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Abstract: Immune-inflammatory conditions in the central nervous system (CNS) rely on molecular
and cellular interactions which are homeostatically maintained to protect neural tissue from harm. The
CD40–CD40L interaction upregulates key proinflammatory molecules, a function best understood in
the context of infection, during which B-cells are activated via CD40 signaling to produce antibodies.
However, the role of CD40 in neurological disease of non-infectious etiology is unclear. We review
the role of CD40–CD40L in traumatic brain injury, Alzheimer’s Disease, Parkinson’s Disease, stroke,
epilepsy, nerve injury, multiple sclerosis, ALS, myasthenia gravis and brain tumors. We also highlight
therapeutic advancements targeting the CD40 system to either attenuate the neuroinflammatory
response or leverage the downstream effects of CD40 signaling for direct tumor cell lysis.

Keywords: neuroinflammation; CD40; CD40 ligand; immunotherapy

1. Introduction

Neuroinflammatory responses are mediated by neurons, astrocytes, microglia, and
endothelial cells through a complex signaling network of cytokines, chemokines, and sec-
ondary messengers that alter the chemical composition of the neural microenvironment [1].
Whereas this neuroinflammatory cascade is critical when coordinating the body’s physio-
logical response to external and internal noxa, unresolved neuroinflammation can promote
chronic disease [2].

The CD40 receptor and CD40L ligand are transmembrane proteins that belong to
the tumor necrosis factor (TNF) receptor superfamily and are critical to the initiation and
sustainment of the inflammatory response [3]. The CD40 dyad was first identified for its
role in B-cell activation for antibody production and proliferation of inflammatory cells such
as macrophages and lymphocytes in response to infection. However, its role in neurological
disease of non-infectious etiology has recently gained the attention of neuroscientists and
neurooncologists, as the aberrant expression of CD40 can be either (1) detrimental to the
survival of neural tissue, for example, in autoimmune neurological disorders such as
multiple sclerosis, or (2) beneficial in activating the immune cells necessary for tumor
cell lysis. We review the effects of CD40 signaling in traumatic brain injury, Alzheimer’s
Disease, Parkinson’s Disease, stroke, epilepsy, nerve injury, multiple sclerosis, amyotrophic
lateral sclerosis, myasthenia gravis, and brain tumors, and highlight recent therapeutic
advancements targeting the CD40–CD40L system.

2. CD40–CD40L Molecular Signaling Overview

The CD40 receptor (TNFRSF5) is 48-kDa type 1 transmembrane protein [3]. Although
multiple isoforms of the CD40 receptor exist, two predominate in humans: the signal-
transducible CD40 type I receptor and a C-terminal truncated non-signal-transducible CD40
type II receptor [4]. The CD40 ligand (CD40L, CD154) is a 32–39 kDa type II transmembrane
protein [3]. In response to infection, both CD40 and CD40L are presented on the surface
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of B and T-cells respectively, which, upon ligation, activates B-cells for antibody isotype
switching and upregulates the production of pro-inflammatory cytokines in attempt to
neutralize the pathogen. The process of signal transduction includes the recruitment of
TNF Receptor-Associated Factors (TRAFs) which function as adaptor proteins to initiate
intracellular signaling cascades such as the phosphatidylinositol 3-kinase/Akt (PI3K), p38
mitogen-activated protein kinase (p38 MAPK), NF-κB essential modulator (NEMO), Jun
N-terminal kinase (JNK), Ras, and Src Family Kinase (Src) pathways (Figure 1) [3,5,6]. The
production and release of pro-inflammatory cytokines, angiogenic factors, prostaglandins,
cellular adhesion molecules and chemokines including IL-1, TNFα, IL-8, VEGF, ICAM-1,
and VCAM-1 follows shortly thereafter (Figure 1) [7–9].
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Figure 1. Effects of CD40–CD40L ligation in neurology. Proposed downstream expression of cy-
tokines, chemokines, and cell-adhesion molecules following CD40–CD40L activation that contribute
to neuroinflammation and damage to the blood–brain barrier (BBB) and neural tissue in traumatic
brain injury (TBI), Alzheimer’s disease (AD), stroke, epilepsy, multiple sclerosis (MS) and amy-
otrophic lateral sclerosis (ALS). Upon CD40–CD40L ligation, soluble CD40 is released, which can
bind to membrane CD40L to inhibit further CD40–CD40L-mediated immune responses.

CD40 and CD40L are also found in soluble forms, sCD40 and sCD40L respectively,
which are synthesized via cleavage of the extracellular domain from their membrane-bound
counterparts (Figure 1) [10,11]. sCD40L release—facilitated by the proteolytic enzymes
ADAM10 and ADAM17—occurs upon CD40 ligation, and thus is used as a biomarker of
CD40-mediated inflammatory activity [11]. Whereas sCD40L binds the CD40 receptor to
initiate proinflammatory signaling, sCD40 has been shown to antagonize the CD40–CD40L
interaction, as it can bind membrane CD40L to either reduce or prevent further signaling,
suggesting an autocrine regulatory role [12,13].

CD40–CD40L signaling is upregulated by (1) the JAK/STAT pathway (2) TNFα
through NF-κB and SMAR1, (3) IFN-γ through STAT1, and (4) IL-1β [14,15].
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3. CD40–CD40L in Neurological Diseases

While the majority of neurological diseases described below have several factors
contributing to pathogenesis, aberrant neuroinflammation mediated by CD40–CD40L
increases BBB permeability, exacerbates edema, neuronal, and glial cell damage, and
promotes the formation of occlusive microthrombi (Figure 2). Brain tumors, such as
glioblastoma multiforme, present a unique role of CD40–CD40L, as activation can promote
tumor cell lysis (Figure 3).
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3.1. Traumatic Brain Injury

Traumatic brain injury (TBI), although caused by a single event, is considered a
disease process in which post-traumatic edema and increased intracranial pressure are asso-
ciated with poor neurological outcomes [16]. CD40 and CD40L are expressed on activated
macrophages and microglia localized to the site of the traumatic impact in animal models of
TBI [17]. Further, sCD40L is considered a biomarker for poor prognosis in patients with TBI,
as there exists a positive correlation between serum sCD40L levels and (1) TBI severity (as
assessed by APACHE-II and GCS scores) and (2) 30-day mortality [18–20]. CD40-mediated
neuroinflammation post-TBI may result from the formation of neurovascular thromboses
with subsequent tissue ischemia [20]. In animal models, reduced expression of CD40 is
associated with reduced brain edema in the 30 days following TBI [21]. This presents an
opportunity to explore the effects of CD40 modulation on post-TBI edema and mortality.

3.2. Aging and Alzheimer’s Disease

The CD40–CD40L interaction is associated with both the developmental and neurode-
generative aspects of aging [22].

CD40 signaling promotes neurite organization, survival, and growth of axons in
sympathetic neurons during the perinatal period via nerve growth factor (NGF) [23]. This
pro-neurogenic function seems to reverse in late adulthood and aging, where CD40L is
positively correlated with disease [24].

Alzheimer’s disease (AD), the most common neurodegenerative disease in the United
States, has a significant inflammatory component, largely resulting from microglia and
astrocytes activated via CD40–CD40L signaling [22,24]. CD40L-stimulation of microglia
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disturbs the expression of genes regulating amyloid precursor protein (APP) processing and
tau phosphorylation; contributing to the formation of neurofibrillary tangles and β-amyloid
plaques (characteristic accumulates in AD pathogenesis) [22]. Intense CD40L immunoreac-
tivity occurs within astrocytes in gray matter surrounding Aβ1–42 plaques [22,24,25]. Thus,
CD40 activation may contribute to not only the development of neurofibrillary tangles
and β-amyloid plaques, but also to the inflammatory damage in the neural tissue that
surrounds them.
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3.3. Parkinson’s Disease

Current therapies available for the treatment of Parkinson’s Disease (PD) have focused
on improving patient cognitive and motor function; however, they do not inherently alter
the neurodegenerative processes underlying PD, such as neuroinflammation [26].

When microglia and astrocytes are stimulated via CD40 signaling, inducible nitric
oxide synthase and cyclooxygenase-2—two molecules known to contribute to the patho-
genesis of PD—are upregulated and cause the selective loss of dopaminergic neurons in
cell cultures [27]. This evidence suggests that CD40-mediated neuroinflammation may
promote the loss of dopaminergic neurons and stunt dendrite growth in PD.

3.4. Ischemic Stroke

CD40 signaling plays a significant role in both the predisposing neuroinflammatory
etiology and the effects of ischemic stroke—the largest neurological contributor to global
burden of disease [28–30]. CD40L is expressed by multiple cells that participate in athero-
genesis [28] and is co-expressed with CD40 on vascular endothelial cells, smooth muscle
cells, and macrophages in human atherosclerotic lesions in situ [30]. Additionally, CD40L
has been shown to reduce the stability of atherosclerotic plaques [28].
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Therapies for stroke are beginning to focus on targeting the ischemic penumbra, an
area that is still salvageable if neuroinflammation is reduced and reperfusion is estab-
lished [31]. As infarct volume is reduced in CD40- and CD40L-deficient mice, there exists
an opportunity to explore the inhibition of CD40 signaling to salvage the penumbra [31,32].

3.5. Epilepsy

Neuroinflammatory pathways, activated in pharmaco-resistant epilepsy, which ~30%
of epileptic patients suffer from, contribute to both the development of epilepsy and the
maintenance of a chronic epileptic state [33].

In patients with epilepsy following a stroke, plasma sCD40L levels and CD40 ex-
pression in leukocytes were significantly elevated [34]. In addition, downregulation of
CD40–CD40L attenuated both seizure susceptibility and severity in animal models of
epilepsy [35]. This suggests that CD40-mediated inflammation could contribute to the
enhanced neuroexcitability that triggers epilepsy and encourages the exploration of CD40
antagonists in future clinical trials for the treatment of epilepsy [35].

3.6. Central and Peripheral Nerve Injury

In animal models of spinal injury, there is an increase in CD40+ microglia in the
dorsal horn, which promotes the infiltration of CD40L+ T-cells and perpetuates cytokine-
mediated damage [36,37]. When this pathway was explored in a murine study of nerve
allograph rejection, blocking CD40 mediated inflammation via administration of anti-
CD40L antibodies resulted in immunologic graft tolerance [38].

Further, CD40-mediated enhancement of both calcitonin gene-related peptide (CGRP)
expression in peripheral ganglia and chemokine ligand 2 (CCL2) production in the spinal
cord contributes to neuropathic pain [37,39]. CD40 also contributes to microangiopathy in
diabetic nerve pathology through the production of hypoxia-inducible factor-α (HIF-α) [40].

3.7. Multiple Sclerosis

Demyelinated plaques in multiple sclerosis (MS) contain inflammatory infiltrates
predominantly composed of T-cells and microglia expressing CD40L and CD40 respec-
tively [29]. When CD40L-expressing T-cells infiltrate the CNS and activate CD40 receptors
on microglia, cytokines, nitric oxide, and matrix metalloproteinases are released by mi-
croglia and increase demyelination [41]. CD40 expressing B-cells have also been identified
within the inflammatory lesions of deceased MS patients, suggesting that the production
of antibodies through CD40-mediated T- and B-cell interactions could contribute to MS
pathology [42]. Further, CD40 stimulated Th1-cells may contribute to direct myelin lysis
via activation cytotoxic T-cells [42,43]. Higher numbers of peripheral CD40L+ T-cells and
CD40+ dendritic cells, along with elevated cerebral spinal fluid concentrations of sCD40L
were also found in patients with MS [41,44,45].

Disruption of the blood–brain barrier (BBB) in MS permits the recruitment of inflamma-
tory cells into the brain, which then significantly disrupt myelinated axons. Inflammatory
lesions resulting from MS were shown to be accompanied by CD40-mediated disturbance
of the blood–brain barrier [41,44]. Crosstalk between toll-like receptor-4 (TLR4) and CD40
signaling also has a role in regulating IL-10 production by B-cells during MS relapses,
suggesting CD40 may promote recovery from MS relapse if signaling occurs in parallel
with TLR4 [46].

Lastly, attempts have been made to counteract dysregulated CD40 signaling in MS:
defective regulation of CD40-stimulation on brain-derived neurotrophic factor levels in
untreated relapse-remitting MS was found to be reversible with IFN-beta1a therapy [47].

3.8. Amyotrophic Lateral Sclerosis

CD40 signaling between antigen presenting cells (APCs) and T-cells is upregulated
in the blood of 56% of patients with amyotrophic lateral sclerosis (ALS); a discovery that
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inspired the development of a monoclonal antibody to CD40L, which delayed the onset of
paralysis and extended survival in murine models [48].

3.9. Myasthenia Gravis

CD40 signaling is necessary for B-cell activation and antigen-specific antibody produc-
tion inherent to the development of myasthenia gravis (MG)—the most common disorder
of the neuromuscular junction [49,50]. CD40L knockout mice were found to be completely
resistant to MG induction [51].

Dysregulated CD40 signaling compromises immune tolerance by allowing auto-
reactive T-cells to avoid negative selection; and overexpression of CD40 leads to the produc-
tion of pro-inflammatory cytokines that activate such autoreactive T-cells [52]. These T-cells
then go on to promote autoantibody production by B-cells, perpetuating the disease [51,53].

3.10. Brain Tumors

The CD40/CD40L axis is under investigation for its role in the progression and
treatment of both primary and secondary brain tumors including gliomas [54] (Figure 3,
Table 1).

Increased CD40/CD40L expression in gliomas is associated with good prognoses [55]
and CD40 agonism enhances intratumoral T-cell responses in glioma patients [54,56].
However, other studies measuring expression of CD40 in grades II, III, and IV gliomas
established a negative correlation between CD40 expression and patient survival [57]. CD40
signaling also results in (1) enhanced glioblastoma multiforme (GBM) invasiveness, clono-
genicity, and temozolomide resistance [58], and (2) the production of angiogenic factors
(e.g., vascular endothelial growth factor [VEGF]) that promote tumor growth via neovascu-
larization [59]. Thus, researchers are investigating combination therapies to both promote
the anti-tumor effects and inhibit pro-tumor effects of CD40 signaling (Section 4) [54].

Table 1. Therapies targeting the CD40 axis with potential applications for the treatment of neurologi-
cal disease (Clinical Trials, 2011—Present).

Target Therapy Format Disease Phase Date of Trial Completion

CD40
AGONIST

Mitazalimab [60–62] Anti-CD40 mAb PDAC [60], solid tumors [61,62] Ib/II 8/2025 [60], 2/2023 [61], 3/2017 [62]

RO7300490 [63] FAP-α targeted CD40
agonist Solid tumors I 8/2026

CD40.HIVRI.Env
Vaccine [64]

Anti-CD40 mAb fused to
HIV-1 envelope protein HIV prevention I 12/2023

LVGN7409 [65] Anti-CD40 mAb Metastasis I 4/2023

CDX-1140 [66–70] Anti-CD40 mAb Solid and hematological
malignancies [66–70] I

5/2025 [66], 12/2024 [67],
8/2023 [68], 7/2023 [69],

11/2021 [70]

2141-V11 [71,72] Anti-CD40 mAb Cancer lesions to the skin [71],
malignant glioma [72] I 7/2025 [71], 12/2025 [72]

Sotigalimab [73–84] Anti-CD40 mAb

Melanoma [73,74,76,78,82–84],
RCC [73,74], sarcoma [75], NSCLC

[74,82,84],
adenocarcinoma [77,81],

PDAC [79], CNS tumors [80]

I/II

2/2025 [73], 10/2024 [74], 12/2023
[75], 12/2022 [76], 11/2022 [77,78],

9/2022 [79,80], 12/2021 [81], 11/2020
[82], 8/2020 [83], 6/2018 [84]

Selicrelumab [85–89] Anti-CD40 mAb BCL [85], solid tumors [86,87,89],
PDAC [88] I 04/2021 [85], 10/2019 [86], 11/2019

[87], 11/2018 [88], 4/2018 [89]

NG-350A [90] Adenovirus expressing
anti-CD40 antibody Epithelial cancers I 12/2021

SEA-CD40 [91] Anti-CD40 mAb derived
from dacetuzumab Solid tumors, lymphomas, PDAC I 2/2024

CP-870,893 [92–96] Anti-CD40 mAb Melanoma [92,93], mesothelioma
[94], PDAC [95,96] I 5/2016 [92], 9/2015 [93], 1/2014 [94],

4/2013 [95], 1/2011 [96]

Chi Lob 7/4 [97] Anti-CD40 mAb Advanced malignancies I 10/2014
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Table 1. Cont.

Target Therapy Format Disease Phase Date of Trial Completion

CD40L
AGONIST

AdcuCD40L [98] Adenovirus encoding
CD40L Esophageal Carcinoma II 7/2011

CMN-001 [99–107]
Dendritic cells with RNA
from tumor specimen and

CD40L RNA

RCC [99–101,103,105–107],
NSCLC [38],

genitourinary cancer [103,104]
II/III

3/2022 [99], 5/2018 [100],
4/2018 [101], 3/2018 [102],

9/2017 [103,104], 3/2017 [105],
5/2012 [106], 2/2012 [107]

Ad-sig-hMUC-
1/ecdCD40L vector

vaccine [108]

Adenoviral vector
encoding hMUC-1 and

CD40L

Epithelial cancer of the lung, breast,
ovary, prostate, colon I 6/2017

AdCD40L [109] Adenoviral vector
encoding CD40L Solid tumors II 1/2016

B-CLL vaccine [110,111] Tumor cells expressing
CD40L, IL-2 B-CLL I 4/2015 [110], 8/2013 [111]

rAd.CD40L [112] Adenoviral vector
encoding CD40L Metastatic melanoma I/II 3/2022

GM.CD40L [113–116]
Irradiated tumor cells

transduced with GM-CSF
and CD40L

Mantle cell lymphoma [113],
adenocarcinoma of the lung

[114,116], MDS [115]
II 7/2021 [113], 7/2020 [114],

12/2019 [115], 2/2019 [116]

LOAd703 [117–120] Adenovirus encoding
TMZ-CD40L and 4-1BBL

Melanoma [117], CRC [118,119],
PDAC [120], ovarian cancer [120],

biliary carcinoma [120]
I/II 6/2024 [117], 10/2023 [118], 12/2022

[119], 12/2021 [120]

SL-172154 [121,122] Fusion protein SIRPα
-Fc-CD40L Ovarian cancer [121], SCC [122] I 7/2022 [121,122]

CD40
ANTAGONIST

CFZ533 (iscalimab)
[123–132] CD40 mAb

Kidney/liver transplant
[123,124,130,132], SLE [125], SS
[126,128], LN [127], MG [129],
graves’ disease [131], RA [132]

II

3/2027 [123], 1/2027 [124],
10/2024 [125], 2/2024 [125],
2/2023 [126], 9/2022 [127],

6/2018 [128], 12/2017 [129], 11/2017
[130], 4/2017 [131],

2/2017 [132]

BI 655064 [133–139] CD40 mAb LN [133,134], ITP [136], RA [137] II

8/2021 [133], 8/2020 [134],
5/2016 [135], 4/2016 [136],
4/2015 [137], 5/2014 [138],

9/2012 [139]

FFP104 [140,141] CD40 mAb PBC [140], CD [141] II 12/2017 [140,141]

Lucatumumab [142,143] CD40 mAb Lymphoma I/II 2/2013 [142], 5/2012 [143]

Bleselumab [144–148] CD40 mAb Kidney transplant [144,145,148],
psoriasis [147] II

10/2021 [144], 1/2017 [145],
1/2015 [146], 9/2012 [147],

1/2012 [148]

CD40L
ANTAGONIST

SAR441344 [149,150] CD40L mAb Relapsing MS [149], SS [150] II 1/2023 [149], 10/2022 [150]

AT-1501 [151,152] CD40L mAb T1DM patients undergoing islet cell
transplantation [151], ALS [152] II 6/2026 [151], 10/2021 [152]

VIB4920 [153–157] CD40L binding protein
lacking Fc domain

SS [153], kidney transplant [154],
RA [155,156] I/II

4/2022 [153], 8/2021 [154],
7/2021 [155], 8/2018 [156],

5/2016 [157]

Letolizumab [158,159] Fc-silent anti-CD40L dAb GVHD [158], ITP [159] I/II 1/2024 [158], 1/2018 [159]

Abbreviations: mAb: monoclonal antibody; dAb: domain antibody; RA: rheumatoid arthritis; ALS: amyotrophic
lateral sclerosis; T1DM: type 1 diabetes mellitus; SCC: squamous cell carcinoma; B-CLL: B-cell chronic lymphocytic
leukemia; LN: lupus nephritis; CD: Crohn’s disease; MS: multiple sclerosis; ITP immune thrombocytopenia; SS: Sjo-
gren’s syndrome; MG: myasthenia gravis; PBC: primary biliary cirrhosis; NSCLC: non-small cell lung cancer; RCC:
renal cell carcinoma; CRC: colorectal cancer; GVHD: graft-versus-host disease; GM-CSF: granulocyte-macrophage
colony-stimulating factor; MDS: myelodysplastic syndrome; PDAC: pancreatic ductal adenocarcinoma; FAP-α:
fibroblast activation protein-α. Table adapted from Karnell et al. [7]. Red font emphasizes neurological disease for
which the treatment is under investigation.

4. Therapies Targeting CD40 and CD40L

We define two therapeutic approaches used to combat neurological disease via antag-
onism or agonism of the CD40–CD40L interaction (Table 1):

(1) Attenuating CD40-mediated neuroinflammation: CD40–CD40L signaling potentiates
neuroinflammatory damage in the CNS. The majority of CD40 therapies used in the
treatment of autoimmune and neuroinflammatory disorders such as MG, MS, and
ALS, exist in the form of antagonistic monoclonal antibodies against CD40 or CD40L
and are administered either as a single agent or in combination with other antibodies,
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chemotherapeutic agents, and/or corticosteroids (Table 1). Using this treatment strat-
egy, CD40 antagonists have the potential not only to limit edema, demyelination, BBB
permeability, and neural tissue damage, but also to limit the disease-specific mecha-
nisms that CD40 activation typically exacerbates; for example, the dysregulation of
amyloid precursor protein (APP) processing and tau phosphorylation that contributes
to the formation of neurofibrillary tangles and β-amyloid plaques in AD (Section 3.2).

(2) Employing CD40-mediated recruitment of inflammatory cells to enhance tumor ly-
sis: Motivations for targeting the CD40 axis in cancer treatment include (1) CD40
ligation initiates antigen-specific activation of B and T cells (2) the CD40 axis bridges
innate and adaptive immunity as it activates natural killer cells for tumor killing and
(3) CD40 expression by antigen presenting cells such as macrophages enhances their
antigen presentation and co-stimulatory capacity, allowing for activation of cyto-
toxic T cells even without CD4+ helper T-cell signaling [160]. CD40-based therapies
tested in in vivo tumor models include recombinant CD40L molecules, intratumor
adenoviral vectors which lead to CD40L expression, and agonistic monoclonal CD40
antibodies [160]. CD40 ligation on the surface of neoplastic cells resulted in direct
cytotoxic effects, even in the absence of immune accessory cells [161–163]. CD40
agonism and resulting tumor cell death was shown to be synergic with chemotherapy
in murine models: when combined with gemcitabine and administered to mice with
established implanted tumors, most mice were cured and resistant to tumor rechal-
lenge [164]. Regarding the safety of agonistic CD40 antibodies, clinical trials have
noted that adverse events such as cytokine storm, hepatotoxicity, and thromboembolic
events were transient and clinically manageable [160]. Trials are underway for the
treatment of solid and hematological malignancies both within and outside of the
CNS. CD40-agonistic immunotherapies under investigation for the treatment of brain
tumors include Sotigalimab and 2141-V11, with expected completion by the end of
2022 and 2025, respectively (Table 1).

5. Conclusions

CD40–CD40L signaling leads to a pro-inflammatory microenvironment—a key phys-
iologic response to cellular infection, cancer, and injury. However, this can progress to
increased permeability of the BBB, edema, the formation of microthrombi, and subsequent
CNS damage. We have reviewed the role of CD40–CD40L in neurological diseases of
non-infectious etiology and distinguished two general classes of CD40–CD40L therapies
used to combat neurological disease: those that inhibit CD40–CD40L mediated neuroin-
flammation to attenuate the immune response and those that upregulate CD40 signaling
for tumor cell lysis. Both cases present the opportunity to expand and repurpose current
CD40 immunotherapies in future translational research as new therapeutic avenues to treat
neurological disease.
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