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Simple Summary: The amount of diagnosed thyroid nodules increases every year. Many researchers
have tried to optimize the process of classifying and diagnosing thyroid nodules using artificial
intelligence. The aim of this study was to assess the latest applications of artificial intelligence in
diagnosing and classifying thyroid nodules. The focus was on innovations in the use of artificial
intelligence in the field of ultrasonography and microscopic diagnosis, although other applications
were reviewed as well. In total, we analyzed 930 papers published from 2018 to 2022.

Abstract: The incidence of thyroid nodules diagnosed is increasing every year, leading to a greater
risk of unnecessary procedures being performed or wrong diagnoses being made. In our paper,
we present the latest knowledge on the use of artificial intelligence in diagnosing and classifying
thyroid nodules. We particularly focus on the usefulness of artificial intelligence in ultrasonography
for the diagnosis and characterization of pathology, as these are the two most developed fields.
In our search of the latest innovations, we reviewed only the latest publications of specific types
published from 2018 to 2022. We analyzed 930 papers in total, from which we selected 33 that were
the most relevant to the topic of our work. In conclusion, there is great scope for the use of artificial
intelligence in future thyroid nodule classification and diagnosis. In addition to the most typical uses
of artificial intelligence in cancer differentiation, we identified several other novel applications of
artificial intelligence during our review.

Keywords: artificial intelligence; thyroid nodules; thyroid cancer; diagnosis; ultrasonography;
cytopathology; frozen sections; classification; machine learning

1. Introduction

Thyroid nodules are a common problem encountered in clinical practice. Based on
palpation, they have generally been detected in 4–7% of the population; however, due
to the current high quality of ultrasound equipment, they are now being diagnosed in
as much as 50–70% of the general population [1]. Thyroid cancer is the most common
malignancy of the endocrine system [2]. In recent years there has been an upward trend
in the detection of this cancer, even to the point of an epidemic, though this may be due
in part to overdiagnosis [2,3]. This trend depends mainly on the increased detection of
papillary thyroid carcinoma (PTC), while the incidence rates for other thyroid carcinomas,
i.e., follicular, medullary, and anaplastic, have remained relatively constant [2,4].

When a thyroid nodule is detected, accurate evaluation, classification, and estima-
tion of the risk of malignancy is the most critical issue for recovery, followed by correct
therapeutic management. The American Thyroid Association 2015 guidelines recommend
that nodules larger than 1 cm should be evaluated. Smaller nodules, i.e., those less than
1 cm in diameter, should be evaluated in special cases, such as when there are other clinical
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indications. Key diagnostic tools include clinical examination, ultrasonography (US), serum
thyrotropin measurement, and fine needle aspiration biopsy (FNAB) [5].

Attempts to use artificial intelligence (AI) in medicine represent a relatively new area
of interest. The very idea of creating a machine able to simulate critical thinking appeared
for the first time in 1950. The first major “intelligent” computer programs in medicine were
MYCIN (1972) and CASNET (1976). MYCIN was designed to generate a list of predicted
bacterial pathogens and then select the appropriate antibiotic therapy for a patient on
the basis of their weight. CASNET served as a consultation model for glaucoma. For a
long period of time, this area developed relatively slowly. Significant development of AI
in medicine has only occurred over the past two decades, with the U.S. Food and Drug
Administration approving a cloud-based deep learning (DL) application for the first time
in 2017 [6]. Currently, the usefulness of AI is being explored in such diverse medical fields
as gastroenterology, radiology, oncology, cardiology, ophthalmology, and surgery, with
promising results [6–15].

The goal of this paper is to explore the current uses and prospects of AI in diagnosing
and classifying thyroid nodules. Special attention is paid to the possibility of using AI
in the following areas: ultrasonography, cytopathology, whole-slide imaging of frozen
sections, probe electrospray ionization tandem mass spectrometry (PESI-MS), and nuclear
medicine, as the above areas seem to be the most interesting and future-orientated.

2. Methods

We searched the Google Scholar and PubMed online databases for studies published
from 2018 to 29 October 2022 using mostly mixtures and various forms of the following
terms: “artificial intelligence”, “thyroid nodules”, “diagnosis”, “thyroid cancer”, “ultra-
sonography”, “frozen section”, “cytology”, “nuclear medicine”, “machine learning”, and
“pathology”. Three authors went through the databases and decided which articles to
choose. Each article was read and confirmed by two authors. In case of a disagreement, the
third author was asked to decide whether to reject or accept the article. After analyzing
930 papers and reading the abstract/content of 168 of these, we selected 33 papers that
were most related to our topic. We exercised discretion in not selecting multiple works
with similar coverage of certain narrow topics in order to cover more areas and assess
the diversity of artificial intelligence usage rather than focusing on a single topic. We
excluded articles that were not related to the use of artificial intelligence as well as those
that did not deal with thyroid nodules. We included both original and review articles. We
especially focused on the use of AI in the diagnosis and characterization of pathology based
on imaging, such as through ultrasound (US) and microscopy.

3. AI in the Diagnosis and Classification of Thyroid Nodules
3.1. Ultrasonography

In any patient with a suspected thyroid nodule, ultrasonography should be performed
as a primary diagnostic tool. The lesion should be evaluated in terms of size, location,
and sonographic characteristics (composition, echogenicity, margins, calcifications, shape,
and vascularity) [5,16]. It is crucial to properly assess the image seen on the US for further
management, as it is this assessment that mainly determines the decision about whether or
not to biopsy the lesion when performing further diagnostics [5]. To this end, numerous risk
stratification systems have been created to facilitate and standardize decisions; among the
most popular are the American Association of Clinical Endocrinologists (AACE)/American
College of Endocrinology (ACE)/Associazione Medici Endocrinologi (AME), American
College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS), Ameri-
can Thyroid Association (ATA), European Thyroid Association Thyroid Imaging Reporting
and Data System (EU-TIRADS), and Korean Society of Thyroid Radiology Thyroid Imaging
Reporting and Data System (K-TIRADS). The greatest sensitivity is characterized by ATA
(87%) and K-TIRADS (86%), and the highest specificity by ACR TI-RADS (64%). In a
head-to-head analysis, ACR TI-RADS has the highest diagnostic odds ratio: ACR TI-RADS
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vs. ATA at 5.6 vs. 2.9 with p = 0.002 and ACR TI-RADS vs. K-TIRADS at 4.5 vs. 2.5
with p = 0.002 [17]. However, the above classification systems, which can be referred to as
conventional, do not cover all possible features for analysis, such as vascularity and tissue
elasticity. Therefore, to achieve even greater accuracy in the evaluation of thyroid nodules
and to appropriately categorize the visualized lesion, multimodal scoring systems were
created, e.g., French TIRADS and Thyroid Multimodal Imaging Comprehensive (TMC)
risk stratification systems, which analyzed even more features included in the US image
and showed greater diagnostic performance compared with conventional systems [18].
Suspicious features seen on the image include solid composition, hypoechoic echogenicity,
taller-than-wide shape, irregular margins, and calcifications [5,19–21]. In their evaluation,
multimodal scoring systems additionally use the presence of suspicious lymph nodes, high
stiffness on elastography, vascularity, halo effect, comet tail artifact, and a negative score
for benign features [18,22].

Algorithms used in research on the usefulness of AI in image evaluation can vary
widely, and in clinical practice some achieve better results than others. To better understand
the nuances between different algorithms and their results, we have decided to prepare a
short introduction, presented below.

Computer programs can essentially be distinguished according to their learning
approach as supervised learning and unsupervised learning [23].

In supervised learning, a labeled dataset of images already classified by a team of
human experts is introduced into an algorithm’s resources. On the basis of these resources,
the algorithm tries to independently identify a function that most accurately classifies the
provided dataset, the aim being to obtain results as close as possible to the classification
made by the human experts. Then, the program compares its results with those contained
in labeled datasets. The algorithm then repeats the steps to develop a function with the
highest possible accuracy. This is the most common learning approach in medicine [23,24].
An example of such a dataset might include images of pulmonary nodules obtained from
computed tomography and classified as cancerous or benign [25].

Similarly, in unsupervised learning the algorithm is provided with datasets composed
of images, with the difference being that these images are unlabeled. The program learns
through its own analysis based on identifying differences and similarities between the
inputted images. In this case, there are no reference values made by a human expert for the
program to refer to [23,24].

Of the two concepts mentioned above, supervised learning is much more commonly
chosen in medicine. It includes several different algorithms, essentially belonging to two
different groups: convolutional neural networks (CNNs) and non-neural networks [24].
Deep neural networks, which include CNNs, are considered the gold standard in image
analysis [24,26]. CNNs that analyze images are designed along the lines of the animal visual
cortex. They are highly complex systems consisting of many different interconnected layers.
They extract specific image features and share the features among themselves, analyzing
them and ultimately drawing conclusions, which they present as output [26–28]. In clinical
practice, the key difference between CNNs and non-neural networks, e.g., random forest
and support vector machines (SVMs), is that CNNs do not require prior handcrafted feature
extraction from the input data. In addition, prior segmentation of tumors by human is not
needed for analysis using CNNs [24,27].

The application of AI in the diagnosis of thyroid nodules is developing in many
different directions. Programs using both CNN and non-neural methods are being analyzed.
The usefulness of the algorithms in making independent decisions and as an adjunct to
physicians for even greater accuracy in classifying visualized lesions is being tested.

The most important report from studies conducted in recent years seems to be that AI
is on par with experienced radiologists in its assessment and can be successfully used as a
computer-aided diagnosis (CAD) system in assisting clinicians, especially less experienced
ones, in making further diagnostic and therapeutic decisions (Table 1) [29–36].
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Table 1. Diagnostic performance of CNN-based AI and radiologists.

Group Sensitivity Specificity Accuracy AUC

Junior radiologist ≤ 4y 64–96% 38–84% 64–83% 0.67–0.82

Senior radiologist > 8y 75–97% 63–96% 73–94% 0.73–0.86

AI system (CNN) 74–95% 65–94% 73–94% 0.78–0.94

CNN-assisted junior ≤
4y radiologist 87–95% 59–81% 75–87% 0.76–0.87

AUC—an area under the receiver operating characteristic curve; AI—artificial intelligence; CNN—convolutional
neural network.

He et al. used a CNN (Visual Geometry Group Net) trained on a dataset containing
1421 samples to evaluate 469 nodules in 426 patients. The main limitation of this study
is that PTCs accounted for the majority of the malignant nodules. He et al. compared
the results to the evaluations of senior radiologists (>10 years of experience) and junior
radiologists (<3 years of experience) using ACR TI-RADS. Individually, the junior radi-
ologists scored lower on sensitivity, specificity, and accuracy (63.8%, 83.7%, and 77.6%,
respectively) than senior radiologists (81.9%, 88.3%, and 86.4%, respectively) and AI (74.3%,
88.6%, and 84.2%, respectively). Individually, the senior radiologists achieved the highest
sensitivity and AI the highest specificity. However, when a junior radiologist was assisted
by AI in evaluation, the sensitivity significantly increased to 86.8% and accuracy to 80.4%,
although, interestingly, the specificity decreased to 77.5%. Comparison of the receiver
operating characteristic (ROC) curve and area under the ROC curve (AUC) showed that
junior radiologists had a lower AUC than senior radiologists and AI (0.738, 0.851, and 0.816,
respectively). With the assistance of AI, the AUC value of junior radiologists increased to
0.867. There was a statistically significant difference in the AUC values between AI-assisted
junior radiologists and junior radiologists (0.867 vs. 0.738; p < 0.05). Differences between
the AUC values of AI, senior radiologists, and AI-assisted junior radiologists were not
significant (p > 0.05) [29].

Peng et al. used a CNN (ThyNet) trained on a large dataset of 18,049 images, which
is an undoubted advantage of this study. Radiologists were divided into two groups,
senior (>8 years of experience) and junior (1–3 years of experience), and evaluated on the
basis of the ACR TI-RADS. Three study tests with their own set of samples were assessed:
A, B, and C. In Test A, a set of 2185 images of 1424 patients was separately evaluated
by AI and radiologists. The CNN proved to be the best according to each performance
parameter (sensitivity, specificity, accuracy, and AUC, with 94.9%, 81.2%, 89.1%, and 0.944,
respectively). Senior radiologists performed slightly worse than CNN (90.4%, 80.6%, 86.3%,
and 0.855), and junior radiologists performed the worst (88.5%, 75.3%, 82.8%, and 0.819).
In Test B, 1745 images of 1048 patients were evaluated using the CNN-assisted strategy.
AI assistance improved performance in both the senior and junior radiologist groups. It
is notable that junior radiologists with CNN assistance achieved better performance than
senior radiologists without CNN assistance (sensitivity of 92.4% vs. 90.4%, specificity of
80.8% vs. 80.6%, accuracy of 87.4% vs. 86.3%, and AUC of 86.6% vs. 85.5%, respectively). In
Test C, the cooperation of radiologists with CNNs was tested, and videos were additionally
evaluated. The sample included 366 images and videos of 303 patients. For radiologists,
the total AUC based on the analysis of static images alone was 0.823. When dynamic videos
were included, the AUC increased to 0.862. With the further addition of CNN assistance,
the AUC was 0.873. Performance was improved in both the senior (p = 0.0075) and junior
(p < 0.0001) radiologist groups. Finally, a scenario was simulated in which biopsy was
waived using AI and ACR TI-RADS under strict conditions and the diagnosis was made
on the basis of imaging data. A significant reduction in patient FNAB was achieved, from
61.9% to 35.2%, while the missed malignancy rate improved from 18.9% to 17.0% [30].

The potential of deep neural networks to prevent unnecessary FNAB was investigated
by Song at al. In their study, the popular Inception-v3 model was used and the K-TIRADS
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system was used to evaluate tumor malignancy. The study focused on the performance
of AI on the basis of the ratio of malignant to benign tumors in the study pool [34], and
the results were compared to the work of radiologists in the Chang et al. study [37]. The
effectiveness of the Inception-v3 model matched that of the radiologists. The negative
predictive value (NPV) of the AI increased as the percentage of malignant samples in the
study decreased (90.3%, 93.3%, and 100% NPV when the percentage of malignant samples
was 50%, 30%, and 10%, respectively). The sensitivity was variable, but consistently in the
90.9–100.0% range [34]. Both papers (Peng et al. and Song et al.) indicate that AI can be
used successfully in the clinician’s daily work, both in the assessment of the malignancy of
thyroid nodules and in deciding whether or not to perform FNAB. By relying on computer
algorithms, the clinician is able to make decisions appropriate for the therapeutic process
without statistically greater harm to the patient than that could potentially result from
the evaluation of the US image of the lesion made by a diagnostician without the support
of modern algorithms. In addition, the benefit to the patient of not performing FNAB is
the avoidance of potential complications that could occur when performing this invasive
procedure [30,34].

Kim et al. used S-Detect software, owned by Samsung Medison Co. Ltd., which is a
CAD system in two versions, one based on SVMs and one based on CNNs. The performance
of both AIs was compared with that of an experienced radiologist with eleven years of
experience. In all, 218 thyroid nodules from 106 patients were evaluated. A relatively
large sample was represented by malignant nodules, what could have influenced the
diagnostic performance of the CAD system. The radiologist had the highest values in terms
of sensitivity, specificity, and accuracy (84.9%, 96.2%, and 91.7%, respectively). S-Detect 2
had better sensitivity than S-Detect 1 (81.4% vs. 80.2%, respectively), but lower specificity
(68.2% vs. 82.6%, respectively) and accuracy (73.4% vs. 81.7%, respectively). Differences
in specificity and accuracy were statistically significant (S-Detect 1 and S-Detect 2 vs.
radiologists in both categories p < 0.001; S-Detect 1 vs. S-Detect 2, p = 0.004 for specificity and
p = 0.025 for accuracy). Differences in sensitivity were not statistically significant (p > 0.45
for all). The radiologist’s score was further evaluated when supported by CAD systems. In
both cases, his sensitivity score increased significantly (for S-Detect, 1: 91.9%, p = 0.031; for
S-Detect 2,: 93.0%, p = 0.016). However, and interestingly, his scores for specificity (for S-
Detect 1, 81.1%; for S-Detect 2, 67.4%; p < 0.001 for both) and accuracy (for S-Detect 1, 85.3%,
p = 0.023; for S-Detect 2, 77.5%, p < 0.001) decreased [38]. Other studies have evaluated the
same S-Detect program [32,33,39]. Wei at al. compared CAD of a CNN-based system to the
works of four radiologists: radiologist 1 (one year of experience), radiologist 2 (four years
of experience), radiologist 3 (nine years of experience), and radiologist 4 (twenty years of
experience). They analyzed 204 nodules from 181 patients. Only radiologist 4 achieved
higher specificity, accuracy, and AUC than S-Detect (respectively, 75.0% vs. 65.2%, p = 0.052;
84.8% vs. 77.0%, p = 0.010; and 0.859 vs. 0.782, p = 0.005). Compared with the other
radiologists, AI demonstrated higher performance. In the next step, the radiologists
revised their diagnoses on the basis of the AI assessment; it was found that the less
experienced radiologists made a higher number of revisions: 31, 25, 9, and 5, respectively.
CAD contributed to a significant increase in the performance of only radiologists 1 and 2
(radiologist 1: specificity 37.5% vs. 58.9%, accuracy 63.7% vs. 75.0%, and AUC 0.666 vs.
0.767; radiologist 2: specificity 49.1% vs. 59.8%, accuracy 65.2% vs. 74.5%, and AUC 0.669
vs. 0.761; p ≤ 0.002 for all). In radiologists with more experience (radiologists 3 and 4), no
increase was observed or the increase was statistically insignificant (p > 0.05) [32].

Comparisons of the effectiveness of CNNs and non-neural network algorithms are
frequently encountered in the literature (Table 2). Ouyang et al. compared CNNs with
the algorithms of four non-neural networks: random forest, SVM, kernel nearest neighbor,
and naive Bayes. For all, the training set consisted of 700 nodules and the validation set
479 nodules. The performance of all five algorithms was better than that of two experienced
radiologists with 15 and 17 years of experience. AUC values decreased in the following
sequence: 0.954 for SVM and random forest, 0.940 for naive Bayes, 0.937 for kernel nearest
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neighbor, 0.928 for CNN, and 0.830 for the radiologists. Among the AIs mentioned above,
the CNN-based program had the weakest results [40]. In the previously mentioned study
by Kim et al., the SVM program (S-Detect 1) obtained higher specificity and accuracy than
the CNN (S-Detect 2): 82.6% vs. 68.2%, p = 0.004 and 81.7% vs. 73.4%, p = 0.025. The CNN
showed higher sensitivity (81.4% vs. 80.2%), although this difference was not statistically
significant (p > 0.999) [38].

Table 2. Comparison of the performance of different AI algorithms.

Group Sensitivity Specificity Accuracy AUC

CNN [29,30,32,38,40,41] 74–95% 65–89% 73–89% 0.78–0.94

SVM [38,40,41] 80–90% 59–83% 76–82% 0.95

RF [40] 0.95

NB [40] 0.94

k-NN [40] 0.94

Combined 2 CNN with
FFT (MAX rule) [42] 96% 66% 92%

Combined CNN-based
and handcrafted-based

features extraction
Methods with SVM [43]

96% 83% 93% 0.88

AIBx [44,45] 78–88% 44–79% 51–82%
AUC—area under the receiver operating characteristic curve; CNN—convolutional neural network;
SVM—support vector machine; RF—random forest; NB—naive Bayes; k-NN—kernel nearest neighbour;
FFT—Fast Fourier Transform.

Park et al. compared the results of CNN, SVM, and radiologists. The radiologists were
further divided into senior (5–20 years of experience) and junior (1–2 years of experience)
groups. In all, 4919 nodules were used to train the deep neural networks. All groups were
then validated on a sample of 286 nodules in 265 patients, with the senior radiologists
examining 184 nodules and junior radiologists examining 102 nodules. Overall, CNN
performed better than SVM, with sensitivity 91.0% vs. 90.4% (p not stated), specificity
80.8% vs. 58.5% (p < 0.001), and accuracy 86.0% vs. 75.9% (p < 0.001), respectively. When
comparing the performance of AI to that of radiologists by experience, it was observed that
(1) experienced radiologists showed better performance than less experienced radiologists
and (2) there was more overlap between AI performance and senior radiologists’ CNN
performance than AI performance and senior radiologists’ SVM performance. Comparing
experienced radiologists, CNN, and the SVM on a group of 184 nodules, the results were
as follows: sensitivity 92.9% vs. 90.8% vs. 90.8%, specificity 87.2% vs. 84.9% vs. 58.1%, and
accuracy 90.8% vs. 88.0% vs. 75.5%, respectively. For specificity and accuracy, comparisons
of experienced radiologists with SVM and CNN with SVM yielded p < 0.001. The results
of comparisons of experienced radiologists with CNNs were not statistically significant,
with p > 0.25 for both. Less experienced radiologists showed significantly poorer overall
performance on their group of 102 nodules than did senior radiologists on theirs, with
similar AI scores in both groups (junior radiologists: sensitivity 96.6%, specificity 56.8%,
and accuracy 79.4%). The fact that a relatively large sample was represented by malignant
nodules and the majority of them were papillary thyroid carcinomas could be considered
the main limitation of this study [41].

Instead of analyzing the results of AI based on different mechanisms of action sepa-
rately, as Ouyang et al. [40] and Park et al. [41] did, Nguyen et al. proposed the cooperation
of both types of algorithms in clinical practice to exploit the potential of each. A special
procedure algorithm was created. First, a non-neural handcrafted method algorithm was
used, in this case fast Fourier transform (FFT). The program classified the US image on
the basis of a specially developed point scale. If the score was unambiguous, that was the
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end of the diagnostic process, and the image was classified as either benign or malign. If
the algorithm could not conclusively resolve the nature of the lesion, then the same image
was independently evaluated by two different CNN algorithms, resulting in two different
scoring results. The final score was taken as one of three: MIN (the lower score of the two
proposed), MAX (the higher score of the two), and SUM (the arithmetic average of the two
scores). This idea is based on the fact that in cases that are not in doubt the program “taught
the picture” by a human expert will perform better. In unclear cases where the clinician
is unsure of the diagnosis, the AI is allowed to learn the image on its own, allowing it
to see patterns that are elusive to the human eye, and can make a correct assessment in
such cases. After this CAD system was developed, its usability was tested against the
available Thyroid Digital Image Database. A total of 237 images were used to train the
CNN, and 61 images were used to evaluate the CAD system. Initially, both CNNs were
evaluated individually without combining their evaluation with the FFT algorithm, and
both obtained similar results in sensitivity (81.8% and 84.0%), specificity (72.5% and 74.0%),
and accuracy (80.8% and 82.4%). Next, the performance of the combined CNNs (hereafter
without FFT) was checked on the basis of MIN, MAX, and SUM. The highest sensitivity,
specificity, and accuracy values were achieved for the MAX method, with 95.1%, 78.7%,
and 91.2%, respectively. Finally, the performance of the proposed method was checked in
combination with FFT and the CNN. The highest sensitivity (96.1%) and accuracy (92.1%)
were achieved for the MAX method, while the highest specificity (77.2%) was achieved for
the MIN method (vs. 65.7% for the MAX method) [42].

Sun et al. focused on combining CNNs with non-neural networks as well, though in
a slightly different form. They proposed a CAD that can extract features from US images
using both CNN (VGG-F) and handcrafted methods (histogram of oriented gradient, local
binary patterns, and scale-invariant feature transform). The extracted features are then
classified by the SVM algorithm. The entire experiment consisted of two stages. Initially,
the researchers compared the performance of the AI itself on the basis of the method used
to extract features from images. The fused method (VGG-F-based) scored better than
the VGG-F method and the handcrafted method conducted separately (sensitivity 94.3%
vs. 92.8% vs. 88.9%, specificity 91.1% vs. 89.2% vs. 84.7%, accuracy 92.9% vs. 91.4% vs.
87.5%, and AUROC 0.959 vs. 0.932 vs. 0.904, respectively). The second part compared
the performance of CAD and radiologists with 6–10 years of experience on 550 thyroid
nodules. The CAD system scored better than the radiologists (sensitivity 96.4% vs. 93.1%,
specificity 83.1% vs. 67.2%, and accuracy 92.5% vs. 87.1%, respectively). The AUC for CAD
was significantly higher than that for radiologists, at 0.881 vs. 0.819, p = 0.0003 [43].

Thomas et al. proposed a program (AIBx) based on a different principle than the others.
AIBx is an image similarity algorithm, which contains in its memory photos previously
classified by human experts. Its operation is based on comparing new photos to those in
the initial dataset and selecting the most similar one. It then returns the same value for the
new photo as the photo from the dataset classified by the human expert. The performance
of AIBx was compared to that of a CNN (ResNet 34) trained on a database of 2025 images
from 482 nodules. The test set consisted of 103 images from 103 nodules. AIBx achieved
better performance than the CNN, with sensitivity 87.8% vs. 84.8%, specificity 78.5% vs.
74.3%, and accuracy 81.5% vs. 77.7%, respectively. The p-values were not reported [44].
Swan et al. externally validated the utility of AIBx. Performance based on 257 nodules
from 209 patients was worse than in the original study, with sensitivity 78.4%, specificity
44.2%, and accuracy 51.0%. As the authors of the paper themselves note, the different result
of their validation may be due to differences in the features of the images used in the test
sets of the two studies rather than imperfections in the algorithm itself. The Thomas et al.
study used US images from the same model of camera for the training set and the test set,
while Swan et al. used an off-the-shelf program (trained on images from the US model of
Thomas et al.) to evaluate images derived from a different US model, which was used to
create the test set in the Swan et al. paper. Both ultrasound machines produced images of
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thyroid nodules that differed in texture and size, which may have significantly affected the
results of the studies [45].

In summary, studies in recent years suggest significant benefits of using CAD systems
in diagnosing thyroid nodules, particularly for less experienced radiologists [29,30,32,33].
AI assistance for further diagnostic decisions could contribute to a significant reduction
in unnecessary FNAB [30,34]. The benefits of AI in assisting more experienced clinicians
are not as clear [32,38]. CADs based on CNNs seem to perform better than programs
based on non-neural networks [24,41], although this needs to be resolved through further
research, as researchers are not unanimous [38,40]. Combining the two technologies for
even more accurate results seems to be an interesting idea [42,43]. New solutions are being
sought from a programming perspective, for example, AIBx [44]. It should be borne in
mind that the algorithms, especially CNNs, can differ significantly from one another from a
programming perspective and that each is trained on different datasets consisting of images
varying in number and quality. Consequently, the obtained results may differ between
studies, and this should be kept in mind when deciding to adapt AI systems for personal
use in clinical practice. It is worth noting that in most of the mentioned studies the main
limitation was a relatively large sample represented by malignant nodules (most of them
being PTC), which may have influenced the results.

3.2. Cytopathology

FNAB is a standard procedure for diagnosing thyroid nodules, and is performed
on the basis of US indications and clinical data on the patient and nodules [46–48]. The
results of cytological examination can then help to decide what type of treatment should be
used [49,50]. As such, it is a diagnostically significant test, which has led to many studies
for its improvement through the use of AI.

Guan et al. used AI to distinguish PTCs from benign thyroid nodules on the basis of
cytological images taken with FNAB. They used two algorithms, VGC-16 and Inception-v3,
both of them based on the deep convolutional neural network. They used nodule samples
from 279 patients, from which 887 images were generated. They used 407 images obtained
from PTC patients and 352 images from benign nodule patients as the training set and
69 images from PTC patients and 59 images from benign nodule patients as the test set.
To establish the ground truth, they used the histopathological results in the case of PTC
patients and clinical data and laboratory and imaging results in the case of patients with
benign nodules. Sensitivity and specificity in detecting PTCs among cytology preparations
with PTC and benign nodule images were 100% and 94.91% for VGC-16 and 98.55% and
86.44% for Inception-v3, respectively [51]. These are high results. However, this work
did not compare the performance of the algorithms with that of humans; importantly,
only preparations of patients with PTCs and benign nodules were included in the study.
Although this study does not prove the practical application of the algorithm in clinical
settings, it does indicate future prospects in developing the algorithm with AI capabilities.

A similar topic was researched by Sanyal et al., who studied the effectiveness of CNNs
in distinguishing papillary thyroid carcinoma and nonpapillary thyroid carcinoma. For
this purpose, they used microphotographs of regions of interest from thyroid smears taken
by fine needle aspiration cytology. They used 184 PTCs and 186 non-PTCs images at
magnification x40 or x10 taken from 20 smears of 20 patients as a training set. As a test set,
42 microphotographs of PTCs and 132 microphotographs of non-PTCs were used, of which
the images were of the same fragment of the smear, with one at x40 magnification and the
other at x10. The performance of the algorithm was evaluated using two criteria: first, that
the lesion must be marked as papillary thyroid carcinoma in any of the magnifications (×10
or ×40), and second, that the lesion must be marked as papillary thyroid carcinoma at both
×10 and ×40 magnification to be diagnosed as papillary thyroid carcinoma. The results
were, respectively, sensitivity 90.48 and 33.33, specificity 83.33 and 98.48, and diagnostic
accuracy 85.06 and 82.76. This creates a good perspective on the classification of PTCs,
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as they are the most common malignant neoplasm of the thyroid [52]. Unfortunately, the
CNN results were not compared to what a human would achieve.

Elliott et al. presented an interesting use of AI. They used a CNN first to detect
regions of interest (ROIs), defined as follicular groups, on whole-slide images (WSIs)
taken by FNAB as a basis to then determine the TBSRTC category and the final pathology
(benign/malignant). In all, 799 WSIs were used as the training set and 109 WSIs as the test
set. The area under the ROC achieved by AI in differentiating ROIs from non-ROIs was
0.985. The sensitivity and the specificity in recognizing the malignancy of the final surgical
pathology were 92.0% and 90.5%, respectively. The AUCs in the accuracy of the diagnoses
made by AI and pathologists were 0.932 and 0.931, respectively. Interestingly, it was noted
that AI was worse at determining the malignancy of thyroid nodules for those nodules in
the benign and malignant cases categorized according to TBSRTC. Therefore, the operation
of the algorithm was modified such that a pathologist’s assessment was retained in cases
when categorization of the nodule diagnosis as benign or malignant was made according
to TBSRTC. For the other categories, however, AI was used to determine the malignancy of
the nodules themselves. Thus, the specificity of AI and humans together in determining the
malignancy of the thyroid nodules increased from 90.5% to 92.9% and the AUC from 0.931
to 0.962. This was a better result than that achieved by either AI or pathologists alone [53].

Two years after their previous paper was published, some members of Elliott’s team
focused on better understanding the part of this algorithm responsible for detecting ROIs.
Working on the same database of the patients, Dov et al. assessed how this algorithm may
be able to make finding ROIs easier for a cytopathologist in a different way by examining
a thyroid slide presented as a WSI. Microscopic analysis of a slide taken through FNAB
is often hampered and slowed by artifacts such as blood, serum, or empty space. This
algorithm was designed to search for fragments of the slide from which a diagnosis could
be made, thereby saving the subject time and energy and allowing them to focus on the
relevant fragments. The algorithm was able to analyze the entire WSI of the thyroid and
return 100 ROI images from it containing groups of follicular cells. Significantly, the 100 ROI
images represented only about 0.2% of the area on the slide. These 100 ROI images per
WSI were then presented to the experienced cytopathologist, who, on this basis alone, was
tasked with assigning the nodule the appropriate category based on the Bethesda System for
the Reporting of Thyroid Cytopathology (TBSRTC) and determining whether it was benign
or malignant. The performance of this algorithm was then compared with the performance
of the same cytopathologist who had performed the same task based on the WSIs 117 days
earlier. The final surgical pathology result was considered as the ground truth of each WSI.
On the basis of pairwise weighted k statistics, the concordance of the cytopathologist’s
evaluation of the specimen using only the WSIs and using only the ROIs indicated by
the AI in the assignment to TBSRTC categories and in the risk assessment was calculated
as k = 0.924 and 0.834, respectively. The concordance of the cytopathologist’s evaluation
of the specimen using only the WSIs compared with the ground truth was k = 0.845
and 0.669, respectively. Unfortunately, there was no analogous comparison of evaluation
based on the ROIs and ground truth. On the basis of the high concordance between the
cytopathologist’s assessment using WSIs and ROIs and the cytopathologist’s assessment
using WSIs and the ground truth, the researchers concluded that their algorithm could
realistically help in accurately evaluating thyroid nodule biopsy samples [54]. The above
works present the significant achievements of AI in helping to classify thyroid nodules.
The ability to distinguish PTC from benign thyroid nodules or non-PTC thyroid carcinoma
is an important achievement, as PTC is the most common thyroid cancer. The ability to
distinguish PTC from a benign lesion is therefore a very important step in the development
of AI for the classification and diagnosis of thyroid nodules. In addition, AI’s contribution
to the detection of ROIs provides an aid to histopathologists in evaluating cytopathologic
smears. This can save time for diagnosticians, and thereby reduce diagnostic costs.
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3.3. Whole-Slide Imaging of Frozen Sections

Pathological diagnosis is now the cornerstone of the diagnosis of an excised lesion [55].
One helpful method for the intraoperative diagnosis of thyroid nodules is the intraoper-
ative frozen section (FS) [56–60]. Although there is a great deal of controversy about the
utility of this method, and it is discouraged in many cases [61–65], research involving its
improvement with AI is underway and could increase the importance of this method in
the future.

Li et al. presented an algorithm by which they assigned thyroid nodules from in-
traoperative FS samples into benign, uncertain, or malignant categories. The multistage
algorithm focused on first detecting an area of tissue from an image and then dividing it
into patches and assigning the patches to one of these categories. Then, on the basis of the
classification of patches, i.e., the number of each class, the entire sample was categorized as
benign, uncertain, or malignant. An effort was made to apply sufficiently sharp criteria for
classification into the malignant and benign groups in order to not suggest unnecessary
resections (or vice versa) and to classify uncertain cases into the uncertain group. In all,
349 FSs were used as the training set and 259 FS samples as the test set. The combined
accuracy for all categories was 216/259 (83.4%). Sensitivity and precision in detecting
benign, uncertain, and malignant categories were 71.8% and 95.3%, 100% and 16.7%, and
88.6% and 96.7%, respectively. In addition, the typical whole-slide image was diagnosed
within 1 min. Although this is not a result that allows the algorithm to replace a pathologist,
the authors suggested its possible use in centers with a lack of qualified pathologists and
that the use of such algorithms could sensitize pathologists to suspicious preparations [66].

Zhu et al. addressed a similar issue. Their main goal was to create an algorithm
to categorize a tumor as malignant, benign, or rare on the basis of the WSIs of FSs from
thyroid lesions and to then recommend the investigation of rare tumors to pathologists,
the reason being the difficulty that AI has in categorizing rare tumors because of the small
number of samples that can be used for the training set and because of the complexity
of these preparations. The researchers used WSI slides of 200 and 53 PTCs and 296 and
61 nodular goiters as training and validation sets, respectively. In other words, they used
only the slides of tumors they defined as common. As Testset1, they used WSI preparations
of 283 PTCs and 334 nodular goiters. As Testset2, they used the same preparations as in
Testset1, with the addition of 147 WSI preparations they defined as rare, which included five
other thyroid cancers, 72 thyroid adenomatous lesions, 45 thyroid fibrous calcified nodules,
and 25 other benign thyroid lesions. The AUC for classifying specimens as malignant from
all cases in Testset1 by patch-UNet, which was trained on a training set basis, was 0.986.
When the same algorithm was applied to detect malignant specimens from all cases in
Testset2, the AUC dropped significantly, to 0.946, indicating a significant deterioration in
the performance of the algorithm in classifying rare cases and pointing to the need for
rare cases to be selected for evaluation by a pathologist rather than the algorithm. Thus, a
three-stage classification based on the decision tree and patch-UNet models was created
to select rare tumors and designate them for analysis by pathologists, with the remaining
cases designated as benign or malignant. The sensitivity for determining a rare category
was 0.882 and the precision was 0.498, resulting in 255 of the 764 WSIs being referred for
pathologist evaluation. Of the remaining 509 WSIs, only eight were misclassified. After
comparing the efficiency of classification by the algorithm with that by the pathologist,
p > 0.05 was achieved, indicating that there was no statistically significant difference. This
is an interesting solution, as it allows benign and malignant cases to be identified with
human-like accuracy with the use of the AI uncertain cases sent back for human evaluation.
If refined, this algorithm could be an important aid in the diagnosis of thyroid nodules [67].

Chen et al. presented the use of CNN algorithms for classifying WSIs of FSs of thyroid
nodules. For this purpose, a pathologist first viewed an WSI and then marked the ROIs
to be analyzed by AI for classification as malignant, uncertain, or benign. The pathologist
marked the ROIs rather than the AI in order to reduce the risk of misdiagnosis due to
misidentification of the ROIs. ROIs that had previously been classified by two pathologists
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were used as the training set. To test the effectiveness of the AI, five-fold cross-validation
was used. The total dataset consisted of 345 WSIs, from which 671 ROIs were obtained.
The cross-validated classification accuracy was 96.1%. Moreover, in addition to classifying
thyroid nodules, the developed algorithm was designed to return images of ROIs to the
examining pathologist that were similar to those in the sample. This is a useful idea, as
the examining pathologist would have similar images to those they see, allowing them
to compare the current finding to the previous ones. This could significantly facilitate
diagnosis, especially for novice pathologists [68].

An alternative application of AI in the intraoperative diagnosis of thyroid nodules is
the translation of FSs of WSIs to virtual formalin-fixed and paraffin-embedded (FFPE) sec-
tions. Although the validity of using FS for the intraoperative diagnosis of thyroid nodules
is often questioned due to its low efficacy [69–73], an FFPE section is considered to provide
a better picture of the tissue than an FS WSI. However, it is not used for intraoperative
diagnosis due to the excessive time required to create the specimen. Therefore, Siller et al.
created an AI algorithm to translate virtual frozen sections into virtual paraffin sections.
On the basis of 80 slides taken from 40 patients with PTC or follicular thyroid carcinoma,
from which 40 FSs and FFPE sections were each taken, they created three different algo-
rithms based on generative adversarial networks designed to convert images from FS to
FFPE sections. In Experiment 1, the six pathologists were then tasked with evaluating
whether the created images were better than the original images from FS; in Experiment
2, they were tasked with being able to distinguish the original FFPE sections from those
converted from FS. In Experiment 1, the processed FS sections scored an average of 0.6.
This means that, as per the pathologists, 60% of the AI-processed images were of better
quality than the originals from FS. In Experiment 2, depending on the algorithm, experts
indicated the original FFPE images with an average efficiency of 62% to 97%. The average
efficiency for the three algorithms was 79%, where 50% would indicate random selection
and 100% would always select the original image. Unfortunately, the impact of these image
transformations on intraoperative decision-making or patient outcomes was not evaluated.
However, this study offers the interesting prospect of improving the quality of FS images
with the goal of improved intraoperative diagnosis of thyroid nodules, and, thereby making
better treatment decisions [74]. The above papers demonstrate the practical use of AI in
the diagnosis of thyroid nodules. The results of AI in determining the malignancy of
nodules intraoperatively does not yet allow for the replacement of diagnosticians; however,
it certainly holds the promise of helping them in making diagnoses in the future [66]. An
interesting solution was presented in the paper by Zhu et al., where the authors proposed
using AI in the classification of more clear cases and sending the more severe ones for
evaluation by a histopathologist [67]. This may be the first step in introducing AI for
practical use in the diagnosis of thyroid nodules in the future. The AI function presented
by Chen et al. for returning slide-like images of other slides for diagnosis seems to be an
interesting option as well [68]. This could be an aid to novice diagnosticians in the future,
as could the algorithm presented by Siller et al. for converting FS images into FFPE virtual
sections [74]. The presented algorithms create many interesting options for future use, from
facilitating doctors’ diagnosis to performing it almost entirely on their own.

3.4. Probe Electrospray Ionization Tandem Mass Spectrometry (PESI–MS)

One diagnostic method for thyroid nodules that has recently been studied is mass
spectrometry. There are many papers indicating the potential of this method in determining
the nature of thyroid nodules [75–78].

Wang et al. proposed determining the malignancy of thyroid nodules by using artificial
intelligence to analyze the PESI–MS results of FNAB samples. On the basis of US results,
presence of the BRAF gene, and cytopathology, patient cancers were defined as malignant
(98), benign (110), or undetermined (42). Three algorithms were then created which were
trained and tested exclusively on the basis of 208 patients previously defined as having
malignant or benign cancers, with a training-set-to-test-set ratio of 8:2. On the basis of
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extensive analysis, nine components were identified as being of major importance in
determining the malignancy of a nodule. The best performance among the three algorithms
was attained by the multilayer perceptron method, which was able to determine the
malignancy of the nodule with a sensitivity of 88.9% and a specificity of 95.7%. This method
was then used to determine malignancy in patients previously identified as having cancer
of an undetermined variety and on 17 new patients, with the difference that all 208 patients
from the earlier training set and the test set were used as the training set this time. Of
the 37 patients with undetermined cancers (five patients lost contact with the researchers
during the six-month follow-up) and 17 new patients, the algorithm was able to correctly
determine the malignancy of the samples with an accuracy of 72.7% and 82.4%, respectively.
Considering the low time required with this method to determine the malignancy of the
sample (only 10 min), this is a promising result that could be improved with a better
algorithm or FNAB technique [50]. Table 3 presents a comparison of microscopic and mass
spectroscopy methods in the classification of thyroid nodules, especially in differentiating
malignant nodules from others.

Table 3. A comparison of microscopic and mass spectroscopy methods in distinguishing the malig-
nancy of the thyroid nodules.

Paper Differentiation
between Sample Set of Images Sensitivity

[%]
Specificity

[%]
Other

[%]

Q. Guan et al. [51] PTC/Benign nodules FNAB cytology Training 759
Test 128 100 94.91

Sanyal P. et al. [52] PTC/non-PTC FNAB cytology Training 370
Test 174 90.48 83.33 Accuracy 85.06

Elliott R. et al. [53] Malignant/Benign FNAB cytology Training 799
Test 109 92 90.5

Li Y. et al. [66] Malignant/Uncertain/
Benign FS WSI Training 349

Test 259

Malignant 88.6
Uncertain 100

Benign 71.8

Combined
classification
accuracy 83,4

Zhu X. et al. [67] Malignant/Rare/Benign FS WSI
Training 496
Validation

114

Test1 617 AUC
Malignant 98,6

Test2 764 Rare Detection
88.2

AUC
Malignant 94,6

Chen P. et al. [68] Malignant/Uncertain/
Benign FS WSI Totally 671

Cross-
validation

classification
accuracy 96.1

Wang Y. et al. [50] Malignant/Benign PESI-MS

Totally 208
Training: Test ratio

8: 2
88.9 95.7

Training 208
Test 17 Accuracy 72.7

Training 208
Test 37

Accuracy
82.4

AUC—area under the ROC curve; FNAB—fine needle aspiration biopsy; FS—frozen section; PESI-MS—probe
electrospray ionization tandem mass spectrometry; PTC—papillary thyroid carcinoma; WSI—whole slide image.

3.5. Nuclear Medicine

When diagnosing thyroid nodules, in addition to simply detecting them and deter-
mining their morphology, it is important to assess their secretory status. For this purpose,
laboratory tests are usually performed, especially the measurement of thyroid-stimulating
hormone. However, when production of serum thyroid-stimulating hormone is suppressed,
nuclear medicine techniques [79], which are used to assess thyroid function, become cru-
cial [80]. Certain benign thyroid pathologies, including Graves’ disease and Hashimoto
thyroiditis, may predispose a person to nodule formation [81,82]. Tests such as scintig-
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raphy and thyroid single-photon emission computed tomography (SPECT) can help to
differentiate the etiology of such nodules [83,84].

Yang et al. created an AI algorithm to automatically classify thyroid scintigrams on
the basis of fitting one of four 99mTc-pertechnetate uptake patterns. Four deep CNNs
were constructed to distinguish between the following uptake patterns: diffusely increased,
diffusely decreased, locally increased, and heterogeneous uptake. The overall accuracy of
the trained models was above 90%. As an adjunctive technique for identifying the cause of
thyrotoxicosis, 99mTc-pertechnetate thyroid scintigraphy may be particularly useful for
distinguishing Graves’ disease from toxic multinodular goiter. Additional AI assistance
could help in diagnosing thyrotoxicosis easier faster as well as enabling physicians to
more consistently interpret thyroid scintigrams. However, the created model has a number
of limitations. The accumulation of minor differences in images acquired from different
institutions and from different devices can affect the final diagnosis by AI. In addition, the
differentiation of the “heterogeneous uptake” pattern from the “diffusely increased’ pattern
remained imperfect. While the described AI system could be of great help in diagnosing
thyroid nodules, it needs improvement [85,86].

Qiao et al. constructed three deep CNN models and compared their performance
in interpreting thyroid scintigrams with that of first- and third-year nuclear medicine
residents. The images were classified as showing Graves’ disease, subacute thyroiditis,
or no disease. Thus, the described model lacked the ability to identify other thyroid
pathologies, particularly nodules. However, it was shown that the created system could be
a significant diagnostic aid in the described cases. The diagnostic performance of all three
models exceeded that of the first-year residents. Furthermore, there is a real prospect of
improving the described model. Supplementing it with images of other thyroid diseases has
the potential to create a useful diagnostic aid, especially for younger and less experienced
physicians [87].

In their retrospective study, Currie et al. compared the effectiveness of scintigraphy
with that of biochemical tests in the context of diagnosing hyperthyroidism. In the analysis
of scintigrams, they used constructed artificial neural network (ANN) and CNN models,
which provided an accuracy of 84.6% and 80.5%, respectively. The study showed that
scintigraphy is a useful method for identifying patients with hyperthyroidism. Machine
learning and DL models can be useful as physician-assisted second reading systems to
improve the accuracy of diagnosis [88]. Such an approach can help in the diagnosis of
thyroid nodules by determining their secretory status.

Medhus et al. studied the possibility of using CNNs as an aid in evaluating thyroid
scintigrams as well. The model they created automatically classifies images as having a
“detectable hypofunctioning lesion” or having “no detectable hypofunctioning lesion”.
However, their study included patients with other pathologies, including thyroid nodules.
No significant difference was found between the accuracy of the AI system and that of
experienced nuclear physicians in detecting hypofunctional lesions [89].

Ma et al. constructed a CNN model that establishes a diagnosis based on SPECT
images. Because this technique assesses the function of the gland as well, the following
possible diagnoses were considered: Graves’ disease, Hashimoto’s disease, subacute thy-
roiditis, and normal. The effectiveness of the system was compared with that of other
CNN methods. The results of the modified DenseNet network architecture and the im-
proved training method proposed in the described work were the most promising. This
result suggests prospects for the further development of DL methods in the context of
their use in diagnosing thyroid nodules, and it may be possible to use them widely in
future [80,90–92]. Ma et al. constructed another CNN model to diagnose thyroid disease
based on SPECT. The system they developed was designed to distinguish between four
types of thyroid disease: hyperthyroidism, hypothyroidism, methylene inflammation, and
Hashimoto’s disease. The method developed with an enhanced structure for DL achieved
high diagnostic accuracy [92,93]. The aforementioned papers show that properly trained
CNN models based on SPECT can be used to differentiate a diverse spectrum of functional
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thyroid pathologies. Further work on AI algorithms is needed, as it has been shown that
there is room for improvement in their accuracy.

The publications described here clearly demonstrate that AI techniques can bring
numerous benefits when introduced into the diagnosis of thyroid nodules by nuclear
medicine. These include minimizing the risk of misdiagnosis, facilitating the work of
nuclear physicians (especially those with less experience), and speeding up diagnosis,
which can lead to associated reductions in costs. Although the aforementioned methods
require refinement before they can be introduced into routine use, the prospects remain
promising. Table 4 summarizes the information presented in the foregoing section.

Table 4. A comparison of works that suggest the use of AI assisted nuclear medicine methods in the
diagnosis of thyroid nodules.

Paper Nuclear Medicine
Technique AI Model Aim of the Model Limitations

Yang P. et al. [85,86]
99 m

Tc-pertechnetate
scintigraphy

Deep CNN

Classification
of four patterns of thyroid

scintigram: diffusely
increased, diffusely

decreased, locally increased,
heterogeneous uptake.

Impact of minor differences in
images acquired from different
institutions and from different
devices on the final diagnosis;

imperfect differentiation of
“heterogeneous uptake” pattern

from “diffusely increased’ pattern.

Qiao T. et al. [87]
99 m

Tc-pertechnetate
scintigraphy

Deep CNN Detection of Graves’ disease
and subacute thyroiditis.

Relatively typical images of
patients with Graves’ disease,

subacute thyroiditis, and absence
of thyroid disease were gathered
to train the models; some image
features regarded as suspicious

were neglected and deleted from
the model constructions (because
of insufficient samples and class

imbalances); images of more types
of thyroid disease (especially

thyroid nodules) need to
be gathered.

Currie G. et al. [88]
99 m

Tc-pertechnetate
scintigraphy

ANN; CNN

Comparison of the
effectiveness of scintigraphy
with biochemical tests in the
hyperthyroidism diagnosis.

Small group of patients (123) in
the retrospective study; necessity
to use an appropriately validated
cutoff for the patient population.

Medhus J. et al. [89]
99 m

Tc-pertechnetate
scintigraphy

CNN

Detection and highlighting
hypofunctioning lesions

found on
thyroid scintigraphy.

The impact of the quality of the
images used for training on the

accuracy of the model.

Ma L. et al. [80] SPECT CNN

Diagnosis of three categories
of diseases: Graves’ disease,

Hashimoto disease,
subacute thyroiditis.

Insufficiently detailed
classification and diagnosis of

thyroid diseases (because of too
little data).

Ma L. et al. [93] SPECT CNN

Distinguishing between four
types of thyroid disease:

hyperthyroidism,
hypothyroidism, methylene

inflammation, and
Hashimoto’s disease.

Limited spectrum of distinguished
thyroid pathologies.

3.6. Optimization of the Diagnosis Process

The basis of good diagnostics is selecting the right method for a particular case.
However, conducting as many tests as possible is not an optimal solution, as it can be costly
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and have a negative impact on patient well-being in terms of both mental and physical
health [94,95]. Islam et al. constructed a DL-based system that uses data extracted from
electronic health records to select the appropriate laboratory test [96]. This work is not
particularly about thyroid illnesses diagnosis; rather, it is about the use of AI to more
generally optimize laboratory diagnostics, which could be a good perspective for future
papers that focus only on patients with thyroid problems. Over-testing is a real problem
afflicting every branch of medicine [97], including thyroid function testing [98]. Selecting
the right test for a particular patient is a difficult task that requires analysis of numerous
variables. In this regard, the assistance of AI could result in great convenience for both
physicians and patients. AI systems can help reduce the number of unnecessary tests,
which would bring many benefits.

3.7. Related Works

While studying the literature on the use of AI in the diagnosis of thyroid nodules, we
came across a great many papers addressing this issue to some extent. Most of the extant
publications are on ultrasound diagnostics. Finding articles on the application of AI to
diagnosis using other techniques required a more in-depth search. There are few papers
that concisely summarize the latest developments in the development of diagnostics using
AI. For example, while there are reviews that focus exclusively on ultrasound [99,100],
or cytopathology [101], our paper is not limited to one particular diagnostic method. It
describes the novelties and prospects of the broad spectrum of available methods for the
diagnosis of thyroid nodules, including ultrasonography, cytopathology, histopathology,
and nuclear medicine techniques. Several publications only provide information on the
diagnosis of thyroid cancer [102]. In this paper, we address the diagnosis and classification
of nodules of various etiologies, including noncancerous ones. Sorrenti et al. have published
a paper with similar topics to ours; however, they analyzed articles from a much broader
time spectrum (from 2012–2022), while our work focuses only on recent developments from
2018 to date. Moreover, in our paper the issues are grouped by type of diagnostic method,
while Sorrenti et al. divided their work by AI techniques [103]. We wanted the issues
presented in our work to be easy to analyze for their future application in clinical settings.
We believe that our publication, which groups together only the latest developments in all
the useful methods of diagnosing thyroid nodules of various backgrounds, can be of value
for doctors and researchers.

4. Conclusions

Our review of the recent literature suggests that AI may find application at vari-
ous stages in the diagnosis of thyroid nodules. These include US, cytopathological or
histopathological studies, and nuclear medicine techniques. According to research reports
in recent years, AI seems to match experienced radiologists in US evaluation in terms of
accuracy. Thus, it can be successfully used in CAD, a solution that would be particularly
helpful for less experienced physicians. There would be significant benefits for patients,
including the reduction of unnecessary FNABs. Future investigation is needed to assess the
accuracy of combining two methods, including CNN and non-neural network algorithms.
Furthermore, from a programming perspective, new solutions remain necessary. There
is a prospect of using AI systems to evaluate tissue materials in both preoperative and
intraoperative diagnosis. Numerous models have been developed that can effectively dis-
tinguish whether a nodule is malignant or benign on the basis of images of slides. However,
these techniques require refinement. In the future, however, they could provide invaluable
assistance when treatment decisions are being made, especially decisions regarding the
degree of radicality of surgery. AI may find applications in diagnostics using nuclear
medicine methods. A number of publications have demonstrated the effectiveness of AI in
evaluating thyroid scintigrams and SPECT images. With the assistance of AI, it would be
faster and easier to evaluate the secretory status of nodules, and there would be a lower
risk of confusion. The limitation of many of the reviewed works was a poor spectrum of
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differentiated thyroid pathologies, and future investigations remain needed to extend the
utility of the described methods. AI techniques can help in informing therapeutic decisions
as well as in making diagnostic decisions, which could reduce the number of unnecessary
tests, thereby reducing costs. We have listed numerous advantages of different AI methods;
however, it is important to remember the risks as well. These include the unsolved problem
of legal responsibility. For example, treatment may be delayed and prognosis may become
worse in situations where a malignant thyroid nodule is not diagnosed. In addition, a
false diagnosis of a badly progressing disease can significantly affect the patient’s mental
state. Who would be responsible for the mistakes made by AI? The other issue that may
discourage the clinicians from introducing the described methods into their routine is the
associated danger of job loss. Before any of these techniques are accepted, all of the pros
and cons need to be analyzed. In addition, the presented work has several limitations.
The search for relevant publications was limited to two platforms, Google Scholar and
PubMed, and specific phrases were used for research, meaning that there may be a large
number of papers that should have been mentioned but were omitted. In addition, we were
limited to reviewing papers in English. Furthermore, several of the methods cited require
further research before they can be introduced into routine diagnostics. Nonetheless, we
believe that our paper clearly presents the latest reports on the use of AI in the diagnosis of
thyroid nodules, and that it represents a useful resource for both specialists and learners.
By presenting the latest developments in the field of thyroid nodule diagnosis, we aim to
spread interest in using AI for this purpose. Table 5 presents a list of papers used in our
manuscript along with a short summary of each.

Table 5. Summary of the papers used in this manuscript.

Paper Authors Year Dataset Aim

A Comparison of the
Performances of an Artificial

Intelligence System and
Radiologists in the

Ultrasound Diagnosis of
Thyroid Nodules

He L.-T. et al. 2022
Training set containing
1421 images to evaluate

469 nodules in 426 patients

Evaluation of AI in
diagnosing thyroid nodules

and comparison with the
performance of radiologists

with different levels
of experience

Deep Learning-Based
Artificial Intelligence Model

to Assist Thyroid Nodule
Diagnosis and Management:

A Multicentre
Diagnostic Study

Peng S. et al. 2021

Training set of 18,049 images
of 8339 patients to evaluate
3 different study sets: Test A

(2185 images of
1424 patients), Test B
(1745 images of 1048

patients), Test C (366 images
and videos of 303 patients)

Development of CNN for the
diagnosis of thyroid nodules

and evaluation how CNN
could help radiologists

improve their
diagnostic performance

Management of Thyroid
Nodules Seen on Us Images:
Deep Learning May Match

Performance of Radiologists

Buda M. et al. 2019

Training set of 1278 nodules
in 1139 patients to evaluate

test set of 99 nodules in
91 patients

Development of AI for the
diagnosis of thyroid nodules
and deciding about biopsy.

Comparison of AI
performance and

radiologists performance

The Value of S-Detect in
Improving the Diagnostic

Performance of Radiologists
for the Differential Diagnosis

of Thyroid Nodules

Wei Q. et al. 2020 Study set of 204 thyroid
nodules in 181 patients

Evaluation of AI in
diagnosing thyroid nodules
and evaluation how CNN
could help radiologists to

improve their
diagnostic performance
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Table 5. Cont.

Paper Authors Year Dataset Aim

Clinical Validation of
S-DetectTM Mode in

Semi-Automated Ultrasound
Classification of Thyroid
Lesions in Surgical Office

Barczynski M. et al. [33] 2020 Study ser of 50 thyroid
nodules in 50 patients

Development of CAD system
for the diagnosis of

thyroid nodules

Ultrasound Image Analysis
Using Deep Learning

Algorithm for the Diagnosis
of Thyroid Nodules

Song J. et al. [34] 2019
Training set of 1358 thyroid
nodules to evaluate test set

of 155 thyroid nodules

Development of CAD system
for predicting FNAB results

of thyroid nodules

Thyroid Ultrasound Image
Classification Using a

Convolutional
Neural Network

Zhu Y.-C. [35] 2021
Training set of 600 nodules in

592 patients to evaluate
200 nodules in 187 patients

Development of CNN
algorithm for diagnosis of

thyroid nodules

Ensemble Deep Learning
Model for Multicenter

Classification of Thyroid
Nodules on

Ultrasound Images

Wei X. et al. [36] 2020
Training set of 17859 images

to evaluate test set of
8682 images

Development of AI
algorithm for diagnosis of

thyroid nodules

Computer-Aided Diagnosis
for Classifying Benign versus
Malignant Thyroid Nodules
Based on Ultrasound Images:

A Com-parison with
Radiologist-

Based Assessments

Chang Y. et al. [37] 2016 Test set of 59 thyroid nodules
Evaluation of CAD system

for diagnosis of
thyroid nodules

Real-World Performance of
Computer-Aided Diagnosis
System for Thyroid Nodules

Using Ultrasonography

Kim H. et al. [38] 2019 Study set of 106 patients
with 218 thyroid nodules

Evaluation of the diagnostic
performance of CAD system
for detecting thyroid cancers

A Computer-Aided
Diagnosing System in the

Evaluation of Thyroid
Nodules-Experience in a

Specialized Thyroid Center

Xia S. [39] 2019 Test set of 180 thyroid
nodules in 171 patients

Evaluation of the diagnostic
performance of CAD system
for detecting thyroid cancers

Comparison between Linear
and Nonlinear

Machine-Learning
Algorithms for the

Classification of Thyroid
Nodules

Ouyang F. et al. [40] 2019
Training set of 700 nodules to

evaluate test set of 479
nodules

Comparison of the
classification performance of

linear and nonlinear AI
algorithms for the evaluation

of thyroid nodules

Diagnosis of Thyroid
Nodules: Performance of a

Deep Learning
Convolutional Neural

Network Model vs.
Radiologists

Park V. Y. et al. [41] 2019
Training set of 4919 nodules

to evaluate test set of
286 nodules in 265 patients

Development of deep
learning-based CAD system
for the diagnosis of thyroid
nodules and comparing its

performance with
SVM-based CAD system

Ultrasound Image-Based
Diagnosis of Malignant
Thyroid Nodule Using
Artificial Intelligence

Nguyen D. T. et al. [42] 2020 Training set of 237 images to
evaluate test set of 61 images

Development of CAD
system, that combine CNN

and non-neural network
algorithms to improve AI

performance in diagnosis of
thyroid nodule
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Table 5. Cont.

Paper Authors Year Dataset Aim

Evaluation of a Deep
Learning-Based

Computer-Aided Diagnosis
System for Distinguishing

Benign from Malignant
Thyroid Nodules in
Ultrasound Images

Sun C. et al. [43] 2020
Training set of 1037 nodules

to evaluate test set of
550 nodules

Evaluation of AI in
diagnosing thyroid nodules

and comparison with the
performance of radiologists

AIBx, Artificial Intelligence
Model to Risk Stratify

Thyroid Nodules
Thomas J. et al. [44] 2020

Training set of 482 nodules to
evaluate test set of

103 thyroid nodules

Development of image
similarity algorithm for the

diagnosis of thyroid nodules

External Validation of AIBx,
an Artificial Intelligence

Model for Risk Stratification,
in Thyroid Nodules

Swan K. et al. [45] 2022 Test set of 257 nodules in
209 patients

External validation of
AIBx algorithm

Deep convolutional neural
network VGG-16 model for
differential diagnosing of

papillary thyroid carcinomas
in cytological images: a

pilot study

Q. Guan et al. [51] 2019
887 images from

279 cytological smears each
from a different patient

Use of AI to differentiate
PTC from benign thyroid

nodules using
cytological images

Artificial Intelligence in
Cytopathology: A Neural

Network to Identify
Papillary Carcinoma on

Thyroid FineNeedle
Aspiration Cytology Smears

Sanyal P. et al. [52] 2018
544 images from

30 cytological smears each
from a different patient

Development of ANN with
the purpose of

distinguishing PTC and
non-PTC on

microphotographs from
thyroid FNAB

cytology smears

Application of a Machine
Learning Algorithm to
Predict Malignancy in

Thyroid Cytopathology

Elliott R. et al. [53] 2020 908 WSIs from 659
different patients

Development of AI
algorithm to evaluate thyroid

FNAB via WSIs to predict
malignancy and to

identify ROIs

Use of Machine
Learning–Based Software for

the Screening of Thyroid
Cytopathology Whole

Slide Images

Dov et al. [54] 2022 908 WSIs from 659
different patients

Assessing the ability of AI
and screening software to

identify a group of
informative ROIs on thyroid
FNA WSI that can be used

for definitive diagnosis

Rule-based automatic
diagnosis of thyroid nodules
from intraoperative frozen

sections using deep learning

Li Y. et al. [66] 2020 608 WSIs

Defining thyroid nodules
from intraoperative frozen

sections as benign, uncertain,
or malignant using AI

Deep Learning-Based
Recognition of Different

Thyroid Cancer Categories
Using Whole

Frozen-Slide Images

Zhu X. et al. [67] 2022 1374 WSIs

Predicting rare categories of
thyroid cancer and

recommending lesion areas
annotated by AI to be

rereviewed by pathologists

Interactive Thyroid Whole
Slide Image Diagnostic

System using
Deep Representation

Chen P. et al. [68] 2020 345 WSIs

Classification of frozen
sections of thyroid by AI into

malignant, uncertain or
benign based on the
suspicious regions

preselected by pathologists
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Table 5. Cont.

Paper Authors Year Dataset Aim

On the Acceptance of “Fake”
Histopathology: A Study on
Frozen Sections Optimized

with Deep Learning

Siller et al. [74] 2022 80 WSIs from 40
different patients

Translation of virtual frozen
sections into virtual paraffin

sections by AI

Fast Classification of Thyroid
Nodules with Ultrasound

Guided-Fine Needle Biopsy
Samples and

Machine Learning

Wang Y. et al. [50] 2022 267 FNAB samples each from
a different patient

Determining the malignancy
of thyroid nodules by using

artificial intelligence,
analyzing the PESI–MS

results of FNAB samples

Automatic differentiation of
thyroid scintigram by deep

convolutional neural
network: a dual center study

Yang P. et al. [85] 2021 3389 thyroid scintigrams

Development of AI system
that classifies the four

patterns of thyroid
scintigrams: diffusely
increased, diffusely

decreased, local increased,
heterogeneous uptake

Deep Convolution Neural
Network Based Articial
Intelligence Improves
Diagnosis of Thyroid

Scintigraphy for
Thyrotoxicosis: a Dual

Center Study

Yang P. et al. [86] 2020 3389 thyroid scintigrams

Development of AI system
that classifies the four

patterns of thyroid
scintigrams: diffusely
increased, diffusely

decreased, local increased,
heterogeneous uptake

Deep learning for intelligent
diagnosis in

thyroid scintigraphy
Qiao T. et al. [87] 2021

1430 patients who
underwent

thyroid scintigraphy

Construction of three DCNN
models to diagnose Graves’

disease and subacute
thyroiditis by

thyroid scintigraphy

Remodeling
99mTc-Pertechnetate Thyroid
Uptake: Statistical, Machine

Learning, and Deep
Learning Approaches

Currie G. et al. [88] 2022 Thyroid scintigrams from
123 different patients

Comparison of the
effectiveness of scintigraphy
with biochemical tests in the

context of the diagnosis of
hyperthyroidism; assessment

of the utility of ANN and
CNN models in the analysis

of thyroid scintigrams

Development of an artificial
intelligence model based on

the VGG19 network for
automated detection of

hypofunctioning lesions in
thyroid scintigraphy

Medhus J. et al. [89] 2022 1724 thyroid scintigrams

Development of ANN to
detect and highlight

hypofunctioning lesions
found on thyroid

scintigraphy automatically

Thyroid diagnosis from
SPECT images using
convolutional neural

network with optimization

Ma L. et al. [80] 2019 2888 SPECT images
Construction of CNN for the
diagnosis of thyroid diseases

using SPECT images

Diagnosis of Thyroid
Diseases Using SPECT

Images Based on
Convolutional

Neural Network

Ma L. et al. [93] 2018 SPECT thyroid data

Construction of CNN to
distinguish four kinds of

thyroid diseases:
hyperthyroidism,

hypothyroidism, methylene
inflammation, and

Hashimoto’s disease using
SPECT images
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Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Network
AUC an area under the ROC curve
CAD computer-aided diagnosis
CNN convolutional neural network
DL Deep-Learning
FFPE formalin-fixed and paraffin-embedded
FFT Fast Fourier Transform
FNAB fine needle aspiration biopsy
FS frozen section
NPV negative predictive value
PESI-MS probe electrospray ionization tandem mass spectrometry
PTC papillary thyroid carcinoma
ROC receiver operating characteristic
ROI region of interest
SPECT single-photon emission computed tomography
SVM support vector machine
TBSRTC The Bethesda System for the Reporting of Thyroid Cytopathology
US ultrasound
WSI whole slide image
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