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Relationship between gene 
regulation network structure 
and prediction accuracy in high 
dimensional regression
Yuichi Okinaga1, Daisuke Kyogoku2, Satoshi Kondo3, Atsushi J. Nagano4,5* & Kei Hirose6,7*

The least absolute shrinkage and selection operator (lasso) and principal component regression (PCR) 
are popular methods of estimating traits from high-dimensional omics data, such as transcriptomes. 
The prediction accuracy of these estimation methods is highly dependent on the covariance structure, 
which is characterized by gene regulation networks. However, the manner in which the structure 
of a gene regulation network together with the sample size affects prediction accuracy has not yet 
been sufficiently investigated. In this study, Monte Carlo simulations are conducted to investigate 
the prediction accuracy for several network structures under various sample sizes. When the gene 
regulation network is a random graph, a sufficiently large number of observations are required to 
ensure good prediction accuracy with the lasso. The PCR provided poor prediction accuracy regardless 
of the sample size. However, a real gene regulation network is likely to exhibit a scale-free structure. In 
such cases, the simulation indicates that a relatively small number of observations, such as N = 300 , is 
sufficient to allow the accurate prediction of traits from a transcriptome with the lasso.

Technological advancements have enabled the collection of highly multidimensional data from biological 
systems1–4. For example, RNA sequencing quantifies expression levels of thousands of genes. Such omics data is 
useful in predicting organismal traits, with empirical applications including diagnosis and classification of dis-
eases and prediction of patient survival5–8 and possible future applications in predicting crop yields9, insecticide 
resistance10, and environmental adaptation11.

A common challenge in predicting traits from omics data is the dimension of the data far exceeding that of 
the sample size (known as high-dimensional regression). For example, if one is to apply least-squares estimation 
in multiple regression (e.g. trait ≈ β0 + β1 gene1 + β2 gene2 + · · · ) to predict a trait value from a transcriptome, 
the sample size needs to be (at least) larger than the number of model parameters. However, because transcrip-
tome studies typically observe thousands of genes, a sample size exceeding the number of genes is not realistic 
at present. In this case, high-dimensional regression modeling must be considered.

The least absolute shrinkage and selection operator (lasso12) is one of the most frequently used methods for 
high-dimensional regression. It simultaneously achieves variable selection and parameter estimation. Theoreti-
cally, the prediction accuracy of the lasso is highly dependent on the correlation structure among exploratory 
variables; it is high under certain strong conditions, such as the compatibility condition13. However, in practice, 
it is not easy to check whether the compatibility condition holds. Another popular estimation method for high-
dimensional regression is principal component regression (PCR14). PCR is a two-stage procedure: first, principal 
component analysis is conducted for predictors, following which the regression model on which the principal 
components are used as predictors is fitted. This method may perform well when the exploratory variables are 
highly correlated.

It is reasonable to assume that gene regulation networks will result in conditional independence among the 
levels of gene expression15–17. Here, two variables are conditionally independent when they are independent given 
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other variables (e.g. two focal variables are independently influenced by a third variable18). When a random vector 
of exploratory variables follows a multivariate normal distribution, two variables are conditionally independent 
if and only if the corresponding element of the inverse covariance matrix is zero. Essentially, the networks are 
characterized by the nonzero pattern of the inverse covariance matrix.

One of the most notable characteristics of biological networks is their scale-free nature, that is, the degree 
distribution of the network follows a power-law expressed as p(x) ∝ x−γ ( γ > 1)19,20. Empirical studies suggest 
that biological networks are often scale-free21–23, although exceptions have also been found24. Therefore, it is 
reasonable to consider the problem of high-dimensional regression when the networks of exploratory variables 
are scale-free. Here, it should be noted that the relative performance of different high-dimensional regression 
techniques may depend on sample sizes. However, to the best of our knowledge, the effect of the gene regulation 
network structure together with sample size on prediction accuracy has not yet been sufficiently investigated.

This paper provides a general simulation framework to study the effects of correlation structure in explanatory 
variables. As an example, the prediction of ambient temperature from the transcriptome, for which good empiri-
cal data is available11,25, is considered. It should be noted that the implementation of the proposed procedure is 
independent of the empirical data11,25; the proposed framework may be applied to predict any consequence of 
gene expression differences. The proposed framework is based on the Monte Carlo simulations. Three datasets 
of transcriptome and their traits are generated. The datasets are characterized by the covariance structure of 
exploratory variables; one of the covariance structures corresponds to the scale-free gene regulation network. 
Both lasso and PCR are applied to these simulated datasets to investigate the prediction accuracy with different 
types of gene regulation networks. The sample size is also varied to examine its effect on the prediction accuracy.

The remainder of this paper is organized as follows. Section “Prediction methods for high-dimensional data” 
describes prediction methods for high-dimensional regression in the given simulation. Section “Simulation 
framework” discusses the proposed simulation framework. Finally, Section “Concluding remarks” presents the 
concluding remarks.

Prediction methods for high‑dimensional data
Suppose that we have n observations {(xi , yi) | i = 1, . . . , n}, where xi are p-dimensional vector of explanatory 
variables and yi are responses (i = 1, . . . , n) . Let X = (x1, . . . , xn)

T and Y = (y1, . . . , yn)
T . Consider the linear 

regression model:

where ǫ = (ǫ1, . . . , ǫn)
T is a vector of error variables with E(ǫ) = 0 and V(ǫ) = σ 2In.

Lasso.  The lasso minimizes a loss function that consists of quadratic loss with a penalty based on an L1 norm 
of a parameter vector:

where � > 0 is a regularization parameter. Because of the nature of the L1 norm in the penalty term, some of 
the elements of the coefficients are estimated to be exactly zero. Thus, variable selection is conducted, and only 
variables that correspond to nonzero coefficients affect the responses.

PCR.  In some cases, the first few largest eigenvalues of the covariance matrix of predictors (i.e., proportional 
contributions of principle components) can be considerably large (e.g., spiked covariance model26). In such a 
case, the lasso may not function effectively in terms of both prediction accuracy and consistency in model selec-
tion, because the conditions for its effective performance (e.g., compatibility condition27) may not be satisfied. 
This issue could be addressed using PCR because it transforms data with a large number of highly correlated 
variables into a few principal components. In the first stage of PCR, principal component analysis is applied to 
predictors. The ith observation of predictor, xi , is linearly mapped onto a d (< p)-dimensional vector, z i = AT

xi , 
where A is a p× d matrix. The matrix A is obtained by the following least squares optimization problem28:

here, x̄ is the sample mean vector, that is, x̄ =
∑n

i=1 xi/n . In this work, the number of projected dimensions, d, 
was chosen such that d principle components collectively explain 90% or more variance (and d − 1 principle com-
ponents do not). Then, in the second stage, regression analysis is conducted, for which the principal components, 
{z1, . . . , zn} , are used as predictors. Here, the regression coefficients in the second stage are estimated by the lasso.

Simulation framework
An overview of the simulation is presented in Fig. 1. First, the model that defines the relationship between 
the trait and the levels of gene expression was parameterized. This was done using the empirical data11, which 
quantified the transcriptome of wild Arabidopsis halleri subsp. gemmifera weekly for two years in their natural 
habitat as well as bihourly on the equinoxes and solstices (p = 17,205 genes for n = 835 observations). Three 
types of simulated data were generated using different covariance matrices of genes, denoted as �j ( j = 1, 2, 3 ). 
�1 is the sample covariance matrix of genes. Generally, none of the elements of the inverse of sample covari-
ance matrix are exactly zero, implying that each gene interacts with all the other genes. Such a fully connected 

Y = Xβ + ǫ,

(1)β̂ = arg min
β

1

2
�Y − Xβ�22 + ��β�1,

A = arg min
A

n
∑

i=1

�(xi − x̄)− AAT (xi − x̄)�22 subject to ATA = Id .
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network is ineffective in terms of interpretation of the mechanism of gene regulation. Thus, two other covariance 
matrices were produced to simulate sparse networks based on the sample covariance matrix �1 . �2 is generated 
by the graphical lasso29, which corresponds to the random graph. Although the graphical lasso is widely used 
because of its computational efficiency, real networks are often scale-free. Therefore, �3 , which corresponds to 
the scale-free network, was generated here. The estimation of scale-free networks is achieved by the reweighted 
graphical lasso30. Based on these three covariance matrices �j ( j = 1, 2, 3 ), the simulated transcriptome data were 
generated from the multivariate normal distribution. The simulated trait data were generated from simulated 
transcriptome data. Finally, lasso and PCR were applied to these simulated data to compare their prediction 
accuracies. The sample sizes of the simulated data were varied to investigate the relationship between prediction 
accuracy and sample sizes.

Evaluation of the estimation procedure.  The performance of the estimation procedure is investigated 
by the following expected prediction error:

where X∗ and Y∗ follow X∗ ∼ N(0,�j) (j = 1, 2, or 3) and Y∗ ∼ N((X∗)Tβ , σ 2In) , respectively. The estimator β̂ 
is obtained using current observations, while X∗ and Y∗ correspond to future observations. The �j ( j = 1, 2, 3 ), 
β , and σ 2 are true values but unknown. In practice, these parameters are defined by using the actual dataset, 
(X, Y). Detail of setting of these parameters will be presented in the next subsection.

To estimate the expected prediction error, the Monte Carlo simulation is conducted. We first randomly gener-
ate training and test data, ( X̃train, Ỹ train) and ( X̃test , Ỹ test) , respectively. Here, X̃train follows a multivariate normal 
distribution with mean vector µX and variance–covariance matrix �j , where µX is the sample mean of X. Then, 

E

[

∥

∥

∥
Y
∗ − (X∗)T β̂

∥

∥

∥

2

2

]

,

Figure 1.   Overview of the simulation.
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Ỹ train is generated by Ỹ train = X̃trainβ + ǫ , where ǫ is a random sample from N(0, σ 2I) with I being an identity 
matrix. The test data, ( X̃test , Ỹ test) , are generated by the same procedure as ( X̃train, Ỹ train) but independent of 
( X̃train, Ỹ train) . The number of observations for the training and test data are N ( N = 50, 100, 200, 300, 500, 1000 ) 
and 1000, respectively. The lasso and the PCR are performed with training data ( X̃train, Ỹ train) , following which 
RMSE is calculated in (10). The above process, from random generation of data to RMSE calculation, was per-
formed 100 times.

Parameter setting.  Covariance structures.  Here, the characterization of the network structure of predic-
tors by conditional independence is considered. When the predictors follow a multivariate normal distribution, 
the network structure based on the conditional independence corresponds to the nonzero pattern of the inverse 
covariance (precision) matrix. In other words, the network structure is characterized by the inverse covariance 
matrix of predictors.

Let S be the sample covariance matrix of predictors, that is, S =
∑n

i=1(xi − x̄)(xi − x̄)T/n . Let �j = �−1
j  

(j = 1, 2, 3) . �1 is a ridge estimator of the sample variance-covariance matrix, that is, �1 = S + δI . Here δ is a 
small positive value (in this simulation, δ = 10−5 ). The term δI allows the existence of �1 . Note that because 
�1 is not sparse, it leads to the complete graph, which is of no use in interpreting gene regulatory networks. To 
generate a covariance matrix whose inverse matrix is sparse, L1 penalization is employed for the estimation of 
�2 and �3 as follows:

where Pj(�) (j = 2, 3) are penalty terms which enhance the sparsity of the inverse covariance matrix. To estimate 
the sparse inverse covariance matrix, the lasso penalty is typically used as follows:

where ω(−i,·) = (ωi1,ωi2, . . . ,ωi(i−1),ωi(i+1), . . . ,ωip)
T ∈ R

p−1 . The problem (3) is referred to as the graphical 
lasso29, and there exists several efficient algorithms to obtain the solution31–33. The estimator of (2) with (3) cor-
responds to �2 and �2 = �−1

2 .
The lasso penalty (3) does not enhance scale-free networks. It penalizes all edges equally so that the estimated 

graph is likely to be a random graph, that is, the degree distribution becomes a binomial distribution. To enhance 
scale-free networks (i.e., power-law distribution), the log penalty30 is used as follows:

where ω(·,−i) = (ω1i ,ω2i , . . . ,ω(i−1)i ,ω(i+1)i , . . . ,ωpi)
T and ai > 0 are tuning parameters. We note that the pen-

alty (4) is slightly different from original definition30, expressed as

When we do not assume that ωij = ωji , the estimate of the inverse covariance matrix with (5) is not symmetric. 
Since the original graphical lasso algorithm does not assume that ωij = ωji

31,34, we slightly modify the penalty as 
in Eq. (4). Notably, P3(�) in (4) coincides with (5) when ωij = ωji . From a Bayesian viewpoint, the prior distribu-
tion which corresponds to the log penalty becomes the power–law distribution30; thus, the penalty (4) is likely 
to estimate the scale-free networks. The estimator of (2) with (4) corresponds to �3.

Because the log-penalty (4) is nonconvex, it is not easy to directly optimize (2). To implement the maximiza-
tion problem (2), the minorize-maximization (MM) algorithm35 has been constructed30, in which the weighted 
lasso penalty P(t)M (�) with current parameter �(t)

3  is used:

where ρ(t)
ij  are the weights

In general, �̂ must be symmetric, so that Eq. (7) can be expressed as

(2)�̂ j = arg max
�

{

log |�| − tr(�S)− Pj(�)
}

(j = 2, 3),

(3)P2(�) = ρ

p
∑

i=1

�ω(−i,·)�1,

(4)P3(�) = ρ

2

p
∑

i=1

{

log
(

�ω(−i,·)�1 + ai
)

+ log
(

�ω(·,−i)�1 + ai
)}

,

(5)P(�) = ρ

p
∑

i=1

log
(

�ω(−i,·)�1 + ai
)

.

(6)P
(t)
M (�) =

p
∑

i=1

∑

j �=i

ρ
(t)
ij |ωij|,

(7)ρ
(t)
ij = 1

2





ρ

�ω(t)
(−i,·)�1 + ai

+ ρ

�ω(t)
(·,−j)�1 + aj



.

(8)ρ
(t)
ij = 1

2





ρ

�ω(t)
(−i,·)�1 + ai

+ ρ

�ω(t)
(−j,·)�1 + aj



.
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Because the weighted graphical lasso can be implemented by a standard graphical lasso algorithm, the estimator 
is obtained as the following algorithm. 

1.	 Set t = 0 . Get �(0)
3  via ordinary graphical lasso. Repeat 2 to 4 until convergence.

2.	 Update weights ρ(t)
ij  using (7).

3.	 Get �(t+1)
3  via the weighted graphical lasso (2) with penalty (6).

4.	 t ← t + 1.

To obtain �2 and �3 , the tuning parameters ai (i = 1 . . . , p) and ρ must be determined. Following the 
experiments30, ai = 1 was set for i = 1 . . . , p . To select the value of the regularization parameter ρ , several can-
didates were first prepared. In our simulation, the candidates were ρ = 0.3, 0.4, 0.5, 0.6, 0.7 . From these, the value 
of ρ was selected such that the extended Bayesian information criterion (EBIC36,37)

was minimized. Here, q is the number of nonzero parameters of the upper triangular matrix of �̂ , and δ ∈ [0, 1) 
is a tuning parameter. As the value of δ increases, a sparser graph is generated. Note that δ = 0 corresponds to 
the ordinary BIC38. We set δ = 0.5 because δ = 0.5 is shown to yield good performance in both simulated and 
real data analyses37. As a result, the EBIC selected ρ = 0.5.

The upper triangular matrix �3 must be estimated with the reweighted graphical lasso problem. A value 
of p = 17205 results in p(p+ 1)/2 ≈ 148 million parameters. As a result, with the machine used in this study 
(Intel Core Xeon 3 GHz, 128 GB memory), it would take several days to conduct the reweighted graphical lasso 
approach, even with a small number of iterations such as T = 5 . For this reason, T = 5 iterations were employed 
to produce �3 here. Finally, �2 and �3 were scaled such that their signal-to-noise ratio became �1.

Figure 2 depicts the logarithm of the largest 30 eigenvalues of �j ( j = 1, 2, 3 ). The first few largest eigenvalues 
of �3 are significantly larger than those of �2 , implying that the scale-free networks tend to produce predictors 
with large correlations.

Regression parameters.  The values of β and σ 2 are determined as follows. First, 10-fold cross-valida-
tion is performed as described below, and the regularization parameter � in (1) is selected. The data (X,  Y) 
are divided into ten datasets, (X(j),Y (j)) (j = 1, . . . , 10) , which consist of almost equal sample sizes. Let 
X(−j) = (X(1), . . . ,X(j−1),X(j+1), . . . ,X(10)) , and Y (−j) = (Y (1), . . . ,Y (j−1),Y (j+1), . . . ,Y (10)) ( j = 1, . . . , 10 ). 
For each j ( j = 1, . . . , 10 ), the training and test data are defined by (X(−j),Y (−j)) and (X(j),Y (j)) , respectively. 
Then, the parameter β̂

(j)
 ( j = 1, . . . , 10 ) is found by the lasso:

For each j ( j = 1, . . . , 10 ), the verification error is calculated as follows:

Then, � is adopted such that it minimizes CV = 1
10

∑10
j=1 CV

(j) , the mean of CV(j) . Following this, the dataset 
(X, Y) is again randomly divided into two datasets: test data (Xtest ,Y test) and training data (Xtrain,Y train) . Lasso 
estimation (1) is performed using the training data, with � obtained by the above 10-fold cross-validation. Then, 
β is defined as the lasso estimator, resulting in the number of nonzero parameters of β being 259. Figure 3 shows 
the histogram of nonzero parameters of β . It is seen that the majority of the nonzero coefficients were close to 
zero; only 15 parameters had absolute values larger than 0.1.

In addition, the root mean squared error (RMSE) is calculated as follows:

(9)EBIC = −n
{

log |�2| − tr(�2S)
}

+ q log n+ 4qδ log p

β̂
(j) = arg min

β

(

�Y (−j) − X(−j)β�22 + ��β�1
)

.

CV(j) = 1

#Y (j)
�Y (j) − X(j)β̂

(j)�22.
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Figure 2.   Logarithm graph of the largest 30 eigenvalues of �1 (square), �2 (circle) and �3 (triangle). The 
horizontal axis expresses the index of eigenvalues arranged in descending order.
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and the variance of errors, σ 2 , is defined by σ 2 = (RMSE)2.

Results
The box and whisker plot of the RMSE and the coefficient of determination ( R2 ) are illustrated in Figs. 4 and 5. 
The horizontal axis is N (the number of observations of training data) and the vertical axis is the RMSE or R2 
based on 1000 observations of test data.

We compared the performance of the lasso with that of the PCR. When �1 and �3 were used, the PCR per-
formed worse than the lasso for small sample sizes. For �2 , the prediction performance with PCR was unsatisfac-
tory even when the sample size N increased. The poor performance of the PCR can be attributed to the predictors 
associated with small eigenvalues; these predictors affected the prediction performance. Figure 6 depicts a scatter 
plot of nonzero elements of β and the eigenvector for the maximum eigenvalue of �2 . As can be seen, only a 
significant amount of correlation existed; in fact, the correlation coefficient was only 0.068.

The prediction accuracy was compared among the three covariance structures. In all the cases except PCR 
with �2 , the values of RMSE decreased and R2 increased with the increase in the value of N. Further, R2 was 
unstable for small sample sizes for all the cases when the lasso was applied. For large sample sizes, the R2 of �1 
was better than that of �2 and �3 . As described before, �1 was the sample covariance matrix, while �3 (and �2 ) 
was estimated using the graphical lasso. As the lasso-type regularization methods shrink parameters toward zero, 
the correlations among the exploratory variables reduce when the graphical lasso is used. Therefore, �2 and �3 
resulted in smaller correlations as compared to �1 . Consequently, the R2 may increase with stronger correlations. 
We compared the RMSE results of �2 and �3 . With �2 , we found that a sufficiently large number of observations 
is required to yield a small RMSE with the lasso. Meanwhile, �3 resulted in a small RMSE with a relatively small 
number of observations, such as N = 300.

Code availability.  The proposed simulation is implemented in R package simrnet, which is available at 
https://​github.​com/​keihi​rose/​simrn​et. Below is a sample code of the simrnet in R: 

When p = 100 , it took less than 12 min to conduct the simulation with 100 replications using the machine 
employed herein (Intel Core Xeon 3 GHz, 128  GB memory). For high-dimensional data such as p = 17,205, which 
was used in the simulation presented in this paper, several days were required to complete the simulation task.

(10)RMSE = 1√
#Y test

�Y test − Xtest β̂�2,
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Figure 3.   Histogram of 259 nonzero parameters of β.

https://github.com/keihirose/simrnet
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Concluding remarks
In a gene regulation network, a gene regulates a small portion of a genome, not all the genes in a genome. This 
indicates that gene regulation network is expected to be a sparse network rather than a complete graph. Therefore, 
two covariance matrices indicating sparse networks ( �2 , �3 ) were prepared in addition to a covariance matrix 
derived from empirical data ( �1 ). Generally, although hundreds of genes contribute to defining a trait, their 
contributions are not equal. It is frequently observed that genes regulating a trait include a few large-effect genes 
and many small-effect genes. This property was reflected in the distribution of β (Fig. 3). We considered the case 
where a limited number of regression coefficients significantly contributed to the definition of a trait. The Monte 
Carlo simulation result indicated that regardless of the network structure, the number of observations should be 
greater than at least 200 to accurately predict traits from a transcriptome ( �1 , �3 , Figs. 4 and 5). We also found 
that the lasso generally provided better accuracy than the PCR. In particular, when the gene regulation network 
was random ( �2 ), the prediction accuracy of the PCR was poor even if the sample size increased. In conclusion, 
it is important to sufficiently secure large sample sizes when performing regression analysis of data that exhibits 
either the random graph and the scale-free network. Additionally, we concluded that the lasso would be prefer-
able to the PCR to ensure a good prediction accuracy.

Conventional theory on the relationship between RMSE and sample size has been developed under the 
assumption that the sample size exceeds the number of exploratory variables39. However, omics data, which is 
rapidly being accumulated, results in high dimensional data with strong correlations. Thus, our simulation study 
considered more complicated settings than the traditional ones. Our simulation, or its extension, may be used 
in the future to find clues about theoretical aspects that may ultimately lead to the development of a sample size 
determination technique for omics data.
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Figure 4.   Box and whisker plot of RMSE. The variance-covariance matrix used in the simulations is �1 in (a, 
b), �2 in (c, d), and �3 in (e, f). The regression model is estimated by the lasso in (a), (c), and (e) and by PCR in 
(b), (d), and (f).
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Figure 5.   Box and whisker plot of R2 . The variance-covariance matrix used in the simulations is �1 in (a, b), �2 
in (c, d), and �3 in (e, f). The regression model is estimated by the lasso in (a), (c), and (e) and by PCR in (b), 
(d), and (f).

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

eigenvector

be
ta

Figure 6.   Scatter plot of β and the eigenvector corresponding to the maximum eigenvalue of �2 . The nonzero 
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Other than the scale-free network, the small-world network is another notable property in the networks 
literature40. The definition of the small-word networks is that the shortest path length between two randomly 
chosen variables is proportional to log p ; that is, it is considerably small compared with the network size. The 
small-world networks have been investigated in various fields of research, including the biology41–43. Some sta-
tistical properties of the small-world networks have also been studied44–46. The investigation of the prediction 
accuracy in the small-world networks would be interesting but beyond the scope of this research. We would like 
to take this as a future research topic. The development of methods that provides better prediction accuracy than 
the lasso in various network structures with small sample sizes would also be an important future research topic.
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