were identified according to the expression patterns of the endo-
crine and exocrine cell marker genes. (D) Global UMAP plot showing expression of indicated gene markers for different endocrine cells. (E) Selected heatmap 
showing normalized expression of ductal cell markers (HNF1B, KRT19, and SOX9) within all the identified nuclear clusters of 4 different mouse models: non-
pregnant (NP) NSG-Lox, pregnant (P) NSG-Lox, NP NSG-LIRKO, and P NSG-LIRKO. (F) Global UMAP showing expression of indicated markers for ductal cells.
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one of  the top enriched genes in all 3 groups (Figure 3, A–C). ATP1A1 is an integral membrane protein reg-
ulating the electrochemical gradients of  Na+ and K+ ions across the plasma membrane and is upregulated 
in PAX6-deficient β cells (15). The FXYD domain containing ion transport regulator 2 (FXYD2), which 
has been reported to play a role in β cell growth and proliferation (16), was significantly enriched in the 
insulin-resistant model in cluster 2 and in the pregnancy model in cluster 4 (Figure 3B and Supplemental 
Figure 5A). In the ductal cluster 2, we observed an enrichment for the N-myc downstream-regulated gene 
2 (NDRG2) in the combined group (Figure 3C). NDRG2 is highly expressed in β cells and is reported to be 
involved in Akt-mediated protection against lipotoxicity (17).

Among the downregulated genes, One Cut Homeobox 2 (ONECUT2), a ductal cell–specific transcrip-
tion factor (18), was one of  the top genes in all 3 groups in cluster 2 (Figure 3, A–C). Besides, the ductal 
marker KRT19 was also downregulated in the pregnancy model. Mucin 1 (MUC1), a protein involved in 
cell adhesion that was previously reported as a subductal cell gene marker (19), was significantly reduced in 
cluster 2 in the pregnancy and combined models (Figure 3A). These results suggest that, during pregnancy 
and insulin-resistant states, a specific group of  cells gain the identity of  islet endocrine cells at the expense 
of  the duct epithelium to orchestrate the compensatory response to increased insulin demand.

The significant increase in the number of  proliferating ductal cells during increased insulin demand in 
our previous study (7) prompted us to carefully interrogate the ductal clusters. The long noncoding RNA 
(lncRNA) nuclear enriched abundant transcript 1 (NEAT1), which was reported to promote proliferation 
and migration in cancer progression (20, 21), was significantly increased in ductal nuclei grouped in cluster 
4 in the combined model (Supplemental Figure 5, B and C). Further work is necessary to directly examine 
its significance in modulating human ductal cell proliferation.

Similar pathways are activated in ductal cells in response to pregnancy and insulin resistance. Transcriptomics 
analyses revealed a similar network of  molecules and/or pathways that are differentially regulated during 
increased insulin demand in the pregnancy or insulin-resistant models. Analyses of  the major ductal clusters 
2 and 4 revealed that translation and secretion-related pathways (Figure 3, D and E, and Supplemental Tables 

Figure 2. Identification of a specific ductal subgroup in response to increased insulin demand. (A) Expression levels of HNF1B, INS, and GCG in ductal 
nuclear cluster 2 (red oval), ranging from high expression (purple dots) to low expression levels (gray dots). (B) UMAP plot showing ductal nuclear cluster 
2 (yellow dots inside the blue-dotted oval) from human graft samples of all the 4 experimental groups (NP NSG-Lox, P NSG-Lox, NP NSG-LIRKO, and P 
NSG-LIRKO). The black solid circle within the blue dotted oval represents a ductal subpopulation.
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2 and 3) overlapped between the pregnancy and the insulin-resistant models. These included the “selenocys-
teine synthesis” pathway and the signal recognition peptide–dependent (SRP-dependent) co-translational  
protein targeting to the membrane pathway, which emerged as the most upregulated in both clusters 2 and 
4 in the pregnancy and the insulin-resistant models (Figure 3, D and E, and Supplemental Tables 2 and 3). 
A majority of  the differentially regulated transcripts in both of  these pathways were ribosomal proteins. 
Not surprisingly, insulin secretion and pancreatic secretion pathways were upregulated in the pregnancy 
and insulin-resistant models that was reflected in both ductal clusters 2 and 4 (Figure 3, D and E; Supple-
mental Figure 5, D–F; and Supplemental Tables 2, 3, 5, and 6) consistent with an upregulation in insulin 
receptor gene (INSR) in ductal cluster 4 in the pregnant NSG-LIRKO versus nonpregnant NSG-Lox com-
parison (Supplemental Figure 5C and Supplemental Table 7), suggesting that changes in secretion are part 
of  the adaptive response. Compared with individual models of  increased insulin demand (pregnancy and 
insulin-resistant models), the “spironolactone action pathway” associated with improved glucose and lipid 
metabolism was one of  the upregulated mechanisms in the combined model (Figure 3F).

Among the downregulated pathways, signaling pathways related to lipid metabolism (e.g., fatty 
acid β-oxidation, ceramide signaling) were common to all the models in cluster 2 (Figure 3, D–F, and 
Supplemental Tables 2–4). In addition, the insulin-resistant and combined models from nuclei in cluster 
2, and the pregnancy model from nuclei in cluster 4, displayed downregulation of  pathways linked to 
Notch signaling, a pathway typically active in exocrine tissues (22) (Figure 3, E and F; Supplemental 

Figure 3. Ductal clusters exhibit regulation in pathways related to β cell development and ECM remodeling in response to pregnancy and insulin 
resistance. (A–C) Volcano plots showing the distribution of differential transcript expression defined as a function of fold change within the pregnancy 
(P NSG-Lox versus NP NSG-Lox) (A), insulin-resistant (NP NSG-LIRKO versus NP NSG-Lox) (B), or combined (P NSG-LIRKO versus NP NSG-Lox) models 
and P value for ductal cluster 2 (C). (D–F) Selected pathways in ductal cluster 2 differentially regulated in pregnancy (P NSG-Lox versus NP NSG-Lox) 
(D), insulin-resistant (NP NSG-LIRKO versus NP NSG-Lox) (E), or combined (P NSG-LIRKO versus NP NSG-Lox) models (F). Upregulated pathways are 
shown in red, and downregulated pathways are shown in blue.
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Figure 5D; and Supplemental Tables 3–5). Cell–extracellular matrix (cell-ECM) and cell-to-cell com-
munication pathways, whose downregulation is usually observed during ductal–to–β cell transdiffer-
entiation (23), were found repressed in ductal cluster 2 in the combined model and in ductal cluster 4 
in the pregnancy and insulin-resistant models (Figure 3F, Supplemental Figure 5D, and Supplemental 
Tables 4 and 5). Thus, a subset of  cells in specific clusters of  the ductal cell population is linked to key 
pathways that are relevant for β cell development and hormone secretion — 2 processes that are import-
ant for an efficient adaptive response to insulin resistance.

Ductal clusters exposed to high insulin demand display transcriptomic similarities with endocrine progenitor 
cells. To test whether the transcriptomic signature of  ductal cells transplanted into mouse models exhib-
iting high insulin demand actually resembled the gene expression profile of  endocrine progenitor cells, 
we compared the 2 ductal clusters (clusters 2 and 4) with ductal endocrine progenitor cells reported 
in a previous scRNA-Seq study (GSE131886) (24). The endocrine progenitor cells in the latter were 
grouped into 2 main clusters: (a) Secreted Phosphoprotein 1 (SPP1)+ cells, designated as harboring 
endocrine progenitor-like cells, and (b) Trefoil Factor 1 (TFF1)+ cells, defined as activated/migrating 
endocrine cells (24). By harmonizing our snRNA-Seq data set on the GSE131886 output (designated 
as “reference”), and using shared pipelines reported previously (11), we identified 2 nuclear clusters 

Figure 4. The transcriptomic profile of ductal cells in conditions of high insulin demand resemble the gene expression profile of endocrine 
progenitor cells. (A) Global UMAP plots and cell type prediction in the engrafted human ductal and islet cell snRNA-seq (right panel) following 
harmonization on the reference data set (GSE131886) (24) generated from the scRNA-seq data sets of cultured human ductal cells (left panel). (B 
and C) Venn diagrams representing the intersection between the significant differentially expressed genes in SPP1+ (green circles) or TFF1+ cells 
(orange circles) and in the ductal cluster 2 (purple circles) (B) or 2 (aquamarine circles) (C) in pregnancy (P NSG-Lox versus NP NSG-Lox, left panels), 
insulin-resistant (NP NSG-LIRKO versus NP NSG-Lox, middle panels), or combined (P NSG-LIRKO versus NP NSG-Lox, right panels) models. The 
common upregulated genes are written in red, and the downregulated genes are written in blue.
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within our own data set, based on transcriptomic features similar to the TFF1+ and the SPP1+ cells from 
the reference (Figure 4A). We identified common gene signatures by intersecting data sets between 
nuclear clusters 2 and 4 and the TFF1+ and SPP1+ endocrine progenitor cells (Figure 4, B and C). For 
example, we observed that ductal cluster 2 in the pregnancy, insulin-resistant, or combined models 
shared 31.4% (296 of  943 genes), 34.3% (280 of  817 genes), and 35.2% (308 of  874 genes), respectively, 
of  the differentially regulated genes with the SPP1+ endocrine progenitor-like cells (Figure 4B). Slightly 
higher proportions of  differentially expressed genes were common between TFF1+ progenitor-like cells 
and cluster 2 in pregnancy (40.7%, 384 of  943 genes), insulin-resistant (41.7%, 341 of  817 genes), or 
combined models (40.5%, 354 of  874 genes) (Figure 4B). On the other hand, the percentage of  genes 
that were common between nuclear ductal cluster 4 and SPP1+ cells were 30.0% (213 of  709 genes), 
35.9% (56 of  156 genes), and 31.8% (42 of  132 genes), in pregnancy, insulin-resistant, and combined 
models, respectively (Figure 4C). Finally, cluster 4 shared 46.9% (333 of  709 genes), 49.3% (77 of  156 
genes), 50.0% (66 of  132 genes) of  differentially regulated genes in the pregnancy, insulin-resistant, or 
combined models, respectively, with TFF1+ cells (Figure 4C).

Figure 5. Ductal cells in models of insulin resistance display regulated pathways and genes similar to T2D human β cells. (A) Selected pathways 
derived from reanalysis of the publicly available data set (GSE81608) (26) comparing nondiabetic (CTRL) and T2D human β cells. Arrowheads highlight 
common pathways activated in ductal cells in pregnancy (P NSG-Lox versus NP NSG-Lox), insulin-resistant (NP NSG-LIRKO versus NP NSG-Lox), or 
combined models (P NSG-LIRKO versus NP NSG-Lox). Red bars indicate upregulated pathways, and blue bars indicate downregulated pathways ordered 
by –log10 (P value; x axis) (B) Linear regression analysis of expression levels (measured as Z scores) of genes related to the SRP-dependent cotranslation-
al protein pathway (top panels) and the Selenoamino acid metabolism pathway (bottom panels) in T2D versus CTRL human β cells (y axis) and ductal 
cluster 2 (left panels) or 4 (middle and right panels) in pregnancy (P NSG-Lox versus NP NSG-Lox) or insulin-resistant (NP NSG-LIRKO versus NP NSG-
Lox) models. (C) Venn diagrams representing the intersection between the significant differentially expressed genes in T2D versus CTRL human β cells 
(yellow circles) and the ductal cluster 2 (purple circles, top panels) or 4 (aquamarine circles, bottom panels) in pregnancy (P NSG-Lox versus NP NSG-Lox 
left panels), insulin-resistant (NP NSG-LIRKO versus NP NSG-Lox, middle panels), or combined (P NSG-LIRKO versus NP NSG-Lox, right panels) models. 
The upregulated genes are written in red, and the downregulated genes are written in blue.
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The upregulation of  islet cell genes in nuclei within cluster 2, such as GCG in pregnancy or insulin- 
resistant models, or PPY in the insulin-resistant model, in common with SPP1+ and TFF1+ cells, respectively,  
suggested cells are transitioning toward an endocrine cell phenotype (Figure 4B). In addition, FXYD2 and 
ferritin heavy chain 1 (FTH1), 2 genes recently identified as β cell specific (18, 25), were upregulated in 
clusters 2 and 4 in different models and shared with SPP1+ progenitor cells (Figure 4, B and C). Among 
those that were downregulated, MUC1, integrin subunit α 2 (ITGA2), and fibronectin (FN1) — which reg-
ulate cell adhesion and cell-ECM interactions — were shared by the 2 ductal nuclear clusters 2 and 4 in 
the different models and the 2 types (TFF1+ and SPP1+) of  endocrine progenitor cells (Figure 4, B and C). 
These comparative analyses indicate that ductal cells adapt to an insulin-resistant environment by adopting 
a transcriptomic profile that resembles typical endocrine progenitor cells.

T2D human β cells reveal regulation of  pathways that are also present in ductal cells in response to pregnancy and 
insulin resistance. Finally, to examine whether patients with T2D who potentially exhibit an adaptive response 
to enhanced insulin demand exhibit similar pathways in their β cells, we compared our results with single-cell 
data sets in the public domain. Reanalyses of  the scRNA-Seq GSE81608 data set comparing nondiabetic 
versus T2D human islets (26), showed that “selenocysteine synthesis,” “selenoamino acid metabolism,” and 
“SRP-dependent co-translational protein targeting to the membrane” pathways were all upregulated in β cells 
from the latter. Notably, these pathways were also identified in ductal cells (cluster 2 and 4) in the pregnancy 

Figure 6. The “selenocysteine synthesis” and the “SRP-dependent co-translational protein targeting to the membrane” pathways modulate endocrine cell 
gene expression in ductal cells treated with insulin. (A) Scheme of the insulin treatment optimization experiment. (B–E) Expression levels of PCNA (B),  
NGN-3 (C), PDX1 (D), and NKX2.2 (E) in PANC-1 cells treated every 24 hours with either PBS (black bars) or human insulin at 2 (pink), 10 (red) or 20 μg/mL (dark 
red) for 3, 7, or 14 days. Data are represented as mean of fold change compared with PBS-treated cells ± SEM (n = 3). P < 0.05 was considered as significant 
using 2-way ANOVA following Dunnet’s multiple-comparison adjustment. (F) Scheme of the selenocysteine synthesis and SRP pathway inhibition experi-
ment. (G) SCLY expression levels in scramble (green bars) and siSCLY PANC-1 cells (orange bars) at different time points. Data are represented as mean of fold 
change compared with scramble cells ± SEM (n = 3). P < 0.05 was considered as significant using 2-way ANOVA following Bonferroni’s multiple comparison 
adjustment. (H) SRPRA expression levels in scramble cells treated every 24 hours with DMSO + PBS (sc-DMSO-PBS, black) and siSCLY cells treated with 
ESI + PBS (siSCLY-ESI-PBS, blue). Data are represented as mean of fold change compared with PBS-treated cells ± SEM (n = 3). P < 0.05 was considered as 
significant using unpaired 2-tailed t test. (I–K) Expression levels of SEC61A2 (I), PDX1 (J), and PAX6 (K) in sc-DMSO-PBS cells (black), sc-DMSO cells treated 
with insulin (sc-DMSO-INS, red), siSCLY-ESI-PBS cells (blue), or siSCLY-ESI cells treated with insulin (siSCLY-ESI-INS, purple). Data are represented as mean of 
fold change compared with their respective PBS-treated cells ± SEM (n = 3). P < 0.05 was considered as significant using 1-way ANOVA following Bonferroni’s 
multiple-comparison test. Data are expressed as mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001.
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and insulin-resistant models (Figure 5A and Supplemental Table 8). Common pathways between T2D β cells 
and ductal clusters in insulin-resistant states were a feature among the downregulated ones (Figure 5A and 
Supplemental Table 8). Notably, pathways involved in inflammatory processes, such as TNF-α and TGF-β, 
were suppressed in ductal clusters from grafts transplanted in mice with insulin resistance, as well as in T2D β 
cells in comparison with their respective controls (CTRL) (Figure 5A and Supplemental Table 8).

To explore the relevance of  the “selenoamino acid metabolism” and the “SRP-dependent cotransla-
tional protein targeting to the membrane” pathways, we performed linear regression to assess the correla-
tion of  gene expression between T2D β cells and the ductal clusters in the 3 models (pregnancy, insulin- 
resistant, and combined) (Figure 5B). A positive and significant correlation of  the expression of  genes 
involved in the “SRP-dependent cotranslational protein targeting to the membrane” pathway and the 
selenocysteine signaling was observed between T2D versus CTRL β cells and clusters 2 and 4 in the preg-
nancy model. Similar positive associations were found between T2D versus CTRL β cells and cluster 4 
in the insulin-resistant model. Together, these data emphasize the importance of  these pathways in cells 
transitioning toward an endocrine identity when subjected to high insulin demand.

To determine the similarities in terms of  global gene expression between insulin-resistant β cells and 
ductal clusters subjected to high insulin demand, we intersected the differentially regulated genes in T2D 
versus CTRL β cells from the GSE81608 public data set with the differentially regulated genes in ductal 
cluster 2 and cluster 4 in each of  the 3 experimental models from the snRNA-Seq outputs (Figure 5C). We 
observed 78, 82, and 76 differentially expressed genes that were common between the T2D versus CTRL 
β cells and ductal cluster 2 in the pregnancy, insulin-resistant, or combined models, respectively (Figure 

Figure 7. Working model summarizing the transcriptomic modifications in ductal cells in response to increased insulin demand. (A and B) Phys-
iological (pregnancy) and pathological (insulin-resistant) conditions result in increased β cell mass due to neogenesis (A) and/or β cell regeneration 
(B). Ductal epithelial cells contribute in generating new β cells to compensate for the high insulin demand. Increasing levels of insulin resistance lead 
to the elevated expression of endocrine cell markers, including PAX6, MAFA, INS, and GCG; simultaneously, the expression of ductal-specific genes, 
such as MUC1, ONECUT2, and KRT19 is reduced. Such transcriptomic changes are likely due to the increased expression of selenocysteine proteins 
that potentially regulate the redox state in the differentiating cells, leading to the increased expression of NGN3. At the same time, high insulin 
conditions cause downregulation of integrin signaling and the Notch pathway, ultimately increasing NGN3 gene expression.
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5C). Among these 3 sets, we identified genes involved in ribosomal complex (RPS2, RPL10A), metabolism 
(GATM, ATP1B1), and exocrine pancreas function (CPA2). Upon intersecting the T2D versus CTRL β cells 
with the ductal cluster 4, we identified 65, 13, and 21 significantly dysregulated genes that were shared with 
pregnancy, insulin-resistant, or combined models, respectively (Figure 5C). These included genes coding 
for ribosomal protein (RPL23A) and genes important for microtubule assembling (TUBA4A), in addition 
to genes related to exocrine function (CTRB2, SPINK1). These data suggest that models of  physiological 
(pregnancy) or pathological insulin resistance express a specific phenotype of  ductal cells that are also evi-
dent in β cells from insulin-resistant T2D patients.

The “Selenocysteine synthesis”and the “SRP-dependent cotranslational protein targeting to the membrane signal-
ing” pathways are potentially involved in driving the endocrine lineage in ductal cells in response to insulin resistance. 
The pathway analyses performed in the ductal nuclear clusters highlighted “selenocysteine synthesis” and 
“SRP-dependent cotranslational protein targeting to the membrane signaling” as candidate pathways mediat-
ing the induction of  endocrine genes in response to high insulin demand. To validate this possibility, we used 
the human ductal cell line (PANC-1), a widely used model that has been reported to exhibit plasticity (27, 28). 
We used the cell line to test its ability to respond to 14 days of  stimulation with pathophysiological concen-
trations of  insulin that was observed in the LIRKO mice to simulate the in vivo milieu of  insulin resistance 
(29, 30) (Figure 6A). As expected, insulin (10 μg/mL) induced cell proliferation after 3 days of  stimulation, as 
shown by the higher transcript levels of  proliferating cell nuclear antigen (PCNA) compared with PBS-treated 
cells (Figure 6B). The proliferation subsided at 7 and 14 days, consistent with the observation that growth 
of  ductal cells precedes differentiation (7). The cells treated with the highest dose of  insulin (20 μg/mL) 
also showed a tendency toward an increase in PCNA expression after 3 days (Figure 6B) and would likely 
have induced higher cell proliferation at earlier time points. Of relevance to our hypothesis, the cells treated 
with insulin exhibited a dose-dependent increase in NGN3, PDX1, and NKX2.2 expression after 14 days that 
reached significance for the highest dose (20 μg/mL) compared with PBS-treated samples (Figure 6, C–E).

To evaluate the significance of  the interaction between the ‘selenocysteine synthesis’ and the ‘SRP- 
dependent cotranslational protein targeting to the membrane pathways’ in regulating endocrine cell differ-
entiation in response to high insulin demand, we simultaneously blocked the 2 pathways in PANC-1 cells. 
We silenced the selenocysteine lyase (SCLY) gene, a key enzyme in the selenoprotein metabolism pathway 
(31), and also blocked the SRP pathway using eeyarestatin 1 (ESI), a pharmacological inhibitor of  protein 
translocation into the ER mediated by the SRP receptor and SEC61α (32). We reasoned that simultane-
ously targeting the 2 pathways would prevent induction of  endocrine gene expression that would other-
wise occur if  one of  the pathways was still active. Scramble and siSCLY+ESI cells were then treated with 
or without insulin (20 μg/mL for 14 days) (Figure 6F). We confirmed that SCLY was silenced over the 
treatment period by assessing its expression levels in scramble versus siSCLY PANC-1 cells at intermedi-
ate time points (Figure 6G). Successful inhibition of  the SRP pathway was evident by lower expression of  
SRP receptor α (SRPRA) in siSCLY+ESI cells compared with scramble cells (Figure 6H). Consistent with 
the sequencing data, insulin treatment significantly increased the expression of  genes in the SRP pathway, 
such as SEC61 translocon subunit α 2 (SEC61A2), and endocrine marker genes, such as PDX1 and PAX6, 
compared with PBS-treated cells (Figure 6, I–K). The depletion of  SCLY and concomitant blockade of  the 
SRP pathway prevented these effects. These data using the PANC-1 model point to the importance of  the 
“selenocysteine synthesis” and the “SRP-dependent co-translational protein targeting to the membrane” 
pathways in mediating the insulin-dependent activation of  the endocrine lineage in ductal cells. Further 
confirmation is necessary in primary ductal cells in vivo.

Discussion
In the present study, we undertook snRNA-Seq in grafts of  human islets and ducts to identify β cell sources  
that are triggered by alterations in ductal epithelium (neogenesis) in response to physiologic (pregnancy model) 
or pathophysiologic (genetically engineered insulin-resistant models) conditions. The snRNA-Seq approach 
provides a less biased cellular coverage, provides fewer transcriptional artifacts due to isolation protocols, and 
is suitable for archived frozen specimens compared with scRNA-Seq procedures (11, 33, 34). UMAP analyses 
of  the grafts containing the transplanted human ductal aggregates revealed multiple ductal clusters consistent 
with the previously reported scRNA-Seq data on sorted ductal cells or exocrine components obtained from 
human pancreas in physiological and pathophysiological conditions (24, 35). Raw data were demultiplexed, 
aligned to the human genome, and collapsed according to the unique molecular identifier (UMI) and by 
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aligning the sequence reads to the murine genome, cells containing >25% mouse-specific UMI were exclud-
ed. The detection of  a subcluster of  nuclei expressing INS, CHGA, MAFA, and PAX6 within ductal cluster 2 
in the graft samples of  the pregnancy and insulin-resistant models suggests that a fraction of  ductal cells is 
emerging to express both mature and immature β cell markers, potentially in response to the physiological or 
pathophysiological insulin demand. These findings are congruent with earlier studies reporting plasticity of  
human ductal cells in generating β-like cells in states of  insulin resistance, such as pregnancy, T2D, or obesity 
(7, 36, 37). The presence of  enriched INS/GCG double-positive cells in a subpopulation of  ductal cells in the 
experimental models that is not detected in the grafts in control nonpregnant NSG-Lox mice suggests that the 
differentiation of  ductal cells to β-like cells occurs via an intermediate α-like cell during the adaptive response 
to overt insulin resistance and is consistent with ducts and islets sharing developmental origins (38). An α-like 
intermediate stage has been reported in mouse models treated with GABA (39) and in pancreas obtained 
from insulin-resistant humans (40), signifying translational relevance.

An increase in the endocrine cell phenotype is complemented by a fading ductal cell identity reflected 
by downregulation of  adhesion proteins, such as MUC1, and ductal cell–specific genes and transcription 
factors, such as KRT19 and ONECUT2, respectively, in ductal nuclear clusters in the insulin-resistant mice. 
The reactivation of  the Notch pathway is involved in phenotype modulation of  rat pancreatic exocrine cells 
(22), and terminal ductal cells have been reported to harbor activated Notch signaling in adult mice (41). 
Consistently, we observed that the Notch pathway was downregulated in ductal cluster 2 in the combined 
model and correlated with a loss of  ductal cell identity. The downregulation of  ECM/integrin-related 
pathways in both ductal clusters, especially in the combined model, is consistent with dysregulation of  
focal adhesion machinery during transdifferentiation of  pancreatic progenitors to endocrine cells (23, 42).

Analyses of  the pregnancy and insulin-resistant models showed common alterations in the top path-
ways. For example, an upregulation of  genes, such as ATP1A1, suggested transdifferentiation toward a 
β-like cell phenotype. Next, harmonizing the snRNA-Seq data sets to compare the 2 ductal nuclear clusters 
in all 3 experimental models with endocrine progenitor cells identified in previous scRNA-Seq analysis on 
human ductal cells (24) revealed clusters of  nuclei that resembled the transcriptomic signature of  the endo-
crine progenitor cell clusters of  the previously annotated “reference” data set. Among the common genes, 
at least one-third of  those that were differentially regulated were shared between the endocrine progenitor 
cells and the ductal clusters in insulin-resistant models and included non–β cell genes (e.g., GCG and PPY), 
and β cell–specific genes (e.g., FXYD2 and FTH1). Moreover, the combined model was distinct from the 
individual models of  increased insulin demand, and it showed upregulation in the spironolactone action 
pathway. Spironolactone is a nonselective mineralocorticoid receptor (MR) antagonist known to improve 
glucose and lipid metabolism (43). Studies on extracts from the tail of  the pancreas showed that spironolac-
tone inhibits phosphorylation of  protein kinase B and p38MAPK pathways, which are important for cellu-
lar apoptosis (44), suggesting protection during the differentiation of  ductal epithelium into endocrine cells. 
Taken together, these data indicate that ductal cells exposed to physiological or pathophysiological insulin 
resistance begin to express genes that overlap with the transcriptomic profile of  endocrine progenitor cells, 
indicating initiation of  transdifferentiation toward the endocrine lineage.

The emergence of  “selenocysteine synthesis” as the top upregulated pathway in the ductal clusters is 
teleologically relevant since selenium, an antiinflammatory and antioxidant molecule (45), would act to 
protect vulnerable cells from stress especially during high demand for insulin. These effects are especially 
relevant in pregnancy since reactive oxygen species (ROS) appears in pancreatic cells at E14–E18.5 when 
neurogenin 3 (Ngn3) expression rises in the endocrine progenitors (46–49). In addition, previous studies 
have linked this pathway to glucose homeostasis and insulin production in rodents and humans. In par-
ticular, (a) SNPs found in the SCLY genetic locus were associated with insulin resistance in individuals 
of  Mexican-American descent (50); (b) the whole body SCLY-KO mouse model manifested impaired 
glucose tolerance and metabolic syndrome (51), and such a phenotype was worsened upon challenge 
with high-fat diet (52); and (c) selenium increased insulin expression and secretion in mouse β cell lines 
(MIN6 cells) and rat pancreatic islets (53).

A second pathway that was upregulated in all models of  insulin resistance was associated with genes 
in the “SRP-dependent cotranslational protein targeting to the membrane” pathway, which participates in 
the insulin biosynthesis process (54) and potentially represents the formation of  secretory insulin vesicles in 
emerging β cells. It is notable that the “selenocysteine synthesis” and the “SRP-dependent co-translational 
protein targeting to the membrane” pathways were also upregulated in β cells in islets from patients with 
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T2D (Figure 5A). However, considering neither the insulin resistance score nor duration of  diabetes of  the 
T2D donors were reported, we are unable to directly infer whether the transcriptomic signature of  the β 
cells reflects a compensating versus a failing β cell profile or a mix of  both in response to insulin resistance. 
Notwithstanding, these pathways warrant further investigation to gain insights into ductal progenitors that 
are critical for β cell adaptation in individuals susceptible to develop diabetes. Taken together with our data 
from PANC-1 cells, these data suggest that the selenocysteine metabolism pathways plays a fundamental 
role in coordinating the generation of  insulin-producing cells from ductal progenitors to compensate for the 
high insulin demand. However, the precise mechanisms by which these pathways initiate and regulate the 
expression of  endocrine cell genes in murine versus human ductal cells, especially in the context of  adap-
tive responses in vivo, will require further investigation (55).

In conclusion, we report a potentially novel transcriptomic approach (Figure 7) using snRNA-Seq to 
define the signatures of  human ductal cells that acquire β cell identity during the adaptive compensatory 
response to pregnancy and insulin resistance in humanized in vivo models.

Methods
Mice. Mice were housed on a 12-hour light/12-hour dark cycle with water and food ad libitum. Alb-CreInsRfl/fl  
(LIRKO) mice were a gift from C.R. Kahn (Joslin Diabetes Center). NSG mice were purchased from The 
Jackson Laboratory. Ten- to 12-week-old (7) female immunodeficient NSG-Lox and NSG-LIRKO mice 
(with or without pregnancy) were used for generating the humanized insulin-resistant mouse models as 
described previously (7). Male mice were used only as breeders. Pregnancy was confirmed by the presence of  
a vaginal plug and designated day 0.5 of  gestation (G0.5).

Human islet and duct transplantation studies. Upon receipt, human islets and human ductal aggregates 
isolated from nondiabetic donors (n = 4) were cultured overnight in Miami Media 1A (Cellgro). Hand-
picked and size-matched islets (1000 IEQ) were transplanted together with 100 human ductal aggregates 
(cluster of  ductal cells) under the kidney capsule of  both NSG-Lox and NSG-LIRKO mice as described 
previously (56, 57). After allowing 10 days after transplantation for islet engraftment, mice were either 
maintained in a nonpregnant state or allowed to breed to become pregnant. Human islet and duct grafts 
were removed on pregnancy day 15.5 and snap-frozen for further analysis.

Isolation of  nuclei from frozen engrafted samples. Isolation of  nuclei from frozen transplanted specimen 
was performed as previously reported (11). Briefly, frozen grafts homogenized in Nuclei EZ lysis buffer 
(NUC-101, MilliporeSigma). Following several steps of  washing in 1× DPBS and centrifugations per-
formed at 500g for 5 minutes at 4°C, nuclear samples were counted using a cell counter using 0.4% trypan 
blue stain. The average number of  total nuclei obtained from one-half  graft was approximately 8.5 × 105 
nuclei (1.7 × 106 cells/mL) with 5–10 μm size and 93.3% ± 1.1% dead cell rate (n = 31 samples across 3 
independent experiments). The number of  nuclei was adjusted to 1000 nuclei/μL with suspension buffer, 
and 10,000 nuclei were immediately used for generation of  gel beads in emulsion (GEMs) and barcoding. 
Leftover nuclei were saved for future analysis.

snRNA-Seq. GEMs were generated using the Chromium 3′ Single Cell Library Kit (v2, 10X Genomics) 
according to the manufacturer’s instructions. Briefly, 10,000 nuclei were combined with Single Cell Master 
Mix and encapsulated into the barcoded Gel Beads through the Chromium Controller. After GEM–reverse 
transcription incubation, cDNA samples were recovered, purified, and amplified through a cDNA Ampli-
fication Reaction. Quality controls on amplified cDNA samples were carried out through using a High 
Sensitivity DNA Kit (Agilent) on a 2100 BioAnalizer (Agilent) platform. Libraries were then constructed 
following fragmentation and adaptor ligation and sample index incorporation. Finally, purified libraries 
were run on 2100 BioAnalizer (Agilent) using a High Sensitivity DNA Kit (Agilent) to evaluate the quality 
of  the ~400 bp fragments. The final single-nucleus libraries were sequenced using a coverage of  500,000 
pair-ended reads targeted per nucleus, on a HiSeq platform (Illumina).

Analyses of  snRNA-Seq data. The raw snRNA-Seq data were analyzed using previously published ana-
lytic pipelines (11). Briefly, raw data were initially demultiplexed, aligned to the human-mouse combined 
reference genome, and collapsed according to the unique motif  identifiers (UMI) by using CellRanger 
(v2.2.0). Quality controls were computed using the R package Scater including library sizes, number 
of  expressed genes, and proportion of  UMIs assigned to mitochondrial genes. With this approach, we 
removed low-quality nuclei with a small library size, nonbarcoded reads, and cells with a proportion 
of  mitochondrial genes > 20%. Low-abundant genes with average counts < 0.01 were also excluded. 
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CellBender was used to remove ambient RNA contamination (58), and DoubletFinder (12) was applied 
to remove doublets and multiplets (12), after normalizating the data using sctransform R package (59). 
Finally, by aligning the sequenced reads to the murine genome (GRCm38), we excluded cells containing 
>25% mouse-specific UMI. By using Seurat, we generated UMAP plots, allowing identification for clus-
ters and marker genes per cluster. Cell types were classified according to the expression of  the pancreatic 
cell marker genes, as previously described. To discover the differential expressed genes in the 3 exper-
imental models — pregnant NSG-Lox versus nonpregnant NSG-Lox (pregnancy model), nonpregnant 
NSG-LIRKO versus nonpregnant NSG-Lox (insulin-resistant model), and pregnant NSG-LIRKO versus 
nonpregnant NSG-Lox (combined model) — we used edgeR package following empirical Bayes quasi 
likelihood F-tests for comparisons in the several cell types (60). Genes reporting P < 0.05 in the pregnancy,  
insulin-resistant and combined models were considered significantly upregulated or downregulated, 
respectively. Pathway analysis was performed considering the most upregulated/downregulated genes in 
all the investigated models within the ductal clusters, using ConsensusPathDB (61).

The snRNA-Seq data included in this study have been deposited in NCBI Gene Expression Omnibus 
(GEO; accession no. GSE207393; https://www.ncbi.nlm.nih.gov/geo/).

Reanalysis of  published scRNA-Seq data sets. The public available scRNA-Seq GSE131886 (24) was reana-
lyzed using the harmonization pipelines (11, 62). With this approach, we generated a reference data set that 
was projected onto our snRNA-Seq data set to identify common transcriptomic signatures. Focusing on the 
cluster of  cells previously identified as endocrine-progenitor cells in GSE131886 (i.e., SPP1+ and TFF1+ cells), 
we generated lists of  cell-specific genes using the R-package limma (63). Such differentially regulated genes  
(P < 0.05) were intersected with the genes differentially regulated in ductal cluster 2 or 4 in pregnant NSG-Lox 
versus nonpregnant NSG-Lox (pregnancy model), nonpregnant NSG-LIRKO versus nonpregnant NSG-Lox 
(insulin-resistant model), or pregnant NSG-LIRKO versus nonpregnant NSG-Lox (combined model).

The publicly available scRNA-Seq data set GSE81608 (26) was reanalyzed to reveal the differentially 
regulated genes in T2D versus control β cells, using the edgeR package (60). The significantly differentially 
regulated genes (P < 0.05) were used in the ConsensusPathDB resource to perform pathway analysis.

To determine the correlations of  differentially regulated genes in the Seleno Aminoacid Metabolism 
(KEGG) and the SRP-dependent cotranslational protein pathways between T2D versus control β cells and 
the ductal clusters in all the models, we performed linear regression analyses by transforming the P values 
into signed Z scores using normal quantile function (qnorm). Linear regression was performed using natu-
ral log functions of  the Z scores.

Immunostaining and microscopy. Paraffin-embedded human duct/islet graft sections were processed 
for IHC as previously described (7). Briefly, we used specific antibodies to target CK19 (Abcam, ab7754, 
1:200), insulin (Abcam, ab7842, 1:500), and glucagon (MilliporeSigma, G2654, 1:10,000). Secondary anti-
bodies against the respective host species and conjugated with AlexaFluor 350, 488, or 594 (The Jackson 
Laboratories) were used to reveal polyhormonal cells. Images were acquired by confocal microscopy using 
the Zeiss LSM 980 with Airyscan 2 (Zeiss) or Zeiss Axio Imager M1 at 20× magnification. Orthographic 
projections were generated by using the Zeiss Zen Black Software.

Cell culture. PANC-1 cells (ATCC) at passage number 10 were maintained in 1× DMEM (Corn-
ing) supplemented with glucose at 4.5 g/L, 10% FBS (Thermo Fisher Scientific), and 1% penicillin/
streptomycin (Corning). Insulin treatment was performed by adding 1× PBS or human insulin (Mil-
liporeSigma) at the indicated concentrations every day in the growth medium for 3, 7, or 14 days. To 
silence the SCLY gene, we used either the ON-TARGETplus Non-targeting (D-001810-10-20, scram-
ble) or SCLY-specific (L-017175-01-0010, siSCLY) small interference RNA pools (Horizon Discov-
ery) at 10 nM. Knock-down experiments were performed every 4 days using lipofectamine RNAiMax 
(Thermo Fisher Scientific), as previously reported (64). To block the SRP pathway, we treated cells 
daily with either DMSO (0.1%) or ESI (Tocris) at 1 μg/mL for 14 days. At the end of  the experiment, 
medium was removed and cells were collected for RNA isolation.

RNA isolation and real-time PCR. Cells were lysed in TRIzol (Thermo Fisher Scientific), and total RNA 
was extracted following incubation with chloroform (MilliporeSigma) according to the manufacturer’s 
instructions. Aqueous phases were purified following incubation with 70% ethanol at 1:1 ratio. The mix-
tures were then run through RNeasy mini kit columns (Qiagen) to concentrate and isolate high-quality 
RNA. Following quantification using Nanodrop One spectrophotomer (Thermo Fisher Scientific), cDNA 
was produced using high-capacity cDNA synthesis kit (Applied Biosystems) according to manufacturer’s 
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instructions. cDNA was amplified using specific oligonucleotides (Supplemental Table 9) using the ABI 
7900 system (Applied Biosystems), and gene expression was analyzed using the ΔΔCT method, following 
normalization on TATA-box binding protein (TBP) transcript levels.

Statistics. All data are expressed as ± SEM. Statistical significance was determined by 2-way  
ANOVA test following Bonferroni’s multiple-comparison test and 1-way ANOVA test following Bon-
ferroni’s multiple-comparison test (Graph Pad Prism 7). P value of  less than 0.05 was considered a 
significant difference. To correlate the expression levels of  genes in the candidate pathways, linear 
regression analysis on the normalized Z scores of  gene expression levels was performed, and the sig-
nificance was tested by F-test. For the pathway analyses performed via ConsensusPathDB, the P value 
was calculated according to the hypergeometric test based on the number of  physical entities present 
in both the predefined set and user-specified list of  physical entities (61).

Study approval. All mouse experiments were conducted at Joslin Diabetes Center with approval of  its 
IACUC and were in accordance with NIH guidelines. Human islets and ductal aggregates were obtained 
from the Prodo Laboratories (Supplemental Table 1). All studies and protocols used were approved by the 
Joslin Diabetes Center’s Committee on Human Studies (CHS#5-05).
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