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Background. Geiparvarin (GN) is a natural compound with anticancer activity. However, the effect of GN on osteosarcoma (OS)
and the anticancer mechanism of GN are still unclear.Methods. Cell viability was measured byMTTassay. Invasion andmigration
were measured by transwell assay. ,e miRNAs, genes, and signaling pathways affected by GN were confirmed by whole-genome
sequencing and bioinformatics analysis. ,e expression level of mRNA and protein was measured by qRT-PCR and western blot.
Animal experiment was performed for confirming the GN anticancer effect and side effect in vivo. Results. Our results show that
GN significantly inhibits OS cell growth and metastasis in vitro. In vivo experiment also showed that GN dramatically suppressed
OS lung metastasis and no side effects were found. GN treatment inhibited OS metastasis through upregulating the ANGPTL4
expression. In addition, GN inhibited the expression of miR-3912-3p, which targets ANGPTL4. Conclusion. Our data clearly
indicate that GN is a candidate drug for OS treatment, and GN plays its role through miR-3912-3p/ANGPTL4 in OS.

1. Introduction

Osteosarcoma (OS) is a rare malignancy of bone, but it is the
most common primary malignant tumor in children and
adolescents [1]. OS patients are typically treated with surgery
and intensive adjuvant chemotherapy, and this treatment
method was adopted in the 1970s and has been used until
now [2]. However, treatment of OS often fails due to che-
moresistance development [3]. At present, the OS chemo-
therapy mainly relies on the methotrexate, cisplatin,
doxorubicin, and ifosfamide [4].,us, once patients develop
resistance to these drugs, there is no alternative drug, which
means that the patients’ prognosis is poor, indicating further
research is needed to development new agents for OS
treatment.

MicroRNAs (miRNAs) are small noncoding RNAs that
inhibit gene expression by cleavaging mRNA or suppressing
translation through interaction with complementary

sequences in the 3-UTRs of the target gene mRNA [5].
Dysregulation of miRNAs has been demonstrated in most
cancers including OS [6], and these dysregulated miRNAs
play a crucial role during OS metastasis [7] and chemo-
resistance development [8]. Notably, targeting these dys-
regulated miRNAs can overcome chemoresistance and
inhibit OS lung metastasis [9], indicating these miRNAs are
also an important therapeutic target and interfering the
levels of these abnormally expressedmiRNAs is a strategy for
the OS treatment.

In the past few decades, agents derived from natural
sources have received extensive attention in cancer treat-
ment research due to their safety and efficacy [10]. However,
these natural agents have not been popularly accepted be-
cause their molecular mechanisms are poorly defined [11].
Studies show that natural agents exhibit their anticancer
effects through many different mechanisms, including af-
fecting miRNAs expression in cancer [12]. ,us, regulating
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miRNA by natural agents becomes a new strategy for cancer
treatment [13]. GN is a natural compound isolated from the
leaves ofGeijera parviflora and exhibits anticancer activity in
various types of cancer [14]. However, the inhibitory effect of
GN on OS and its effect on miRNA expression has not been
reported yet. ,us, in this study, we investigated the GN
anti-OS effects and whether GN plays its function by af-
fecting the levels of miRNAs.

Our results show that GN exhibits anticancer activity in
OS. GN affected many miRNA expression and altered
various signaling pathways related to cancer. Among them,
upregulation of ANGPTL4 by downregulating miR-3912-3p
is an anti-OS mechanism of GN.

2. Materials and Methods

2.1. Materials. OS cell line HOS, lung cancer cell lines
A549 and H522, and gastric cancer cell lines AGS and
SGC-7901 were obtained from the American Type Culture
Collection (Manassas, VA, USA). OS cell line 143B was
purchased from the Chinese Academy Sciences Cell Bank
of Type Culture Collection (Shanghai, China). All cell
culture-related materials were obtained from Sigma (St.
Louis, MO, USA). GN (GN) and transwell chambers were
purchased from Unigen, Inc. (Seattle, WA, USA) and
Costar (Cambridge, MA, USA), respectively. ,e MTT kit
and luciferase activity detection kit were obtained from
Beyotime Biotechnology (Shanghai, China) and Promega
(Madison, WI, USA), respectively. All antibodies that
were used in this study were purchased from Abcam
(Cambridge, MA, USA). Enhanced chemiluminescence
detection kit, TRIzol RNA extraction kit, qRT-PCR kit,
and lipofectamine 3000 were obtained from ,ermo
Fisher Scientific (Carlsbad, CA, USA).

2.2. Cell Culture and Cell Viability Assay. All cells were
cultured in a Dulbecco’s modified Eagle’s medium with 10%
fetal bovine serum at 37°C in a humidified atmosphere
containing 5% CO2. For cell viability assay, indicated cells
were seeded in 96-well plate at density of 5000 cells per well.
After 12 hours of cell seeding, cells were treated with in-
dicated drugs for indicated times and then cell viability assay
was performed using the MTT assay kit according to
manufacturer’s instruction.

2.3. Transwell Assay. Cells were treated with GN for 48 h,
and then 10000 cells in a serum-free medium were reseeded
in the upper wells of chambers. ,e lower chambers con-
tained the medium with 10% fetal bovine serum. After 24 h
of reseeding, cells in the upper wells of chambers were re-
moved and the invaded cells were fixed with 2.5% glutar-
aldehyde and stained with crystal violet, photographed, and
counted.

2.4. Western Blot Analysis. 30 µg of proteins from cells was
separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and transferred to nitrocellulose

membranes. ,e membranes were washed with Tris-buff-
ered saline with Tween 20 (TBST) and blocked with 5% skim
milk. ,en, membranes were incubated with primary an-
tibodies in 5% skim milk overnight at 4°C. ,e membranes
were washed with TBST and incubated with secondary
antibody for 1 h at room temperature. ,e protein bands
were visualized with an enhanced chemiluminescence de-
tection kit.

2.5. Luciferase Assay. Firefly luciferase reporter constructs
containing the mutant or wild-type 3-UTR of ANGPTL4
and Renilla luciferase plasmid were cotransfected with in-
dicated cells with lipofectamine 3000. After 24 h of trans-
fection, cells were transfected with indicated miRNA or
negative control oligonucleotides. After 72 h of miRNA
transfection, cells were lysed and subjected to luciferase
activity measurement. ,e luciferase activity was measured
by a dual-luciferase reporter assay system according to
manufacturer’s instruction.

2.6.WholeGenomeSequencingandqRT-PCR. Indicated cells
were treated with GN or PBS for indicated time periods, and
then RNAs were isolated using a TRIzol RNA extraction kit.
,e whole-genome sequencing and bioinformatics analysis
were performed by Gene Denovo Biotechnology Co.
(Guangzhou, China). ,e mRNA expression of ANGPTL4
and GAPDH was detected by the qRT-PCR kit according to
manufacturer’s instruction, and the relative expression of
ANGPTL4 was normalized to the GAPDH expression. ,e
primers used for ANGPTL4 amplification were 5′-GG-
CTCATGTTACTTCAACCG-3′ and 5′-CCGTGATGC-
TATGCACCTTCT-3′; the primers used for GAPDH
amplification were 5′-GGAGCGAGATCCCTCCAAAAT-
3′ and 5′-GGCTGTTGTCATACTTCTCATGG-3′.

2.7. Animal Experiments. OS lung metastasis models were
generated using 143B cells. 1 × 106 cells in 100 μl PBS
were injected intravenously into the tail vein of the
6-week-old female nude mice (n � 6 per group). After
one week of the cell injection, the mice were randomly
divided into two groups. ,e control group mice were
treated with PBS, and another group were treated with
GN (5 mg/kg body weight) by IP injection once every
3 days for 4 weeks. ,e body weight of the mouse was
measured every 1 week. ,is animal experiment com-
plied with the Daping Hospital, Army Medical Uni-
versity Policy on the Care and Use of Laboratory
Animals.

2.8. Statistical Analysis. Less than 0.05 was considered
statistically significant, and all values are presented as the
mean± standard deviation. Student’s t-test was used to
evaluate the comparisons between control and treatment
groups. All statistical analyses were performed using Prism
software (GraphPad).
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3. Results

3.1. GN Significantly Inhibits Cancer Cells Viability. First, we
confirmed the potential anticancer effect of GN (Figure 1(a))
in several types of cancer cell lines by cell viability assay,
including non-small-cell lung cancer, gastric cancer, and OS.
Our results showed that GN significantly inhibited all types
of cancer cells in a concentration-dependent manner, and
the IC50 value was between 0.7 and 1.8 µg/mL (Figure 1(b)).
In addition, GN significantly inhibited invasion (Figure 1(c))
and migration of OS cells when cells were treated with IC50
concentration for 48 hours (Figure 1(d)). ,ese findings
indicate that GN can inhibit OS metastasis.

3.2. Identification of Differentially Expressed Genes and
miRNAs by GN in OS. To investigate the anticancer
mechanism of GN, we performed whole genome sequencing
using OS cells that were treated with GN or vehicles. A large
number of genes were identified as differentially expressed
genes (DEGs) in OS cell lines treated with GN after 48 hours
and 72 hours in comparison with control (Figure 2(a)).
Specifically, 333 and 572 genes were upregulated and
downregulated in 143B cell line treated with GN after 48h,
whereas 144 and 612 genes were upregulated and down-
regulated after 72 h (Figure 2(b)). ,e 495 and 1226 genes
upregulated and downregulated by GN were observed in
HOS cells treated with GN after 48 hours and 274 and 254
genes in 72 hours (Figure 2(b)). Meanwhile, we detected 430
and 451 species of miRNAs that differentially expressed
48 hours and 72 hours after GN treatment in 143B cells,
whereas 545 and 475 species of miRNAs that differentially
expressed 48 hours and 72 hours after GN treatment were
identified, respectively, in HOS cell line (Figures 2(c) and
2(d)). Together, these findings suggest that GN may play its
role through the miRNA-mRNA network in OS.

3.3. Trend Analysis and miRNA-mRNA Interaction Network.
In order to elucidate the miRNA-mRNA interaction net-
work induced by the treatment of GN, DEGs were first
associated with miRNA species identified through differ-
ential analysis with fold-change direction opposite to those
of DEGs. From these candidate genes, trend analysis was
used to further narrowDEGs. As shown in Figure 2(e), genes
in 143B cell line and in HOS cell line were significantly
clustered. KEGG analysis showed that these genes that may
be regulated by miRNAs in 143B and HOS cell lines are
involved in the regulation of multiple signaling pathway
(Figure 2(f )). However, taking overlapped pathways into
consideration, the ANGPTL4 miRNA-mRNA network was
the only enriched pathway regardless of duration of

treatment and cell lines used (Figure 2(g)), indicating that
ANGPTL4 plays a crucial role in the anti-OS effect of GN.

3.4. GN Plays Its Anticancer Role through Upregulation of
ANGPTL4 by Inhibiting miR-3912-3p in OS Cells. To in-
vestigate whether ANGPTL4 directly increased by GN
treatment, the OS cells were treated with GN and detected
ANGPTL4 expression by qRT-PCR and western blot. Our
results show that GN treatment significantly increased
ANGPTL4 expression in HOS and 143B cell lines at both
mRNA (Figure 3(a)) and protein levels after 48 h and 72 h
treatment (Figure 3(b)). In addition, GN-inhibited invasion
and migration of OS cells were blocked by silencing of
ANGPTL4 (Figure 3(c) and 3(d)), suggesting that GN plays
its anticancer role in OS through upregulation of ANGPTL4.
,en, we investigate which miRNAs were involved in reg-
ulation of ANGPTL4 expression when OS cells were treated
with GN. Among the candidate miRNAs (Figure 2(g)),
miRNA database (targetscan.org) identified that miR-3912-
3p may target 3′-UTR of ANGPTL4 (Figure 4(a)). ,us, we
investigated whether miR-3912-3p was inhibited by GN
treatment in OS cells. As shown in Figure 4(b), GN treat-
ment inhibited miR-3912-3p levels in both 143B and HOS
cell lines. In addition, our mRNA and western blot analyses
show that miR-3912-3p negatively regulates ANGPTL4
expression in OS cells at both mRNA and protein levels
(Figures 4(c) and 4(d)). Furthermore, we identified that
miR-3912-3p overexpression inhibits luciferase expression
that is regulated by 3-UTR of ANGPTL4, while the ex-
pression of luciferase regulated by mutant 3-UTR of
ANGPTL4 in the miR-3912-3p binding site is not affected by
miR-3912-3p (Figure 4(e)), suggesting that miR-3912-3p
inhibits ANGPTL4 by directly binding to 3-UTR. Notably,
GN-upregulated expression of ANGPTL4 was blocked by
miR-3912-3p overexpression (Figure 4(f )), suggesting that
GN upregulates ANGPTL4 through inhibiting miR-3912-3p
expression in OS.

3.5. GN Significantly Inhibits OS Lung Metastasis In Vivo.
Finally, using animal models we confirmed the anti-meta-
static effects of GN in OS. Lung metastasis models were
generated by tail vein injection of 143B cells into nude mice;
then, GN was injected through intraperitoneal injection
once every 3 days. Our results show that GN can significantly
inhibit OS lung metastasis. As shown in Figure 5(a), animals
in the GN treatment group had fewer tumor nodules and
smaller tumor sizes compared to the vehicle treatment
group. Notably, GN treatment did not affect the body weight
of animals (Figure 5(b)) and the pathological examination
also showed that the GN did not cause any lesions on the
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major organs of animals (Figure 5(c)), suggesting that GN is
a candidate drug for the treatment of OS without side effects.

4. Discussion

,e anticancer effects of GN and its analogs were demon-
strated in various types of cancer [15]. However, the effects
of GN in OS have not been reported. Here, a series of in vitro
and in vivo experiments clearly indicated that GN also has a
strong inhibitory effect on OS, especially for inhibition of OS
lungmetastasis. Furthermore, in animal experiments, we did
not find that GN caused side effects on experimental ani-
mals. Taken together, these findings suggest that GN has the
potential to become a drug for OS treatment.

Although GN has a significant biological activity on
various human tumors, the underlying mechanism is still
unclear [15]. Here, we revealed the anti-OS mechanism of
GN. Natural compounds from plants play a role through
many different mechanisms [16]. Among them, regulating
the expression of miRNAs is also an important anticancer
mechanism of natural compounds [12]. In the present study,
we report for the first time that GN altered expression of
many miRNAs, thereby affecting various signaling pathways
that are related to cancer. Among them, miR-3912-3p is one
of the significantly downregulatedmiRNAs by GN inOS and
the overexpression of miR-3912-3p significantly blocked
GN-induced anti-metastasis effect in OS. In addition, we
demonstrated that ANGPTL4 is a target gene of miR-3912-
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Figure 1: GN significantly inhibits cancer cells. (a) Pharmaceutical chemical structure of GN. (b) Indicated cells were treated with various
concentrations of GN for 48 h and the cell viability was measured by MTT assay. (c) OS cells were treated with GN or PBS for 48 h and
performed invasion assay. (d) OS cells were treated with GN or PBS for 48 h and performed migration assay. 143B and HOS cells were
treated with 1 μg/ml and 1.2 μg/ml GN, respectively. ∗∗∗p< 0.001.
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Figure 2: Continued.
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3p and upregulated by GN in OS cells. Notably, silencing of
ANGPTL4 blocked GN-induced anti-OS metastasis effects.
Together, these findings suggest that GN inhibits OS through
upregulating ANGPTL4 expression by downregulating
miRNA-3912-3p. However, the mechanism by which GN
regulates the expression of miRNAs in OS is still unclear and
needs further study.

ANGPTL4 is a member of the angiopoietin-like protein
family. Recent studies show that ANGPTL4 expression was
dysregulated in various cancers and affects cancer

progression. However, the role of ANGPTL4 in cancers is
controversial because studies reported contrary effects of
ANGPTL4 in cancers [17], even in the same cancer [17, 18].
Cai et al. report that contrary effects of ANGPTL4 in cancer
were caused by different subtypes of ANGPTL4 [17]. Native
full-length ANGPTL4 produces the COOH-terminal fi-
brinogen-like fragment and the N-terminal coiled-coil do-
main via proteolytic processing [17, 19]. In breast cancer,
full-length ANGPTL4 was associated with lower relapse and
vascular invasion rates and overexpression of full-length
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Figure 2: GN treatment altered many miRNAs and gene expressions in OS cells. (a) Heatmap showing genes whose mRNA expression level
was altered by GN treatment. (b) Bar graph showing that up- or downregulated gene numbers by GN in different OS cells at different
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Figure 3: GN plays its anticancer role through upregulating ANGPTL4 in OS. (a) mRNA expression level of ANGPTL4 was measured by
qRT-PCR in OS after GN treatment. (b) Protein expression level of ANGPTL4 was measured by Western blot analysis in OS after GN
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ANGPTL4 inhibited breast cancer cell adhesion and at-
tachment, which lead to inhibition of cell invasion and
migration [17]. In present study, we also demonstrated the
anti-invasion and anti-metastasis effects of full-length
ANGPTL4 in OS.

5. Conclusions

In summary, GN is a candidate drug for OS treatment and
plays its role by altering the miRNA expression level. Among
them, downregulating miR-3912-3p lead to upregulation of
ANGPTL4, thereby showing that inhibition of OSmetastasis
is one anticancer mechanism of GN.
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