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Predicting Subtype Selectivity for 
Adenosine Receptor Ligands with 
Three-Dimensional Biologically 
Relevant Spectrum (BRS-3D)
Song-Bing He1,2,  Ben Hu3, Zheng-Kun Kuang3, Dong Wang2 & De-Xin Kong1,3

Adenosine receptors (ARs) are potential therapeutic targets for Parkinson’s disease, diabetes, pain, 
stroke and cancers. Prediction of subtype selectivity is therefore important from both therapeutic 
and mechanistic perspectives. In this paper, we introduced a shape similarity profile as molecular 
descriptor, namely three-dimensional biologically relevant spectrum (BRS-3D), for AR selectivity 
prediction. Pairwise regression and discrimination models were built with the support vector machine 
methods. The average determination coefficient (r2) of the regression models was 0.664 (for test sets). 
The 2B-3 (A2B vs A3) model performed best with q2 = 0.769 for training sets (10-fold cross-validation), 
and r2 = 0.766, RMSE = 0.828 for test sets. The models’ robustness and stability were validated with 
100 times resampling and 500 times Y-randomization. We compared the performance of BRS-3D with 
3D descriptors calculated by MOE. BRS-3D performed as good as, or better than, MOE 3D descriptors. 
The performances of the discrimination models were also encouraging, with average accuracy (ACC) 
0.912 and MCC 0.792 (test set). The 2A-3 (A2A vs A3) selectivity discrimination model (ACC = 0.882 
and MCC = 0.715 for test set) outperformed an earlier reported one (ACC = 0.784). These results 
demonstrated that, through multiple conformation encoding, BRS-3D can be used as an effective 
molecular descriptor for AR subtype selectivity prediction.

Adenosine receptors (ARs) belong to the G protein-coupled receptors (GPCRs) superfamily. ARs include four 
subtypes, referred to as A1, A2A, A2B, and A3. These subtypes have been identified in different tissues from sev-
eral mammalian species, including human1,2. ARs mediate the physiological actions of adenosine and therefore 
are potential therapeutic targets for Parkinson’s disease, diabetes, pain, stroke and different kinds of cancer3. 
A1 selective antagonists have anxiolytic effect and were reported as promising candidates for the treatment of 
cognitive disorders, such as dementia4. Selective antagonism of A1 was also proposed as mechanism for some 
diuretic agents. The agents were effective in the treatment of congestive heart failure and edema5. A2A antagonists 
have neuro-protective activity during the ischemic process and reduce the neuronal damage of Parkinson’s or 
Huntington’s diseases6–8. A potential therapeutic activity of asthma disease was discovered for A2B selective antag-
onists or mixed antagonists to A2B and A3

6,9. A2B antagonists are also studied as hypoglycemic agents in diabetes, 
while A3 antagonists have a potential application in tumor growth inhibition and in the treatment of glaucoma6.

The four AR subtypes have different tissue distribution and pharmacological profile. A1 and A2A possess high 
affinity to adenosine, while A2B and A3 show relatively lower affinity10. A1 and A3 are coupled to Gi/o proteins to 
inhibit adenylate cyclase and consequently decrease the production of cyclic AMP (cAMP), while A2A and A2B 
stimulate the production of cAMP by coupling to Gs/o proteins6. These two subtype pairs share higher sequence 
identity. The sequence identity of human A1 and A3 is 49%, while the identity of A2A and A2B is 59%11.

Adenosine signaling is widespread throughout the body and the receptors exerts a broad spectrum of physio-
logical and pathophysiological functions through adenosine binding6. Therefore, AR subtypes selectivity is highly 
desired in developing therapeutic agents with minimal side effects12. However, the sequences and binding pocket 
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structures of the AR subtypes are highly similar to each other. These pose a great challenge to subtype selective 
ARs ligands design.

Approaches of rational drug design can be adopted to reduce the arbitrariness in selective ligands screen-
ing. In 2011, Katritch et al. reported their structure-based study on subtype-selectivity of ARs antagonists12. The 
structures of A1, A2B, A3 were built by comparative modeling, taking the crystal structure of A2A as a template, 
which was the only known structure of AR subtypes in PDB13. However, application of structure-based methods 
is limited by the accuracy of homology modeled structures, docking efficiency and scoring function precision.

Ligand-based methods, especially quantitative structure-activity relationships (QSARs), can be adopted in the 
absence of target structural information. In fact, QSAR played an indispensable role in GPCR subtype selective 
ligand design14,15, e.g., ARs16, dopamine receptors17, serotonin receptors 5HT1E/5HT1F18 and cannabinoid recep-
tor CB1/CB219,20. For AR ligands, Michelan et al. introduced a multi-label classification approach, the so-called 
cross-training with SVM (ct-SVM), to derive compound potency profiles against human AR subtypes and to 
predict the selectivity16. They further applied SVM classification and regression in combination in predicting the 
selectivity profiles of adenosine A2A and A3 antagonists and their binding affinities21. After leave-one-out (LOO), 
10-fold and 5-fold cross-validation process, they achieved an over-all prediction accuracy 78.4% for the test set, 
confirmed the statistical reliability of this model21. Two regression models for A2A and A3 antagonistic activity 
prediction yielded correlation coefficients 0.78 and 0.85, respectively, after LOO cross-validation21,22.

Recently, we developed a multiple dimensional molecular descriptor, namely three-dimensional biologi-
cally relevant spectrum (BRS-3D)23. BRS-3D was calculated by superimposing the molecule under investigation 
against 300 template molecules that were diversely extracted from the crystalized ligands in PDB database. Then, 
information about the molecules’ multiple conformations can be encoded into the 300 dimensional molecular 
descriptor. We believe that BRS-3D can be well applied to GPCR subtype selectivity prediction. In this paper, 
predictive regression and discrimination AR subtype selectivity models were successfully built with machine 
learning method, support vector machine (SVM).

Materials and Methods
Data set preparation.  All structural and activity data were retrieved from the ChEMBL database (release 
20)24. The dataset was filtered according to the following criteria: the target is derived from homo sapiens; the 
target is a single protein and the assay for the target is a binding assay25. Minus logarithm binding affinities 
(pKi value) were used to measure how well a compound binds to ARs. Only compounds with explicitly defined 
potency were retained. Entries with activity annotations such as “>​”, “<​” or “~” were discarded. For these com-
pounds with more than one reported activities, average pKi values were calculated and used. It should be noted 
that the ChEMBL dataset were carried out by different research groups with different experimental conditions. 
The lack of homogeneity and clear ontology of the activity data made ARs selectivity prediction a challenge. 
However, we believed that only through such a big-data study, could we find the real structure-selectivity rela-
tionships of the diverse ARs ligands.

The structures were standardized using an in-house Pipeline Pilot protocol (version 8.5)26. Hydrogen was 
added to fulfill the valences of heavy atoms and neutralize the molecular charge. Molecules with less than 8 or 
more than 80 heavy atoms were eliminated. After the prescreening process, 1332 (A2B) to 3338 (A2A) molecules 
were retained in the data sets (Fig. 1). The amounts of active compounds of different subtypes were in the same 
order of magnitude. Sufficient active molecules and balanced distribution of them in the four AR subtypes are 
conducive to the theoretical modeling. At last, the structures were converted into three dimensional conforma-
tions with CONCORD module and minimized with Tripos force field and default parameters in SYBYL-X 2.027. 
The distributions of pKi and some physicochemical properties of the compounds were shown in Supplementary 
Figure S1. The structures, ChEMBL ID, pKi affinities to ARs, selectivity ratios and BRS-3D features were provided 
in a zipped sdf file in the Supplementary Information.

Figure 1.  Venn diagram of the available ARs activity data from ChEMBL. Compounds were filtered for 
homo species single proteins with pKi data. The compounds that coexisted in two subtypes were used in 
building the pairwise selectivity regression models. Among them, selective compounds (with |SR| >​ 1) were 
used for the pairwise discrimination models.
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The four AR subtypes formed six pairwise data sets, namely 1-2A (A1 vs A2A, similarly hereinafter), 1-2B, 
1-3, 2A-2B, 2A-3 and 2B-3. These data sets were demonstrated with the intersection of two colors in Fig. 1. The 
selectivity ratio (SR) was defined as SRT1-T2 =​ pKiT1-pKiT2, for AR subtypes T1 and T2. Through this way, a positive 
SR value indicates that the compounds have a higher binding potency to T1 than T2, and vice versa. For subtype 
selectivity regression model, we used SR directly as the dependent variable. For subtype selectivity discrimination 
model, compounds with SR greater than 1 or less than −​1 were defined as selective agents28,29. A SR equal to 1 
indicates that the compound can bind to T1 with a potency 10-fold higher than to T2.

For all the data sets, molecules were randomly grouped into training sets and test sets at a ratio of 4:1. The 
training sets (80%) were used to develop the prediction models, while the test sets (20%) were used to assess the 
performance of the models.

Molecular descriptor, BRS-3D.  Molecular descriptors are characterization of the molecules’ structural and 
physicochemical properties. We used a novel multi-dimensional molecular descriptor, BRS-3D, which is a shape 
similarity profile calculated with molecular superimposition. It was named after our previous two-dimensional 
approach30. The procedure of using BRS-3D in QSAR study was illustrated in Fig. 2.

First, a database was constructed with 300 ligands which were diversely selected from sc-PDB (version 2011, 
http://bioinfo-pharma.u-strasbg.fr/scPDB/). This database was named 3D bio-relevance representative com-
pounds database (BRCD-3D). We used sc-PDB because it is a focused “drug-like” subset of the original PDB31. 
Some of the sc-PDB ligands existed in more than one complexes. It is unnecessary and computationally wasteful 
to use all the ligands as templates. Diverse sampling can be used to reduce the redundancy. Comparison showed 
that BRCD-3D with 300 ligands performed similarity to the results with 500 ligands while it saved lots of cal-
culation expenditure (unpublished data). The 300 diverse templates were extracted by cluster analysis based on 
the self-shape-similarity matrix of all 9878 ligands in sc-PDB. The self-shape-similarity were calculated with 
Surflex-Sim rigid superimposing. Then, the molecule under scrutiny was superimposed onto the 300 templates 
and resulted into a 300-dimensional similarity array (BRS-3D). Since the 300 ligands were diversely selected, they 
can act as the landmark in the biologically active conformation space. BRS-3D can be used as a “GPS” system in 
such a space. Elements in BRS-3D reflect the shape and electrostatic properties of the objective molecule, and 
then can be used as a descriptor in QSAR or virtual screening.

BRS-3D calculation was performed by an in-house shell script. We used Surflex-Sim, a module of Surflex suite 
in SYBYL-X 2.0, for molecular superimposition and shape similarity calculation. Surflex-Sim overlay two mol-
ecules and quantify the 3D similarity with the morphological similarity algorithm. The similarity scores ranged 
from 0 to 1. 10 superimposed conformations and similarity scores between the objective molecule and a template 
would be obtained. Only the highest score was selected as an element of BRS-3D. The similarity score takes into 
account both the match of surface shape and charge characteristics of the objective molecules32,33.

Figure 2.  Flowchart of selectivity prediction workflow based on BRS-3D. There are three steps for a BRS-3D 
modeling. (1) BRCD-3D compiling. Based on the self-similarity matrix between all the ligand pairs in sc-PDB, 
300 ligands (BRCD-3D) were diversely selected with cluster analysis. The sc-PDB database was employed here 
as a representative collection of known bioactive conformations. (2) BRS-3D calculation. BRS-3D is a shape 
similarity profile calculated with molecular superimposition. The molecules under scrutiny were superimposed 
onto the 300 templates (BRCD-3D) and resulted into a 300 dimensional array. The shape similarity array 
was defined as BRS-3D. (3) QSAR application. Using BRS-3D as molecular descriptor, QSAR models can be 
developed with various statistical methods.

http://bioinfo-pharma.u-strasbg.fr/scPDB/
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3D molecular descriptors in MOE.  We compared the performances of BRS-3D and three dimensional 
(3D) molecular descriptors calculated with MOE (version 2014). The MOE 3D descriptors comprised 91 surface 
area, volume and shape related properties. Detailed list of MOE 3D descriptors can be found in Supplementary 
Table S1.

Model development.  The widely used machine learning method SVM was employed to develop the pre-
diction models. SVM was originally proposed by Vapnik et al.34. This method can be used to solve both classi-
fication and regression problems. We used the SVM embedded in “e1071” package from R, invoked through R 
statistics module in Pipeline Pilot 8.535. According to reported literatures, SVM are among the best-performing 
approaches for chemical and biological property prediction and the computational identification of active com-
pounds35. SVM projects the data into a higher dimensional feature space where linear separation is frequently 
possible, facilitating object classification, ranking and regression-based property value prediction. Radial basis 
function (RBF) kernel was used to obtain a complicated nonlinear separating hyperplane. A key feature of SVM 
is that it attempts to minimize the error on training data and reduce the computational complexity of models to 
avoid over-fitting by using the structural risk minimization. Furthermore, projection of BRS-3D features in a 
multi-dimensional space with kernel functions avoided heavy explicit calculation.

A 10-fold cross-validation on the training set was performed to determine the optimal parameter settings 
(gamma γ​ for the RBF kernel and “C” value of the constant for the slacks variant) with grid searching. Other 
parameters were set to their default values.

Feature selection.  Presence of irrelevant or redundant features could cause over-fitting and poor gener-
alization capacity of the developed models. As an important step, feature selection can prune the irrelevant and 
redundant information and improve the performance of learning algorithms36. Identifying the most relevant 
features can effectively remove the irrelevant data, reduce the issue dimensionality, increase learning performance 
and improve the result comprehensibility. Random forest (RF) was used for feature selection. RF was a popular 
and efficient algorithm, based on model aggregation ideas, regardless of classification or regression problems37. 
RF was implemented by the component “Learn R Forest Model” in Pipeline Pilot 8.5, invoking the R package 
“RandomForest”. The principle of RF is to combine many binary decision trees, which were built with bootstrap 
on the training sample and random selection of explanatory variables at each node38. After ranking variables by 
the importance, only those top-ranking features were retained for model construction. We compared the perfor-
mance of 8 feature subsets with the top 3 (1%), 15 (5%), 30 (10%), 60 (20%), 120 (40%), 180 (60%), 240 (80%) and 
all the 300 (100%) features.

The prediction accuracies of different feature subsets were compared according to the proportion of correctly 
classified samples in discriminant models, or the correlation between the predicted and actual selectivity values 
in regression models. We also studied the influence of feature selection on models’ performance with the test set 
(20% random sample from the original data set). Of course, the compounds in test set were only used for the 
purpose of model evaluation.

Model performance assessments.  For the regression models, we used cross-validation determination 
coefficient (q2, Formula 1, for training set), the root-mean-square error (RMSE, Formula 2) and determination 
coefficient (r2, Formula 3, for test set) as a measure of model fitting and predictive power39. q2 takes values in a 
standardized range, thus allowing easily comparison of different QSAR models, fitting performance and model 
predictive abilities40. RMSE, an equivalent measure of dispersion, is a helpful indicator of a model’s usefulness41. 
r2 is defined as the square of the correlation coefficient between the observed and predicted values in a regression. 
The formulae for the calculation of these parameters were as follows.
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Where n stands for the total number of compounds, y is the observed response variables, y is the mean of y, and 
y is the predicted value.

The quality of all discrimination models was evaluated by considering the following statistical indicators: 
sensitivity (SE), specificity (SP), overall prediction accuracy (ACC) and Matthews correlation coefficient (MCC) 
(Formulae 4–7). Furthermore, we used the receiver-operating characteristic (ROC) and the area under the ROC 
(AUC) as advocated by Nicholls42. AUCcv was also used in cross-validation (CV) as the indicator in the grid 
parameter searching.

=
+

SE TP
TP FN (4)
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SP TN
TN FP (5)

=
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ACC TP TN

TP TN FP FN (6)

=
× − ×

+ + + +
MCC TP TN FN FP

TP FN TP FP TN FN TN FP( )( )( )( ) (7)

Here, TP, FP, TN and FN represent true positives, false positives, true negatives, and false negatives, respectively.

Y-randomization test.  Y-randomization test was carried out to exclude the possibility of chance correla-
tion43. The SR values (response variable) were randomly shuffled to change their true order. Thus, although the SR 
values (and the statistical distribution) stayed the same, their position against the appropriate compound and its 
descriptors were now altered. This process was repeated for 500 times.

Applicability domain evaluation.  Applicability domain (AD) evaluation is one of the most important part 
in QSAR modeling44. In the study, the Williams plot based on standardized residuals and leverage values was used 
to define the AD of the AR subtype selectivity prediction models. Williams plot provides leverage values plotted 
against the prediction errors. Both the structural outside compounds (h > h*) and response outliers (standard-
ized residuals >​3 or <​ −​3) can be detected. The leverage value (h) measures the distance from the centroid of 
the modeled space and could be calculated for a given data set X by obtaining the Hat matrix (H) by Formula 845:

= −H X(X X) X (8)T 1 T

where X is the selected descriptors matrix; XT is the transpose matrix of X; and (XTX)−1 is the inverse of matrix 
(XTX). The leverages of the compounds in the data set are the diagonal elements of the H matrix. The warning 
leverage (h*) is generally calculated as h* = 3p/n, where p is the number of variables plus one and n is the number 
of samples in training set. If a compound in the test set has a leverage value higher than h*, it is considered outside 
the AD and its prediction result may be unreliable.

Results
Pairwise subtype selectivity regression models.  Six pairwise regression models were successfully con-
structed. Feature selection (Fig. 3) showed that the performances of the models rose greatly when the employed 
features increased from 1% to 20%. The results indicated that around 60 features were related to subtype selectiv-
ity. When more than 20% features were included, the models’ statistical parameters became stable.

According to Golbraikh’s suggestion, regression models with cross-validated r2 (q2) value for the training set 
greater than 0.5 and linear fit predictive r2 value for the test set greater than 0.6 were acceptable40. When 10% or 

Figure 3.  Feature selection results of the six pairwise regression models. (A) q2 of the training sets. (B) RMSE 
of the training sets. (C) r2 of the test sets. (D) RMSE of the test sets. Eight different feature subsets were explored. 
The training sets were calculated based on 10-fold cross-validation. The test sets were used only for model 
evaluation.
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20% features were used (Table 1), the determination coefficients (q2, 10-fold cross-validation) of the training set 
ranged from 0.631 to 0.769, with an average value 0.671. The determination coefficients for the test sets were also 
encouraging (r2 =​ 0.607~0.766 with an average value 0.664). Therefore, the BRS-3D based regression models were 
acceptable. RMSE is also an important parameter for the prediction ability measurement. Even a model with low 
r2 can be practically useful if the RMSE is low41. The RMSE of the BRS-3D models were all lower than 1, which 
is acceptable since the data were collected from different research groups. The performance of 2B-3 selectivity 
regression model was the best one (q2

cv =​ 0.769, RMSE =​ 0.830 for training set and r2 =​ 0.766, RMSE =​ 0.828 for 
test set) among the six models.

The correlation plots showed good linear relationships between the experimental and predicted SR values 
(Fig. 4). The majority of the data points were concentrated around the 45-degree line through the origin, where 
the experimental and predicted SR values were equal to each other. The vertical distance from a symbol to the 
45-degree line is the predicting deviation41. The fitting line indicated that the predicted SR values were close to the 
experimentally observed ones21.

Targets Descriptor Na

Training setb Test set Test setc

Ntraining q2
cv RMSEcv Ntest r2 RMSEtest r2 RMSEtest Nd

1-2A BRS-3D 60 1746 0.631 0.729 436 0.683 0.656 0.717 0.606 6

MOE-3D 42 0.559 0.794 0.577 0.758 0.614 0.710 9

1-2B BRS-3D 30 617 0.673 0.756 154 0.627 0.657 0.658 0.863 2

MOE-3D 44 0.665 0.766 0.553 0.719 0.615 0.910 2

1-3 BRS-3D 60 1158 0.653 0.874 290 0.611 0.941 0.674 0.614 4

MOE-3D 38 0.545 0.990 0.577 0.981 0.664 0.596 7

2A-2B BRS-3D 30 683 0.651 0.765 171 0.687 0.753 0.737 0.675 3

MOE-3D 41 0.615 0.803 0.701 0.736 0.770 0.622 1

2A-3 BRS-3D 30 1048 0.646 0.982 262 0.607 0.950 0.655 0.883 4

MOE-3D 41 0.601 1.041 0.633 0.919 0.672 0.874 5

2B-3 BRS-3D 30 438 0.769 0.830 110 0.766 0.828 0.815 0.733 2

MOE-3D 42 0.734 0.887 0.757 0.845 0.794 0.779 3

Table 1.   The pairwise selectivity regression models based on BRS-3D and MOE-3D. aNumber of features 
were determined with feature selection. bResults of the training set were calculated based on of 10-fold cross-
validation. cPrediction results with test set compounds inside the applicability domain. dNumber of applicability 
domain excluded compounds.

Figure 4.  Correlation plots of experimental and predicted selectivity ratios of the test sets. The red dash 
straight line is the 45-degree benchmark line through the origin. The red solid straight line is fitting line of 
scatter diagram. Compounds outside the applicability domain were marked in blue.
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Model validations.  Resampling strategy and Y-randomization test were used to assess the stability, validity 
and prediction ability of the models.

First, resampling was applied to validate the stability of models. The data sets were randomly divided into 
training set and test set with the ratio of 4:1. The resampling were repeated for 100 times, which resulted in 100 
models. The results of the resampling models were shown in Fig. 5. The prediction models were very stable both 
for the training sets and for the test sets. All the cross-validation q2 and r2 (test sets) were in the range of 0.6–0.8. 
Because q2 of the training sets were calculated with 10-fold validation, it was more robust than r2 of the test sets. 
The resampling results confirmed the robustness, stability and prediction ability of the BRS-3D based models.

Then, we conducted Y-randomization test (scramble stability test) to eliminate possible stochastic dependences. 
The distribution diagram of q2 and r2 values of the 500 randomized models and the true models were shown in 
Fig. 6. The q2 of randomly shuffled models ranged from 0 to 0.04, while the r2 ranged from −​0.8 to 0.2. Hence, these 
models were totally without prediction ability. The statistically significant differences (Supplementary Table S2)  
between the shuffled models and the real models (q2 >​ 0.60, r2 >​ 0.60) confirmed the true association between the 
selected molecular descriptors and response property (SR) rather than chance correlation.

Applicability domain evaluation.  Williams plots were used to define the AD of the AR subtype selectivity 
prediction models (Fig. 7). The compounds outside the area formed by three black lines were identified as outli-
ers. Most of the compounds in test sets fell within the AD. The test sets appear well distributed in the molecular 
descriptor space, it suggests that the predictive models developed with the training set can be applied to the test set.

Comparison of BRS-3D and MOE 3D descriptors.  BRS-3D is a shape similarity profile as molecular 
descriptor. We compared the prediction models built with BRS-3D and those built with the 3D molecular descrip-
tors calculated with MOE program (Table 1). The results showed that the predictive ability of BRS-3D based 
models (average q2

cv =​ 0.671 and r2 =​ 0.664) performed better than or as good as MOE 3D descriptors (average 
q2

cv =​ 0.620 and r2 =​ 0.633).

Figure 5.  The 100 resampling models for subtype selectivity regression. The results showed that BRS-3D 
based models were stable.
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Pairwise subtype selectivity discrimination models.  We also developed six pairwise subtype selec-
tivity discrimination models with 10-fold cross-validation and feature selection. The results of feature selection 
were shown in Fig. 8. As the results shown, with the increasing of BRS-3D features, the models showed a trend 

Figure 6.  Y-randomization test of the selectivity regression models. The plot showed that the statistic results 
of true models (black triangles) were obviously better than the randomized models (hollow triangles).

Figure 7.  Williams plot of standardized residuals versus leverages for compounds in the test sets. The 
horizontal line shows the warning leverage (h* =​ 3p/n, n is the number of chemicals in training set and p is the 
number of variables plus one), the two vertical lines indicate the standardized residuals at 3 and -3 respectively. 
Most of compounds in the test sets fell within the AD of the models.
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of increasing prediction accuracy. Using 5% or 10% features of BRS-3D can achieve acceptable prediction accu-
racy for most of the data sets. The fluctuation of the curves indicated that SVM was capable of dealing with 
high-dimensional data but was not robust to the presence of a large number of irrelevant descriptors. This sit-
uation explained the necessity of feature selection to multiple-dimensional molecular descriptor. Prediction 
results for the test sets with different feature subsets were also shown in Fig. 8. The results of the test sets showed 
similar trends with the training sets, which indicated the effectiveness of the cross-validation and there was no 
over-fitting in these models. The statistic results with 5% features were summarized in Table 2. For the train-
ing sets, the cross-validation AUC ranged from 0.940 to 0.991, indicating the high discriminate power of the 
models. The statistic results for the test sets, with SE =​ 0.640~0.977, SP =​ 0.909~0.978, ACC =​ 0.845~0.955 and 

Figure 8.  Feature selection of the six pairwise discrimination models. The parameters were calculated 
based on 10-fold cross-validation of the training set (top) or test set (bottom). The five symbols represent the 
area under the ROC (AUC), sensitivity (SE), specificity (SP), overall prediction accuracy (ACC) and Matthews 
correlation coefficient (MCC), respectively. Eight different feature subsets were explored. The test sets were used 
only for model evaluation.
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MCC =​ 0.633~0.897 showed that the models’ prediction ability was acceptable. Among the models, 2B-3 pairs 
showed the best prediction results with SE =​ 0.977, SP =​ 0.909, ACC =​ 0.955 and MCC =​ 0.897 (test set).

Michielan et al. built a binary classifier for A2A and A3 antagonists discrimination21. They used 3D 
auto-correlated electrostatic potential descriptors (autoMEP). The model was developed with SVM and LOO 
cross-validation. For training set (104 compounds), the over-all prediction accuracy (ACCcv) was 0.917. For 
test set (51 compounds), they reached a prediction of SE =​ 0.719, SP =​ 0.895, ACC =​ 0.78421,22. Our model 
(ACCcv =​ 0.935, SEtest =​ 0.761, SPtest =​ 0.935 and ACCtest =​ 0.882) outperformed theirs, even we used a more 
diverse dataset (activity data in ChEMBL were collected from different research groups).

The results of discriminant models were consistent with the results of regression models. However, compared 
with the discrimination models, more compounds and activity information were used in the regression models. 
Therefore, we believe that the regression models were more predictive and practical, which can be confirmed 
with the high R2 and acceptable RMSE values. The discriminant models were provided to confirm the results of 
regression models.

Model interpretation.  SVM based models can hardly be interpreted. Instead, we analyzed the distribu-
tion of the compounds in the chemical space composed with the most important features. As shown in Fig. 9, 
selective compounds again different targets distributed in different regions. For example, both the regression 
model and the discriminant model of the 2B-3 subtype pair showed good statistical results and prediction ability. 
Compounds similar to BRS141 (ligand IN7 from the Homo sapiens protease, PDB ID:1b8y) are more likely to 
bind with A2B, while compounds similar to BRS136 (ligand CTZ from the Obelia longissima Calcium-binding 
protein, PDB ID:1el4) and BRS206 (ligand OTT_PHE_SER_PRO_ALA_MAA_MP8 from the Bacillus subtilis 
protease, PDB ID:3kti) tend to bind with A3. The selective compounds cannot be distinguished with simple 2D or 
3D properties (Supplementary Figure S2).

The information of the most important features was listed in Supplementary Table S3, and their corresponding 
ligands were listed in Supplementary Table S4. All the targets corresponding to the important features are irrele-
vant to AR, and there is no AR structures in the 300 BRCD-3D structures. Above results indicated that BRS-3D 
could be used for protein pocket similarity detection, e.g., the pocket of A2B should be very similar to the pocket 
of Homo sapiens protease (BRS141, PDB ID:1b8y). We analyzed the superimposing conformations of the three 
most selective compounds in 2B-3 subtype pairs with the corresponding BRCD-3D ligands of the most important 
features (Supplenmentary Figure S3). The topological structures of the selective compounds are dissimilar to the 
BRCD-3D ligands. However, their 3D shapes are similar to each other according to the superimposition results. 
The results demonstrated the advantages of 3D methods than 2D ones.

We further performed a principal component analysis (PCA) over the 30 most important features that con-
tributed to the 2B-3 regression model. The distribution of 2B-3 selective compounds in the coordinate plane of 
the first two principal components (variance explained: PC1 =​ 41.43% and PC2 =​ 16.82%) were shown in Fig. 10. 
We colored the dots (compounds) according to their experimental SR. The A2B selective compounds (up-left) and 
the A3 selective compounds (bottom-right) were well separated with these two components.

It was assumed that the conformational transformation pattern plays an important role in subtype selectivity, 
while such pattern can be reflected with the BRS-3D. However, it should be noticed that not all the dots (com-
pounds) in Fig. 9 were well distinguished. In fact, the selectivity is determined with lots of factors, for example, 
the pharmacophore distribution in 3D space. In such kind of situations, more BRS-3D components were needed 
to construct a predictable model, as the feature selection study indicated (Figs 3 and 8).

Discussion
Target selectivity was a crucial requirement for drugs to avoid side-effects. It was commonly measured by the 
ratio of off-target Ki to the original target Ki

46. Many groups attempted to predict the selectivity of bioactive com-
pounds19,46,47. However, theoretically predicting the subtype selectivity was very difficult38,48.

Targets
Features 

(%)a

Training setb Test set

Ntraining
c TP TN FP FN AUCcv SE SP ACCcv MCC Ntest TP TN FP FN SE SP ACC MCC

1-2A 5 750 187 496 19 48 0.957 0.796 0.963 0.911 0.804 188 43 134 3 8 0.843 0.978 0.942 0.849

1-2B 5 260 72 176 4 8 0.989 0.900 0.978 0.954 0.895 65 25 36 2 2 0.926 0.947 0.939 0.873

1-3 5 622 113 450 20 39 0.940 0.743 0.957 0.905 0.757 155 32 99 6 18 0.640 0.943 0.845 0.633

2A-2B 5 356 153 184 6 13 0.985 0.922 0.968 0.947 0.898 89 22 59 5 3 0.880 0.922 0.910 0.784

2A-3 5 611 153 418 13 27 0.969 0.850 0.970 0.935 0.849 153 35 100 7 11 0.761 0.935 0.882 0.715

2B-3 5 262 137 111 8 6 0.991 0.958 0.933 0.947 0.898 66 43 20 2 1 0.977 0.909 0.955 0.897

Table 2.   The pairwise selectivity discrimination models based on BRS-3D. aNumber of features were 
determined with feature selection. bResults of the training set were calculated based on 10-fold cross-validation. 
cAbbreviations. Ntraining: the number of compounds in training sets. Ntest: the number of compounds in test sets. 
TP: true positives. FP: false positives. TN: true negatives. FN: false negatives. AUC: the area under the ROC. SE: 
sensitivity. SP: specificity. ACC: overall prediction accuracy. MCC: Matthews correlation coefficient. cv:  
cross-validation.
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The recognition between the drugs and receptors is a process of 3D shape and property complementation. 
Therefore, the selectivity is mainly determined by the spatial arrangement of the drug’s functional groups, e.g., 
H-bond donors or receptors, charged centers. Compounds with different scaffolds tend to possess selectivity 

Figure 9.  Distribution of the selective compounds in the shape similarity chemical spaces. The coordinates 
were defined as the most important BRS-3D features.
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among different receptors, especially the inter-family systems. These systems could be theoretically studied with 
pharmacophore modeling or similar fixed-conformation approaches.

Hu et al. studied top-ranked intra- and inter-family target cliffs that formed by the largest number of selective 
compounds25. Intra-family target cliffs were generally associated with more compounds than inter-family cliffs. 
The study indicated that current researches were focused on intra-family selectivity. The intra-family selectivity 
is more complex, because different subtypes in the receptor family can be activated by the same substrate. We 
assumed that the intra-family selectivity was mainly determined by dynamic conformational transformation 
patterns of the ligands. Sophisticated molecule dynamic study could be applied in searching for the selective 
ligands for the intra-family systems. However, as we stated in the introduction section, receptor-based methods 
were limited by the availability of the receptor structures, accuracy of homology modeled structures and scoring 
function precision.

In this work, we introduced a novel multi-dimensional molecular descriptor, namely BRS-3D, for sub-
type selectivity prediction. BRS-3D was calculated by superimposing the objective compound onto 300 tem-
plate ligands. Because the templates were diversely extracted from sc-PDB, the similarities in BRS-3D reflect 
the active conformation space of the objective compounds. Therefore, the descriptor can be applied well to 
conformation-related property prediction. As the results showed, through encoding multiple conformation 
information into the 300 dimensional descriptor, high predictive AR subtype selectivity models were developed. 
Even we used diverse data sets from the public available database (ChEMBL), our results were more predictive or 
comparable to earlier studies21. The method and models reported in this paper are helpful for further design and 
discovery of novel subtype specific AR agents.

BRS-3D is inherently three-dimensional molecular descriptor. Compared with 2D descriptors, it was consid-
ered to be suitable for scaffold hopping. Compared with commonly used 3D QSAR methods, e.g., CoMFA49, our 
approach is alignment independent. The BRS-3D models belong to the second class of QSAR models, according 
to the perspective by Fujita and Winkler50. When predictive models are constructed and validated, BRS-3D based 
virtual screening can be performed without human supervision. There are also some disadvantages of BRS-3D 
approach. First, molecular superimposition is computational resource consuming. Second, using of similarity 
array as molecular descriptor makes the interpretation of the prediction models very difficult. The models cannot 
provide effective guidance for novel molecule design.

In summary, through multiple conformation encoding, BRS-3D can be used as an effective molecular descrip-
tor for AR subtype selectivity prediction. This unique approach can be integrated into the virtual screening work-
flow with other 2D, physicochemical properties or pharmacophore approaches.
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