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Abstract

Objectives: Contemporary archeological theory emphasizes the economic and social

complexity of Eurasian steppe populations. As a result, old notions of “nomadic” cul-
tures as homogenously mobile and economically simple are now displaced by more

nuanced interpretations. Large part of the literature on diet and mobility among Eur-

asian pastoralists is focused on the Bronze and Iron Ages. The underrepresentation

of more recent contexts hampers a full discussion of possible chronological trajecto-

ries. In this study we explore diet and mobility at Tunnug1 (Republic of Tuva, 2nd–

4th century CE), and test their correlation with social differentiation.

Materials and Methods: We compare demographic patterns (by age-at-death and

sex) of carbon, nitrogen, and sulfur stable isotope ratios (δ13C, δ15N, and δ34S) among

65 humans and 12 animals from Tunnug1 using nonparametric tests and Bayesian

modeling. We then compare isotopic data with data on perimortal skeletal lesions of

anthropic origin and funerary variables.

Results: Our analyses show that: (1) diet at Tunnug1 was largely based on C4 plants

(likely millet) and animal proteins; (2) few individuals were nonlocals, although their

geographic origin remains unclarified; (3) no differences in diet separates individuals

based on sex and funerary treatment. In contrast, individuals with perimortal lesions

show carbon and nitrogen stable isotope ratios consistent with a diet incorporating a

lower consumption of millet and animal proteins.

Discussion: Our results confirm the previously described socioeconomic variability of

steppe populations, providing at the same time new data about the economic impor-

tance of millet in Southern Siberia during the early centuries CE.
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1 | INTRODUCTION

1.1 | Historical and archeological background

The economic complexity of Eurasian steppe populations is increas-

ingly becoming a topic of interest in archaeology and anthropology.

The dismissal of simplistic analytical models (“nomadic bias”—Spengler

et al., 2021) have stimulated, especially in the last decade, a rich

research agenda. Aspects traditionally assumed as defining for these

cultures (dependency on domesticated mammals, low social complex-

ity, and high mobility) are nowadays substituted by a perspective which

stresses their heterogeneity, economic flexibility and social complexity

(Frachetti, 2009; Frachetti et al., 2010; Honeychurch, 2014;

Honeychurch & Makarewicz, 2016; Spengler, Cerasetti, et al., 2014;

Spengler, Frachetti, et al., 2014; Spengler et al., 2021; Ventresca Miller &

Makarewicz, 2019). Current archeological research on Eurasian societies

has repeatedly highlighted such ecological flexibility during prehistory

(e.g., Frachetti, 2009; Frachetti et al., 2010; Spengler, 2015; Spengler,

Cerasetti, et al., 2014; Spengler, Frachetti, et al., 2014; Wright

et al., 2009). Besides archeological, archaeozoological and palaeo-

botanical investigations, isotopic analyses of ancient human biological tis-

sues (bones, teeth, and hairs) are continuously providing new data about

past dietary and mobility patterns in these populations (Hanks

et al., 2018; Lightfoot et al., 2015; Murphy et al., 2013; Svyatko

et al., 2007, 2013; Svyatko, Polyakov, et al., 2017; Svyatko, Reimer, &

Schulting, 2017; Ventresca Miller et al., 2017, 2018, 2019, 2021; Ven-

tresca Miller & Makarewicz, 2019). Isotopic studies of Eurasian steppe

populations have been focused, to a large extent, on the reconstruction

of diet and, to a lesser extent, on mobility of Bronze and Iron Age

populations from the Pontic region, through Kazakhstan to Southern

Siberia and Mongolia. Despite their geographical heterogeneity, these

studies have repeatedly reached similar conclusions: (1) diets of these

communities often incorporated resources like freshwater foodstuffs

(e.g., freshwater fish) and domesticated grains (e.g., millet) (Hollund

et al., 2010; Lightfoot et al., 2015; Motuzaite Matuzeviciute et al., 2015;

Murphy et al., 2013; Svyatko et al., 2013; Ventresca Miller &

Makarewicz, 2019; Zhang et al., 2015); (2) mobility was mostly related to

seasonal transhumance, while long-distance movements were much rarer

(Machicek et al., 2019; Ventresca Miller et al., 2021).

The need for a conceptual and terminological re-evaluation of tra-

ditional categories has been recently stressed by Spengler et al. (2021)

in their synthesis of the available archaeobotanical, archeological, bio-

geochemical, and zooarchaeological evidence for Eastern Central Asia

between the second and first millennia BCE. This work emphasizes

how large parts of the population living in the analyzed contexts car-

ried a mixed economy of farming and herding (agro-pastoralism),

rather than specialized mobile pastoralism (nomadism).

The above considerations bear on our understanding of the emer-

gence, degree, and expression of social complexity and social differen-

tiation among agro-pastoralist societies. A traditional perspective

envisages pastoral groups as economically constrained and egalitarian

(Salzman, 2004), and social complexity as evolving in parallel with reli-

ance on farming (Khazanov, 1978). Based on the multifaceted

economy of steppe populations, however, such dichotomist frame-

work appears increasingly incapable to capture the nuances of social

differentiation among these groups.

Only few studies have explicitly tested the possible inter-

section between social complexity, diet, and mobility among Eurasian

societies by means of a combined analysis of anthropological, isotopic,

and archeological data. Moreover, whereas isotopic studies have espe-

cially focused on Bronze and Early Iron Age contexts, relatively less data

(i.e., Kradin et al., 2021; Ventresca Miller & Makarewicz, 2019; Wilkin

et al., 2020) are available for the first centuries CE.

In this work, we contribute to biocultural reconstructions of diet,

mobility, and social complexity among Eurasian steppe populations by

analyzing the relationship between isotope, demographic, and arche-

ological data in a funerary context from Southern Siberia dating to the

early centuries CE (Tunnug1, Republic of Tuva, 2nd–4th c CE).

1.2 | Geographic and archeological context

The territory of Tuva Republic is located in Southern Siberia, Russia.

Situated between the Sayan mountains in the North, the Altai in the

West and separated from the Eastern steppe by the Tannu-Ola moun-

tain range, Tuva features a continental climate (�50�C in winter and

up to 40�C in summer) and a semi-arid environment characterized by

a mixture of east Siberian Taiga, Mongolian steppe, and semi-desert

elements (Chugunov et al., 2010). Through the Yenisei, whose tribu-

taries Little and Great Yenisei confluence at Tuva's modern capital

Kyzyl, Tuva is connected to the Minusinsk Hollow in the North

(Figure 1). The region plays an important role in the social develop-

ment of late prehistoric steppe societies, as it features some of the

earliest and largest burial mounds dating to the Early Iron Age (9th

c. BCE) (Caspari, 2020). The construction of these monuments coin-

cides with and is evidence for the development of steeply hierarchical

societies and elites in a marginal environment. Investigations of monu-

mental burial mounds have yielded insights into the dynamics associ-

ated with the so-called Scythian material culture and the transfer of

new ideas across large stretches of Inner Asia (Caspari et al., 2018,

2019; Gryaznov, 1980; Parzinger, 2006: 606ff; Sadykov et al., 2020).

With the expansion of the first steppe Empire in the 2nd c. BCE, Tuva

sees an amalgamation of cultural characteristics and stylistic elements

of Xiongnu material culture with indigenous elements, showing long-

distance connectivity of networks and a degree of integration into the

social system of the empire including specific burial traditions and

prestige goods (Kilunovskaya & Leus, 2018, 2020a, 2020b;

Leus, 2011; Leus & Bel'skiy, 2016; Miller, 2011). The centuries after

the decline of the Xiongnu Empire see the emergence of the distinct

local Kokel culture (Sadykov et al., 2021) lasting from the 2nd c. to the

5th c. CE.

The excavation of Tunnug1 is a joint Russian-Swiss project focus-

ing on the investigation of a monumental Early Iron Age burial mound

dating to the 9th c. BCE (Caspari et al., 2020). Tunnug1 is located in

the Uyuk Valley, which features a semi-arid landscape sheltered by

mountains and ideal for herding of sheep, goat, and horses. The Uyuk
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Valley, draining into the Greater Yenisei, in its northwest side, is

closed off by the western Sayan Mountains, while in the south it is

separated from southern Tuva by the Uyukskij Mountains

(Figure 1).

Geophysical and remote sensing surveys revealed an extensive

periphery of the main burial mound with stone structures indicating a

long-term funerary use of the site (Caspari et al., 2018). An amor-

phous stone structure and several individual burial and ritual features

of the Kokel culture affiliation are located in the southern periphery.

These structures yielded well-preserved human remains (see Milella

et al., 2021) which are the basis of this study. A large number of these

individuals (22/87: 25.3%) present perimortem skeletal lesions, mostly

at the level of the neck and head. The position and typology of these

traumas suggest their occurrence in the contexts of face-to-face com-

bat and, possibly executions (Milella et al., 2021). The dynamics of

these violent events and the identity of these individuals (population

affiliation, social status, and geographic origin) remain, however,

unclear.

1.3 | Stable isotopes of carbon, nitrogen, and
sulfur (δ13C, δ15N, and δ34S): Diet and mobility

Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) from bone

collagen are routinely used for the reconstructions of ancient human

diet (e.g., Ambrose & Deniro, 1986; Laffranchi et al., 2016; Lösch

et al., 2006; Milella et al., 2019; Schoeninger & Moore, 1992).

Carbon isotope ratios (δ13C) in bone collagen largely reflect the

protein component of the diet, although being also influenced by car-

bohydrates and lipids (Fernandes et al., 2012; Froehle et al., 2010;

Howland et al., 2003). The δ13C values reflect the relative proportion

in the diet of plants featuring different photosynthetic pathways in

the diet (C3 vs. C4 plants) (Deniro & Epstein, 1981; Van der

Merwe, 1982), and may also provide information about past environ-

mental and climatic conditions (Laffranchi et al., 2016; Siebke

et al., 2020; Van Klinken et al., 2002).

δ15N undergoes a significant enrichment for each trophic level in

a food chain (3‰–6‰) (Hedges & Reynard, 2007; O'Connell

et al., 2012). Accordingly, δ15N values in bone collagen reflect the tro-

phic level of an organism, and allow the estimation of the relative

amount of animal and vegetal proteins in their diet (Ambrose, 1991;

Deniro & Epstein, 1981; Hedges & Reynard, 2007).

Sulfur isotope ratios (δ34S) in bone collagen are influenced by the

local bedrock and atmospheric composition, and show a small isotopic

offset (on average +0.5 ± 2.4‰) by trophic level (Nehlich, 2015).

Average δ34S values tend to differ between terrestrial and marine

environments, with the former presenting a range between �10‰

and +20‰ and marine water being closer to +20‰ (Nehlich, 2015).

This feature explains the use of δ34S values for the test of marine

resource contribution in the diet. δ34S values in freshwater ecosys-

tems are quite variable (Nehlich, 2015) but, in those cases where they

differ from terrestrial ecosystems, they provide useful information

about the dietary exploitation of these biomes (Nehlich et al., 2011;

Privat et al., 2007). The close correlation between δ34S in bone colla-

gen and local geology, and the small fractionation along the food webs

suggest the suitability of sulfur isotope ratios when estimating

regional mobility among past populations. The use of δ34S in mobility

research is relatively unexplored (compared with the use of oxygen

and strontium), but promising, as suggested by the few studies which

applied this approach on archeological materials (Cheung et al., 2017;

Moghaddam et al., 2014; Paladin et al., 2020; Vika, 2009).

1.4 | Aim of the study and hypotheses

In this study, we combine demographic (sex and age-at-death), isoto-

pic (stable isotope ratios of carbon, nitrogen, and sulfur), paleopatho-

logical (patterns of trauma) and archeological (presence–absence of

grave goods items) data from the Kokel burials of Tunnug1 and

explore the possible association between diet, mobility, violence and

funerary treatment.

Specifically, we test the following hypotheses:

F IGURE 1 Geographic position of
Tunnug1 (red diamond). Projection:
WGS84/pseudo-Mercator. Made in
QGIS3.12 using ESRI physical as basemap
and natural earth (1:10) for rivers and
borders
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H1. Assuming a mixed subsistence economy for the

population under study (see Murphy et al., 2013;

Spengler et al., 2021; Ventresca Miller et al., 2021; Ven-

tresca Miller & Makarewicz, 2019), we expect the diet

of this community to be represented by a heavy reliance

on animal proteins coupled with other resources (C4

plant products and/or freshwater fish).

H2. According to previous archeological and ethno-

graphic studies (Ventresca Miller et al., 2021) we expect

mobility at Tunnug1 to be relatively low and represen-

ted by few nonlocal individuals.

H3. Based on the low variability in funerary customs at

Tunnug1 (Milella et al., 2021; Sadykov et al., 2021), we

expect a relatively low degree of social differentiation,

and minor to no differences in diet based on sex or

social status in this community.

2 | MATERIAL AND METHODS

2.1 | Biological profile

The human sample includes 65 individuals representing both sexes

and different age classes (Table 1). A detailed demographic analysis of

Tunnug1 has been previously published by Milella et al. (2021). In

brief, we estimated subadult age-at-death based on the development

and eruption of deciduous and permanent dentition, diaphyseal mea-

surements, and degrees of epiphyseal fusion (AlQahtani et al., 2010;

Maresh, 1970; Moorrees et al., 1963; Ubelaker, 1989). For the estima-

tion of adult age-at-death, we used the morphological changes of the

symphysis of the pubis, the auricular surface of the ilium, and sternal

ends of the ribs (Brooks & Suchey, 1990; Buckberry &

Chamberlain, 2002; Iscan et al., 1984). We then grouped all individuals

in seven age classes: neonates (up to 3 months of age), infants

(4 months–3 years), children (3–12 years old), adolescents (13–

18 years old), young adults (19–34 years old), middle adults (35–

49 years old), and old adults (≥50 years old). In cases where a more

accurate estimation of age was not possible (e.g., due to poor preser-

vation of the remains) we used two broad classes: subadults

(ca. <19 years old) and adults (ca. ≥19 years old).

We estimated sex only for adults, based on the dimorphic fea-

tures of the innominate bone, the cranium, and mandible (Ascadi &

Nemeskeri, 1970; Ferembach et al., 1980; Phenice, 1969).

2.2 | Carbon, nitrogen, and sulfur stable isotopes

2.2.1 | Sample preparation

For the analyses of stable isotope ratios from bone collagen of

humans, we sampled portions of femoral diaphysis or—if missing—

other long bones, ribs or cranial elements (Table S1). We collected

12 animal bone samples to be used for reconstructing the local trophic

baseline. These include two bovids, two canids, one equid, and seven

caprinae (goat/sheep). Most of the animal samples come from the

Kokel phase of Tunnug1. One sheep/goat pertains to a later

(Medieval) burial (Object 37).

For the analyses, caprinae and bovids were grouped in the “herbi-
vore” group. We decided to exclude the horse from the latter group

since horses usually show isotopic values deviating from those of rumi-

nants. Differences in digestive processes between foregut and hindgut

fermenters may indeed result in different isotopic values (Hanks

et al., 2018; Ventresca Miller et al., 2018). The extraction was performed

following an acid–base–acid extraction method modified after

Ambrose (1990, 1993), Deniro (1985), and Longin (1971). After cleaning

with distilled water, all samples were pulverized in a mix miller at 20 bps

for 60 s. Then, 500 mg ± 3 mg of bone powder was demineralized with

10 ml of 1 M hydrochloric acid (HCl) for 20 min at room temperature.

The solution was washed until neutral (pH � 6–7). About 10 ml of

0.125 M of sodium hydroxide (NaOH) was added and left for incubation

at room temperature for 20 h. The solution was then washed until neu-

tral, and 10 ml of 0.001 M HCl was added. The samples were placed in a

water bath for incubation at 90�C (10–17 h). The solubilized collagen

was filtered (VitraPOR filter-funnel, porosity 16–40 μm) and lyophilized

at 0.42 mbar for a minimum of 48 h. Of each sample, three times

3.0 mg ± 0.3 mg collagen was weighed into tin capsules.

TABLE 1 Distribution of the sample by age-at-death and sex

Age class Age range Tot %total F %age class M %age class NA %age class

Neonate 0–3 months 3 4.6 0 0.0 0 0.0 0 0.0

Infant 4 months–3 years 9 13.8 0 0.0 0 0.0 0 0.0

Child 3–12 years 11 16.9 0 0.0 0 0.0 0 0.0

Adolescent 13–18 years 3 4.6 0 0.0 0 0.0 0 0.0

Young adult 19–34 years 13 20.0 3 23.1 8 61.5 2 15.4

Middle adult 35–49 years 8 12.3 1 12.5 7 87.5 0 0.0

Old adult ≥50 years 10 15.4 3 30.0 6 60.0 1 10.0

Adult ≥19 years 8 12.3 0 0.0 0 0.0 8 100.0
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2.2.2 | Mass spectrometric analysis

The isotope ratios of carbon (13C/12C), nitrogen (15N/14N), and sulfur

(34S/32S) were measured by isotope ratio mass spectrometry at Isolab

GmbH, Schweitenkirchen, Germany. The average of three measure-

ments per sample was provided and was used for subsequent ana-

lyses. Results are reported in δ-notation in units of per mill (‰)

according to the international standards of Vienna Pee Dee Belemnite

(V-PDB) for carbon, Ambient Inhalable Reservoir (AIR) for nitrogen,

and Vienna Canyon Diablo Troilite (V-CDT) for Sulfur. In addition, the

laboratory internal standards STD R (collagen from cowhide from the

EU project TRACE) and for most samples also STD BRA (collagen from

Brasilian cowhide) were reported. Internal analytical errors were

recorded as ±0.1‰ for δ13C, ±0.2‰ for δ15N, and ±0.3‰ for δ34S

(standard error of the means calculated from 3 or 4 measurements).

We selected samples with a value of >1% collagen portion of dry

bone (wt% = amount of extracted collagen/amount of bone powder

used for extraction � 100). The molar C:N ratio ([%C/%

N] � [14.007/12.011]) in the range of 2.9–3.6 was considered as

good quality (Deniro, 1985). As good quality was considered as well,

when %C was in the range of 30%–47% and %N in the range of 11%–

17.3% (Ambrose, 1990; Van Klinken, 1999). When at least one of the

quality criteria was not within the stated range, we excluded the sam-

ple from further evaluation. We considered sulfur values when the

C/N quality criteria were accepted, and in addition, %S was within the

range of 0.15%–0.35%, the C:S ratio between 300 and 900, and the

N:S ratio between 100 and 300 (Nehlich & Richards, 2009).

2.3 | Coding of archeological and
paleopathological variables

All individuals were classified according to seven binary variables

expressing the presence or absence of specific grave good items.

These include: cauldrons, knives, arrowheads (as grave offering), bow

implements, and gold spirals. These elements were chosen after a pre-

liminary screening of burial item variability at Tunnug1, and coded as

simple absence-presence in order to maximize sample size. It is impor-

tant to stress that, for some burials, post-depositional natural distur-

bance hampered a safe association between items and individuals. All

these cases were not considered in the following analysis.

As mentioned earlier, the presence of perimortem traumas and

traces of decapitations in a large number of individuals opens the

question about their social status and geographic origin (Milella

et al., 2021). We therefore decided to create two additional variables

describing the presence-absence of these features. These two vari-

ables overlap in several cases (all decapitated individuals are classified

as presenting perimortem trauma, but not all individuals with per-

imortem lesions are also decapitated) and were analyzed separately.

2.4 | Statistical protocol

Our analyses include the following steps:

1. We first explored the isotopic variability in the animal and human

sample. In order to put Tunnug1 in a broader perspective, we con-

sidered for comparison a chosen set of published carbon and nitro-

gen isotopic ranges from other central Asian contexts (Southern

Siberia, Baikal and Western Transbaikalia regions, Kazakhstan,

Mongolia) dating to the Bronze, Iron, and Middle Ages

(Komarova, 2020; Kradin et al., 2021; Lightfoot et al., 2015;

Machicek, 2011; Murphy et al., 2013; Ventresca Miller &

Makarewicz, 2019; Weber et al., 2011; Wilkin et al., 2020). Natu-

rally, given the large geographic, chronological, and cultural span

represented by these data, we will refer to them only as a broad

reference for discussing the patterns observed at Tunnug1.

We then estimated the dietary contribution of herbivores,

F IGURE 2 Plots of carbon versus nitrogen (a) and carbon versus sulfur, (b) stable isotope ratios
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freshwater fish, C4 and C3 plants by means of Bayesian modeling

with the software FRUITS (Fernandes et al., 2014). Bayesian

modeling was performed using δ13C and δ15N from all individuals

and then excluding individuals younger than 3 years (in order to

minimize the trophic effect of breastfeeding on isotopic ratios).

Separate models were calculated first without priors, and then

assuming as prior a higher dietary contribution of herbivores and

C4 plants compared with respectively fish and C3 plants. The

FRUITS models include our isotopic data for humans and herbi-

vores, and published values for freshwater fish, C3 and C4 plants

(Fernandes et al., 2015; Murphy et al., 2013; Svyatko et al., 2007;

Varalli et al., 2021). We realize that published data cannot substi-

tute a full isotopic set from the context under study. On the other

hand, we think that the obtained results should at least provide

some useful information on the dietary contribution of these food

resources.

We then compared the isotope ratios between sexes by means of

Mann–Whitney tests, and their variance with a Fligner–Killeen

test. We used a Kruskal–Wallis test followed by pairwise Dunn

tests to explore differences in isotopic ratios between age classes.

2. We checked for the presence of nonlocal individuals screening for

δ34S outliers. To this aim, we used the median of sulfur isotopic

ratios ± triple the median absolute deviation (3MAD) of herbivores

as proxy of local isotopic baseline. Studies on mobility are increas-

ingly using this approach when trying to detect isotopic outliers

(Lightfoot & O'Connell, 2016; Milella et al., 2019; Ventresca Miller

et al., 2021). The advantage of 3MAD over alternative criteria

(e.g., two standard deviations from the mean) is that it offers a

more rigorous threshold for the detection of outliers (Leys

et al., 2013).

Due to the possible influence of seasonal herding practices

(Vajnštejn, 1980) on herbivores isotope ratios, we also considered

an alternative range based on sulfur isotope ratios of humans

younger than ca. 3 years (12 individuals, mostly aged below

2 years). We chose neonates and infants since the short lifespan

expressed by their collagen isotope ratios should minimize the

long-term effect of seasonal mobility (as expected for a pastoral

nomadic population). For simplicity, the ranges estimated from

human subadults and herbivores will be henceforth referred to as

“Range_subadults” and “Range_herbivores,” respectively.
3. We compared isotope ratios between individuals with and without

perimortem traumas by means of Mann–Whitney tests. To this

aim, we first considered the presence of perimortem lesions, and

then those with clear traces of decapitation (for details see Milella

et al., 2021). We then checked for the possible association

between funerary features and isotopic ratios while controlling for

age and sex using multiple linear regressions.

We performed all analyses using JMP 15.2.0 (SAS Institute 2019)

using alpha =0.05.

3 | RESULTS

3.1 | Diet: Animals

Table S1 and Figure 2 show the stable isotope ratios of humans and

animals from Tunnug1. Figure S1 compares carbon and nitrogen iso-

tope ratios of the individuals fromTunnug1 with the comparative

ranges from Bronze Age, Iron Age and Medieval contexts from

Central Asia.

With the exception of one sample (Object 44, a post-Kokel cre-

mation) the collagen in samples fulfilled the quality criteria for bio-

genic stable carbon, nitrogen and sulfur isotope ratios.

The nine herbivores (seven caprinae and two bovids) show δ13C

ranging from �20.2‰ to �18.6‰ (x¼�19:2�0:5‰Þ, and a δ15N

range between 5.6‰ and 9.2‰ (x¼7:4�1:1‰Þ. δ34S in herbivores

range from 3.8‰ to 6.7‰ (x¼5:3�0:9Þ.
δ13C and δ15N of the horse (�20.8‰ and 3.8‰, respectively) are

depleted compared with those of herbivores, while δ34S fall in the

range of bovids and caprinae (4.6‰).

The two dogs show carbon isotope ratios of �17.8‰ and � 16.4‰

(x¼�17:1�0:99‰Þ, and δ15N of 10.1‰ and 10.6‰ (x¼10:4

�0:35‰Þ. Dog δ34S values are 3.6‰ and 4.3‰ (x¼3:9�0:5Þ.
Compared with our faunal data, the fish samples published by

Svyatko, Polyakov, et al. (2017) presents depleted carbon and sulfur

isotope ratios (averages: �24.4‰ and �1.0‰, respectively), and

δ15N values falling in the range of herbivores (6.9‰).

3.2 | Diet: Humans

Stable carbon isotope ratios in humans range from �19.2‰ to

�13.5‰ (x¼�16:6�1:3‰Þ, while δ15N range from 10.5‰ to

14.2‰ (x¼12:0�0:8‰Þ. Excluding individuals younger than 3 years

of age (due to the trophic level effect associated with breastfeeding –

TABLE 2 Results of Mann–Whitney U tests and Fligner–Killeen tests between males and females

Females Males

Var
p (Mann–Whitney
U test)

p (Fligner–
Killeen test)n Mean Median SD n Mean Median SD

δ13C (‰) V-PDB 7 �16.3 �16.7 0.6 0.4 21 �16.5 �16.7 0.7 0.6 0.3626 0.9563

δ15N (‰) AIR 7 11.9 12 0.7 0.4 21 12.1 12.1 0.5 0.2 0.4052 0.3006

δ34S (‰) V-CDT 7 3.9 3.21 1.2 1.3 21 4.1 4.38 0.9 0.8 0.6907 0.7363

Abbreviations: AIR, Ambient Inhalable Reservoir for nitrogen; N, number of individuals; SD, standard deviation; Var: variance; V-CDT, Vienna Canyon

Diablo Troilite; V-PDB, Vienna Pee Dee Belemnite.
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Fuller et al., 2006; Katzenberg et al., 1996), the difference between

humans and herbivores in δ13C and δ15N is 2.8‰ and 4.6‰, respec-

tively. Sulfur isotope ratios range in humans from 2.2‰ to 7.1‰

(x¼4:1�0:99‰Þ, with a 1.2‰ offset between humans and

herbivores.

Carbon stable isotope values of Tunnug1 fall in the range of the

comparative Xiongnu and Medieval samples, whereas δ15N values fall

in the lower range of the other contexts. Considering both isotopes,

Tunnug1 plots close to the Mongolian sites of Egiin Gol (Iron Age-

Xiongnu and Ulaanzuukh (Bronze Age) (Figure S1).

We did not find any statistically significant difference in isotope

ratios between males and females (Table 2). Average δ13C values in

males and females are �16.5 ± 0.7‰ and �16.3 ± 0.6‰, respectively,

and for δ15N of 12.1 ± 0.5‰ and 11.9 ± 0.7‰. Mean δ34S values are

3.9 ± 1.2‰ in males and 4.1 ± 0.9‰ in females. In terms of intra-sex

isotopic variance, the latter is higher in females for δ15N and δ34S, and

in males for δ13C. These differences are, however, not statistically sig-

nificant when analyzed with a Fligner–Killeen test.

Plotting δ13C and δ15N by age class shows a decrease of both iso-

tope ratios from neonates to infants. In the following age groups δ13C is

then progressively more enriched. δ15N is further depleted in children,

showing higher values in adolescents and adults (Figure 3). The effect of

age on isotopic patterns is statistically significant for δ13C and δ15N, but

not δ34S (Tables 3 and S2). The only statistically significant result from the

Dunn tests is the comparison between neonates and children for δ15N.

Estimates of dietary contribution provided by FRUITS (Figure S2

and Table S3) confirm a large contribution of C4 plant products to

human diet (mean estimate: 49.6%–53%), followed by herbivores-

derived foodstuffs (mean estimate: 21.7%–30.2%) and to a minor

extent C3 plants and fish.

3.3 | Regional mobility

In Figure 4, we plot the δ34S and δ13C of humans, their spread, as well

as Range_subadults and Range_herbivores. These two ranges

F IGURE 3 Carbon (a), nitrogen (b), and sulfur (c) stable isotope ratios by age class

TABLE 3 Isotopic values versus age class: results of Kruskal–Wallis tests

Neonate Infant Child Adolescent YA MA OA p (Kruskal–Wallis test)

δ13C (‰) V-PDB n 3 9 11 3 13 8 10 0.0229

Mean �15.0 �17.7 �17.3 �15.9 �16.5 �16.7 �16.1

Median �14.6 �18.2 �18.0 �16.2 �16.7 �16.8 �16.4

SD 1.8 1.6 1.7 1.4 0.6 0.4 0.9

δ15N (‰) (AIR) n 3 9 11 3 13 8 10 0.0288*

Mean 13.4 11.9 11.5 11.6 11.9 12.1 12.1

Median 13.2 12.0 11.1 11.8 11.9 12.1 12.1

SD 0.3 1.1 0.9 0.4 0.6 0.2 0.6

δ34S (‰) (V-CDT) n 3 9 11 3 13 8 10 0.4203

Mean 4.7 4.2 3.8 4.9 4.2 3.8 4.2

Median 4.6 4.5 3.5 5.1 4.4 3.4 4.4

SD 0.2 0.9 1.3 0.6 0.8 1.1 0.9

Abbreviations: AIR, Ambient Inhalable Reservoir for nitrogen; N, number of individuals; SD, standard deviation; V-CDT, Vienna Canyon Diablo Troilite; V-

PDB, Vienna Pee Dee Belemnite.

*Significant post-hoc Dunn test: Neonates versus children (p: 0.0218).
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substantially differ, with obvious influences on the resulting number

of potential outliers. Several individuals fall outside the lower limit of

Range_subadults, and one individual (skeleton 2, a child of 6–8 years)

is outside its upper limit. Conversely, only two individuals fall outside

the lower limit of Range_herbivores: skeleton 56 (middle adult male)

and 59 (young adult male).

3.4 | Isotopic distribution versus trauma and
funerary treatment

Statistically significant differences between individuals with and without

perimortem traumas are found in adults for δ13C. Individuals with per-

imortem lesions and traces of decapitation show in average more

depleted carbon isotope ratios (Table 4 and Figure 5). Marginally non-

significant is also the difference in δ15N between adults with and without

perimortem lesions. Also, in this case individuals with trauma show more

depleted δ15N. No statistically significant association was found between

presence of skeletal lesions/decapitation and δ34S. Interestingly, the two

individuals with the most depleted δ34S value (adult males skeletons

56 and 59) show also traces of decapitation.

We did not find any statistically significant association between

funerary variables and isotopic values (Table S4).

4 | DISCUSSION

Our study aimed to test three main hypotheses about diet, mobility,

and their link to social differentiation (or lack thereof) among the indi-

viduals buried at Tunnug1. In the following sections, we consider each

hypothesis separately, and discuss their compatibility with the

observed data as well as the limitations of our analyses.

4.1 | Diet

Our first hypothesis postulated a mixed subsistence economy for the

community of Tunnug1, and a diet incorporating both animal proteins

and other resources. Results largely confirm these prediction.

The δ13C range of herbivores is consistent with a diet dominated

by C3 plants, with a minor inclusion of C4 resources (e.g., wild C4

plants and/or inclusion in the fodder of straw from millet) or access to

pastures with variable aridity (Flohr et al., 2011). The latter scenario,

in conjunction with the possible presence of suckled individuals,

would explain the wide range of δ15N of herbivores. Compared with

caprinae and bovids, the horse shows depleted carbon and nitrogen

isotope ratios, as expected due to their different digestive systems

(see above). δ13C and δ15N in the two dogs suggest a diet featuring a

F IGURE 4 Plots of carbon versus sulfur stable isotope ratios with highlighted the sulfur Range_subadults and Range_herbivores and, in red,
the isotopic outliers
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relatively large proportion of plant foods, possibly from human food

waste (cf. Albizuri et al., 2021; Laffranchi et al., 2016; Meadows

et al., 2020).

Human δ13C values are consistent with a mixed diet including C3

and C4 resources (Schoeninger & Moore, 1992). The offset in δ15N

between herbivores and humans (4.6‰) points to a substantial con-

sumption of terrestrial animal proteins (via meat and/or dairy prod-

ucts). δ13C values in collagen tend to be enriched of ca. 0.8‰–1‰ by

trophic level (Lee-Thorp et al., 1989; Styring et al., 2017). This, in con-

junction with the C3-based diet of herbivores suggests that the

enriched δ13C in humans derive from the direct consumption of C4

foodstuffs (most likely millet), rather than via animal products.

Various studies indicate that Eurasian steppe populations fre-

quently included freshwater fish in their diet (Murphy et al., 2013;

Privat et al., 2007; Shishlina et al., 2007; Zhang et al., 2015). δ15N

values in modern fish fall in the range of the herbivores from

Tunnug1. This makes it impossible to evaluate a contribution of fresh-

water resources to human diet based on nitrogen isotope ratios. How-

ever, the strongly depleted carbon and especially sulfur isotope ratios

of modern fish compared with those of the “archeological” herbivores
would indicate that freshwater resources did not substantially contrib-

ute to the human diet. In the opposite case, considering an isotopic

enrichment for trophic level of ca. 0.8%–1‰ for carbon (Styring

et al., 2017) and ≤1 ‰ for sulfur (Nehlich, 2015), we would expect

δ13C and δ34S in humans to be much more depleted than observed

here. Nonetheless, a partial consumption of freshwater fish can be

(cautiously) proposed for at least some of the individuals showing par-

ticularly depleted carbon and sulfur isotope ratios. It is important to

point out that δ13C, δ15N, and δ34S values in freshwater environments

are quite variable (Katzenberg & Weber, 1999; Nehlich, 2015; Privat

et al., 2007; Svyatko, 2016; Svyatko, Reimer, & Schulting, 2017). It is

therefore unclear to which extent the data from Svyatko, Polyakov,

et al. (2017) (which represent contexts chronologically and geographi-

cally different from ours) can be used as a reference for Tunnug1.

Missing archaeozoological remains of fish from Tunnug1, a planned

sampling of freshwater fish from the region may help clarifying this

issue.

FRUITS estimates for the contribution of C4 resources to human

diet are quite high. A previous estimate of dietary contribution of mil-

let at Iron Age Aymyrlyg (5th–2nd c. BCE) and Ai-Dai (8th–3rd c. BCE)

is 35 ± 10% (Murphy et al., 2013). However, as already suggested by

these authors, this estimate which is based on a simple linear mixing

model is probably conservative. This is also suggested by the results

of FRUITS for Tunnug1, a context showing δ13C values depleted com-

pared with Aymyrlyg and Ai-Dai. The identification of the C4 resource

with millet (Panicum sp.) at Tunnug1 is supported by the use of this

TABLE 4 Isotopic values versus presence of perimortem traumas and traces of decapitation: results of Mann–Whitney U tests

(a)

Perimortem trauma

No Yes

p (Mann–Whitney U test)n Mean Median SD n Mean Median SD

All individuals

δ13C (‰) V-PDB 41 �16.5 �16.4 1.4 19 �17.1 �16.9 1.0 0.07

δ15N (‰) AIR 41 12.0 12.0 0.7 19 11.7 11.9 0.7 0.17

δ34S (‰) V-CDT 41 4.2 4.4 0.9 19 3.9 4.0 1.1 0.31

Adults only

δ13C (‰) V-PDB 23 �16.1 �16.0 0.7 13 �16.7 �16.8 0.6 0.01

δ15N (‰) AIR 23 12.1 12.1 0.5 13 11.8 12.0 0.4 0.11

δ34S (‰) V-CDT 23 4.1 4.3 0.9 13 4.0 4.4 1.1 0.87

(b)

Traces of decapitation

No Yes

p (Mann–Whitney U test)n Mean Median SD n Mean Median SD

All individuals

δ13C (‰) V-PDB 44 �16.5 �16.4 1.4 16 �17.1 �17.0 1.0 0.09

δ15N (‰) AIR 44 12.0 12.1 0.7 16 11.7 11.9 0.6 0.08

δ34S (‰) V-CDT 44 4.2 4.4 0.9 16 3.8 3.7 1.1 0.28

Adults only

δ13C (‰) V-PDB 25 �16.1 �16.0 0.7 11 �16.7 �16.8 0.6 0.01

δ15N (‰) AIR 25 12.1 12.1 0.5 11 11.9 12.0 0.4 0.21

δ34S (‰) V-CDT 25 4.1 4.3 0.9 11 4.0 4.6 1.1 0.97

Abbreviations: AIR, Ambient Inhalable Reservoir for nitrogen; N, number of individuals; SD, standard deviation; V-CDT, Vienna Canyon Diablo Troilite; V-

PDB, Vienna Pee Dee Belemnite.
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crop in Southern Siberia as early as 2000 BCE (Ventresca Miller &

Makarewicz, 2019) and by environmental data and economic reasons.

First, wild C4 grasses (e.g., Chenopodium spp.) are a minor component

of steppe biome when compared with C3 ones (Liu et al., 2004;

Pyankov et al., 2000; Wang, 2003; Wilkin et al., 2020). The exploita-

tion of millet in Tuva has been also documented for the site of Kokel

(Kenk, 1984; Vajnštejn & Dyakonova, 1966: 259, 263, 265), and

ethnologically (Vajnštejn, 1980: 145–165). Second, millet is a crop

well-suited for cultivation in the steppe, due to its drought tolerance,

short growing season and high yield per plant (Miller et al., 2016;

Wang et al., 2016). Millet may also have arrived in the region around

Tunnug1 via trade, as a complementary source to local farming. This

hypothesis, however, would badly fit with our estimates of a diet

largely based on this food resource. Rather, local production through

farming seems to be a better explanation for our data.

The lack of differences in isotopic values between males and

females indicate their access to the same or largely similar dietary

resources. This would agree with the results of previous studies on

populations geographically close by (Murphy et al., 2013; Svyatko

et al., 2013). We cannot exclude the presence of sex-specific dietary

customs, which would be isotopically undetectable (e.g., different cuts

of meat). Subtle dietary differences between sexes may moreover

underlie the larger variance of δ15N in females. However, this variance

does not significantly differ from that of males, and physiological

stress can influence δ15N values (D'Ortenzio et al., 2015). A larger var-

iance in δ15N may therefore be the result of the presence of

individuals with variable health conditions combined with the small

size of the female sample.

The variation of δ15N values throughout age classes (Figure 2b) is

consistent with a trophic effect of breastfeeding in neonates and infants

possibly extended until 2–3 years of age, followed by the gradual process

of weaning (Laffranchi et al., 2018). The differences between neonates

and infants' carbon isotope ratios (Figure 3a) may be explained by a com-

bination of dietary influences. Enriched δ13C values could be related to

breastfeeding (Siebke et al., 2019). Considering the relatively small tro-

phic effect of δ13C (circa 1‰ – Fuller et al., 2006), if mothers had a high

proportion of C4 resources in their diet, their enriched isotope ratios will

then be passed on to the breastfed offspring. The gradual incorporation

of other food resources in the diet of older infants (e.g., freshwater food-

stuffs, C3 plants and/or dairy or meat products from mammals feeding

on C3 plants) could explain the depleted stable carbon and sulfur isotope

ratios observed in this and the children age classes when compared with

neonates (Figure 3c).

4.2 | Mobility

Our second hypothesis postulated that mobility at Tunnug1 was rela-

tively low and represented by few nonlocal individuals. Data on sulfur

agrees with the first of these expectations.

It needs to be mentioned, however, that our discussion of mobil-

ity at Tunnug1 is complicated by three main issues:

F IGURE 5 Plots of carbon versus nitrogen and carbon versus sulfur stable isotope ratios with highlighted in black individuals presenting
perimortem traumas (a, b) and traces of decapitation (c, d)
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1. The lack of sulfur isoscapes for the region of Tuva and surrounding

areas. This means that isotopic convergence of different regions

would mask the presence of nonlocals in our sample. Moreover,

the lack of local isoscapes makes it difficult to evaluate the degree

(short vs. long distance) of mobility of potential nonlocals.

2. The mixed subsistence economy of this population, which likely

included seasonal movements of people and herds (Khazanov, 1978;

Vajnštejn, 1980). As a result, the presence of nonlocals may be hid-

den by the “mobile” isotopic signature of humans and animals. This

consideration is however counterbalanced by the sulfur values of ani-

mals, which tend to cluster together. This in turn suggests that even

if such seasonal movements took place, they were in any case limited

inside an isotopically homogenous area.

3. The contribution of freshwater resources to human diet, which,

even if minor, would have affected human δ34S variability. This is

especially important when considering the depleted isotope ratios

characterizing several individuals at Tunnug1.

Although various individuals fall outside Range_subadults, only

two are found outside the larger Range_herbivores: Skeletons 56 and

59. For some of the analyzed individuals depleted δ34S values may

result from the consumption of freshwater fish. In the case of Skele-

tons 56 and 59, however, this explanation seems difficult to accept

based on their carbon isotopic signature. With a substantial consump-

tion of freshwater fish, we would indeed expect more depleted δ13C

values for these individuals if we consider the fish data from Svyatko,

Polyakov, et al. (2017).

Another potential nonlocal is Skeleton 2, which falls in the upper

sulfur range of herbivores, but is sharply different from the other

humans for its enriched isotopic signature (Figure 4).

In sum, a parsimonious approach, which also takes into account

the possible effect of freshwater fish consumption on sulfur isotope

ratios, would identify the three individuals 2, 56, and 59 as possible

nonlocals.

A number of publications have focused on prehistoric mobility in

the Eurasian steppe, including populations from Kazakhstan

(Bernbeck et al., 2011; Ventresca Miller et al., 2017), Baikal region

(Haverkort et al., 2008; Weber & Goriunova, 2013), Mongolia

(Machicek et al., 2019), the Carpathian Basin (Gerling et al., 2012), and

the Pontic region (Ventresca Miller et al., 2019, 2021). Overall, these

studies suggest that, with few exceptions, mobility among Eurasian

pastoralists was mostly small-scale and within limited ranges

(Makarewicz, 2018). The small number of isotopic outliers at Tunnug1

suggests a limited mobility in this population, a result that adds new

data on mobility among Eurasian populations. Most of the above stud-

ies are focused on Bronze and Iron Age populations, with only few

data for more recent contexts (Machicek et al., 2019). The isotopic

patterns highlighted at Tunnug1 would suggest the maintenance of

similar subsistence strategies through time. However, one needs to

consider the partial nature of our data, which allow only broad-brush

reconstruction, and the local economic and cultural variability which is

probably hidden underneath the observed similarities.

The lack of isoscapes for Tuva and surrounding regions, and the

variability of δ34S in rocks (Nehlich, 2015), do not allow specific

hypotheses about the geographic origin of the nonlocal individuals,

and about their long versus short distance mobility. The geology of

the areas surrounding Tunnug1 raises the possibility of isotopic con-

vergence (similar geologic settings in different areas).

4.3 | Social correlates of diet

Our third hypothesis postulated a lack of substantial differences in

diet between sexes, and a lack of correlation between diet and social

differentiation. Our results only partially confirm these expectations:

whereas isotopic data do not differ between contrasting funerary

treatments, their association with perimortem trauma raises intriguing

questions about the diet and, possibly, geographic origin of decapi-

tated individuals.

As mentioned, funerary variability at Tunnug1 is rather homoge-

nous, including few luxury goods and no burials suggesting an excep-

tionally high social status of the deceased (Milella et al., 2021;

Sadykov et al., 2021). The comparison of funerary and isotopic data

(Table S4) further suggests the absence of sharp social differences at

the site possibly responsible of different dietary habits. It is important

to stress that subtle dietary differences may be left undetected isoto-

pically (see above), and that our funerary classification, being rather

rough, is likely to miss nuanced social differences (cf. Laffranchi

et al., 2019; Milella et al., 2019).

Moreover, it remains questionable to which extent the individuals

from Tunnug1 are representative of their original population. The prox-

imity of the Kokel cemetery to a royal Iron Age kurgan raises the possi-

bility that this location was charged with a specific symbolic meaning.

Cultural (possibly status-related) factors may have led the choice to bury

some individuals here. If that was the case, we may well be dealing with

just a section of the original population, and this may explain the homog-

enous funerary treatment and dietary behavior.

About the relationship between trauma lesions and isotopic

values, the depleted carbon and (to a lesser extent) nitrogen isotope

ratios of the individuals with trauma deserve some attention (Table 4

and Figure 5), since it may hint at a specific diet of these individuals,

and, in particular, at a lower consumption of millet and animal pro-

teins. If this was related to their specific (potentially lower) social

standing is however difficult to postulate. Depleted δ13C values may

also signal the access by these individuals to a different biome, and,

indirectly, their nonlocal origin (Eerkens et al., 2014; Hakenbeck

et al., 2010). A possible association between trauma and mobility may

also be cautiously proposed based on sulfur isotope ratios. Although

no statistical difference separates individuals with and without trauma

regarding δ34S values, it is interesting to note that two of the possible

nonlocal individuals (Sk 56 and 59) present traces of decapitation. As

already mentioned, the lack of more substantial patterns could in this

case be explained by the geological variability of Southern Siberia, and

isotopic convergence between different areas.
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Even assuming a partial association between trauma and individ-

ual nonlocal origin, the cultural significance of this link remains puz-

zling. The type, anatomical distribution, and demographic patterns of

perimortem lesions at Tunnug1 suggest their link to combats and/or

executions (Milella et al., 2021), but open questions relate to the

dynamics (raids against or from other groups) and actors involved in

these violent events, and the relationships between the individuals

buried at Tunnug1 (same vs. different groups, familiar groups, etc.).

Further analyses (e.g., paleogenetic investigations of kinship) may pro-

vide additional insights on at least some of these points.

5 | CONCLUSION

Isotopic studies of the Eurasian steppe populations are for the most part

focused on the Bronze and Iron Age contexts. This body of research has

suggested that the subsistence economies and lifestyles of steppe socie-

ties was more variable than once suspected. Our study complements pre-

vious research by adding new insights about the exploitation of different

dietary resources (millet, herbivores, and to a minor extent freshwater fish)

and degrees of regional mobility for a rarely investigated geochronological

context (Southern Siberia between the 2nd–4th centuries CE). Millet was

an important dietary source for the people buried at Tunnug1. Regional

mobility was only limited, although further data on local isoscapes are

needed to better contextualize our results. Archeological and isotopic data

agree in depicting a community lacking sharp social differences.

Additional sampling of local fauna (especially freshwater fish) and

the inclusion of oxygen and strontium isotopic data may help to

address a number of research questions left open by this study.
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