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Abstract: There is inconsistency regarding the association between long-chain n-3 polyunsaturated
fatty acids such as eicosapentaenoic acid (EPA; 20:5n3) and docosahexaenoic acid (DHA; 22:6n3)
and the risk of type 2 diabetes. The present study aimed to investigate the association between the
Omega-3 Index (erythrocyte EPA + DHA) and glycemic status as a function of body mass index (BMI).
Cross-sectional data from routine clinical laboratory testing with a total of 100,572 people aged over
18 years and BMI ≥ 18.5 kg/m2 were included. Of the patients, 10% were hyperglycemic (fasting
plasma glucose levels ≥ 126 mg/dL) and 24.7% were of normal weight, 35.0% were overweight, and
40.3% were obese. Odds ratios (ORs) of being hyperglycemic were inversely associated with the
Omega-3 Index, but weakened as BMI increased. Thus, ORs (95% CI) comparing quintile 5 with
quintile 1 were 0.54 (0.44–0.66) in the normal weight group, 0.70 (0.61–0.79) in the overweight group,
and 0.74 (0.67–0.81) in the obese group. Similar patterns were seen for EPA and DHA separately. The
present study suggested that a low Omega-3 Index is associated with a greater risk of disordered
glucose metabolism and this is independent of BMI.

Keywords: body mass index; Omega-3 Index; n-3 polyunsaturated fatty acids; hyperglycemia; type
2 diabetes

1. Introduction

Type 2 diabetes (T2D) is characterized by a chronic state of hyperglycemia due to
relative insulin deficiency and insulin resistance [1]. Obesity is a major risk factor for
T2D by increasing insulin resistance [2], and 89% of patients with T2D are overweight or
obese in the United States (USA) [3]. Diet is an important modifiable factor to prevent and
manage T2D [4]. The American Diabetes Association recommends eating fatty fish rich in
long-chain n-3 polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA;
20:5n3) and docosahexaenoic acid (DHA; 22:6n3), and seeds rich in α-linolenic acid (ALA;
18:3n3) to prevent or treat cardiovascular disease in patients with diabetes [5]. However,
the dietary supplementation of n-3 PUFAs is not recommended to improve glycemic
management [5–7]. Although some meta-analyses of prospective cohort studies found
that the risk of T2D was not associated with intake [8] and blood levels of n-3 PUFAs [9],
an analysis of UK Biobank data showed a lower risk for T2D in participants reporting fish
oil use and eating ≥2 servings/week of oily fish than <1 serving/week [10]. In addition,
a pooled analysis of prospective cohort studies reported that the incidence of T2D was
negatively associated with higher long-chain n-3 PUFAs, but not ALA, measured in adipose
tissue or blood [11]. Consistently, previous studies showed that blood levels of long-chain
n-3 PUFA were negatively correlated with hemoglobin A1c (HbA1c), levels of insulin, and
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homeostatic model assessment for insulin resistance (HOMA-IR) in Australian, Chinese,
Korean, New Zealand, and Taiwanese adults with or without T2D, suggesting that long-
chain n-3 PUFA could have a beneficial role in the risk of T2D [12–16]. In a diabetic rodent
model, the supplementation of long-chain n-3 PUFAs also improved insulin resistance and
glucose tolerance by increasing hepatic insulin sensitivity [17,18].

Previous meta- or pooled analyses of prospective cohort studies included various long-
chain n-3 PUFA biomarkers measured in adipose tissue, plasma, serum, and erythrocyte [9,11].
The Omega-3 Index, the sum of EPA + DHA in relation to total fatty acid content in red
blood cell membranes, has been suggested to be superior to plasma or serum long-chain
n-3 PUFAs because of its reflection of long-term dietary intake of long-chain n-3 PUFA [19].
In addition, the Omega-3 Index has been known for the association with various factors
including age, sex, education, waist circumference, smoking, and genotype [20,21], and es-
pecially negative correlation with body mass index (BMI), a major risk factor for T2D [22,23].
Qian et al. [11] suggested the inverse association between long-chain n-3 PUFAs and the
incidence of T2D was stronger in obese than non-obese participants.

To the best of our knowledge, there is no study evaluating the association between
the Omega-3 Index and hyperglycemia by BMI categories. Therefore, the present study
tested the hypothesis that the Omega-3 Index is negatively associated with hyperglycemia
and is inversely correlated with markers of glucose metabolism including HbA1c, levels of
insulin, and HOMA-IR.

2. Materials and Methods
2.1. Participants

This cross-sectional study was based on routine clinical laboratory data from Health
Diagnostic Laboratory, Inc. (HDL, Inc., Richmond, VA, USA) between 2011 and 2012.
Among 100,572 patients 18+ years old and with BMI ≥ 18.5 kg/m2, 10,222 were considered
to have hyperglycemia (fasting plasma glucose levels ≥ 126 mg/dL). Patients were clas-
sified as normal weight (BMI: 18.5–24.9 kg/m2), overweight (BMI: 25.0–29.9 kg/m2), or
obese (BMI: ≥30.0 kg/m2). Underweight (BMI: <18.5 kg/m2) patients were excluded. The
study was conducted in accordance with the Declaration of Helsinki, and a waiver of in-
formed consent requirements for this study (which used only deidentified and aggregated
laboratory data) was obtained from the University of South Dakota (IRB-21-147).

2.2. Laboratory Methods

Overnight fasting blood samples were collected at clinics across the USA and shipped
with cold packs to HDL, Inc. for biochemical measurements. Plasma levels of glucose and
serum levels of insulin were measured using an automated analyzer. HbA1c was measured
using high-performance liquid chromatography. HOMA-IR was calculated as fasting in-
sulin (µU/mL) × fasting glucose (mg/dL)/405 [24]. Erythrocyte n-3 PUFA composition
was measured as described previously [25]. Fatty acid methyl esters were generated by
treatment with boron trifluoride methanol benzene (10 min at 100 ◦C) (Sigma-Aldrich, St.
Louis, MO, USA), extracted with water and hexane and analyzed by gas chromatogra-
phy (Shimadzu 2010AF; Shimadzu Scientific Instrument, Kyoto, Japan), equipped with
a 100 m × 0.25 mm inner diameter, with a 0.20 µm film capillary column (SP2560; Supelco,
Bellefonte, PA, USA). Using standard mixture (GLC-727; Nu-Check Prep, Elysian, MN,
USA), individual fatty acids were identified and expressed as a percentage of the total
identified fatty acids. Every batch was quantified by measuring the coefficient of variation
of the Omega-3 Index in quality control sample.

2.3. Statistical Methods

Differences between hyperglycemic and normoglycemic patients were assessed using
Student’s t tests for continuous variables reported as means ± standard deviation, and Chi-
squared tests for proportions of dichotomous variables. Correlation between erythrocyte
n-3 PUFA composition, and HbA1, levels of insulin, and HOMA-IR was evaluated using
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Pearson’s correlation coefficient after adjusting for age, sex, and BMI. Multivariable logistic
regression analysis was applied to estimate the ORs of being hyperglycemic with quintiles
of erythrocyte n-3 PUFA composition by using lowest quintiles set as the reference group
(OR = 1.0) after adjusting for age, sex, and BMI. In addition, linear trend analysis across
quintiles was performed. The interactions between n-3 PUFA composition and weight
groups on being hyperglycemic were tested using a two-way ANOVA. All statistical
analyses were performed using SAS software, version 9.4 (SAS Institute, Cary, NC, USA).
Values of p < 0.05 were considered to be statistically significant.

3. Results

Patient characteristics are shown in Table 1. The weight distributions in each BMI
category were 24.7% normal weight, 35.0% overweight, and 40.3% obese. Hyperglycemic
patients were significantly older, predominantly male, and heavier in all weight groups
compared with normoglycemic patients. Levels of glucose and insulin, HbA1c, and
HOMA-IR were significantly higher in hyperglycemic than normoglycemic patients in all
weight groups.

Erythrocyte levels of EPA was significantly lower in hyperglycemic than normo-
glycemic patients in all weight groups, and the Omega-3 Index and erythrocyte levels of
DHA were significantly lower in hyperglycemic than normoglycemic patients in the normal
weight group. Erythrocyte levels of ALA were significantly higher in hyperglycemic than
normoglycemic patients in the obese group.

As shown in Table 2, there were significant interactions between quintiles of the
Omega-3 Index (and erythrocyte levels of EPA and DHA) with weight group on hyper-
glycemic status. Within weight groups, the ORs of being hyperglycemic showed inverse
associations with the Omega-3 Index and erythrocyte levels of EPA and DHA. However,
the ORs for the overweight and obese groups were higher than those for the normal weight
group, particularly in the highest quintile of the Omega-3 Index. The ORs of hyperglycemia
showed inverse associations with erythrocyte levels of ALA in the overweight and obese
groups, but not in the normal weight group. There were no interactions between quintiles
of erythrocyte levels of ALA on hyperglycemic status.

HbA1c was negatively correlated with erythrocyte levels of ALA, EPA, DHA, and
the Omega-3 Index among all weight groups (Table 3). Levels of insulin were negatively
correlated with erythrocyte levels of EPA among all weight groups and with erythrocyte
levels of DHA and the Omega-3 Index in the normal weight group, but positively correlated
with erythrocyte levels of DHA in the obese group. HOMA-IR was negatively correlated
with erythrocyte levels of EPA, but not DHA in all weight groups, and with the Omega-3
Index in the normal weight group. In addition, correlation between levels of insulin and
HOMA-IR and erythrocyte levels of ALA was negative in the normal weight group, but
positive in the overweight and obese groups.
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Table 1. Characteristics and erythrocyte long-chain n-3 polyunsaturated fatty acid composition of patients (n = 100,572) 1.

Normal Weight (n = 24,901) Overweight (n = 35,175) Obese (n = 40,496)

Hyperglycemic
(n = 918)

Normoglycemic
(n = 23,983) p-Value Hyperglycemic

(n = 2698)
Normoglycemic

(n = 32,477) p-Value Hyperglycemic
(n = 6606)

Normoglycemic
(n = 33,890) p-Value

Age (y) 64.0 ± 14.4 54.5 ± 16.7 <0.001 62.9 ± 12.3 56.0 ± 14.7 <0.001 58.4 ± 11.8 53.7 ± 14.0 <0.001

Women (%) 46.1 68.0 <0.001 35.1 45.3 <0.001 42.4 52.6 <0.001

BMI (kg/m2) 23.0 ± 1.5 22.5 ± 1.7 <0.001 27.7 ± 1.4 27.4 ± 1.4 <0.001 37.1 ± 6.5 35.6 ± 5.5 <0.001

Glucose
(mg/dL) 180.8 ± 69.3 88.8 ± 10.7 <0.001 175.8 ± 62.1 92.6 ± 11.2 <0.001 177.8 ± 57.1 95.1 ± 12.2 <0.001

HbA1c (%) 7.8 ± 2.2 5.3 ± 0.5 <0.001 7.7 ± 1.9 5.4 ± 0.5 <0.001 7.9 ± 1.8 5.6 ± 0.6 <0.001

Insulin
(µU/mL) 14.9 ± 24.4 7.1 ± 6.9 <0.001 19.4 ± 26.9 10.5 ± 9.9 <0.001 27.1 ± 31.4 17.4 ± 17.4 <0.001

HOMA-IR 6.5 ± 12.8 1.6 ± 1.6 <0.001 8.3 ± 12.3 2.5 ± 2.7 <0.001 11.7 ± 14.8 4.2 ± 4.3 <0.001

ALA 0.14 ± 0.05 0.15 ± 0.05 0.158 0.140 ± 0.048 0.139 ± 0.043 0.141 0.137 ± 0.041 0.135 ± 0.038 0.024

EPA 0.72 ± 0.63 0.85 ± 0.75 <0.001 0.71 ± 0.60 0.76 ± 0.62 <0.001 0.61 ± 0.48 0.63 ± 0.49 <0.001

DHA 4.31 ± 1.66 4.50 ± 1.54 0.001 4.272 ± 1.484 4.269 ± 1.417 0.924 3.91 ± 1.29 3.92 ± 1.26 0.463

Omega-3 Index 5.03 ± 2.18 5.35 ± 2.14 <0.001 4.98 ± 1.97 5.03 ± 1.92 0.237 4.52 ± 1.68 4.56 ± 1.65 0.104

BMI, body mass index; HbA1c, hemoglobin A1c; HOMA-IR, homoeostatic model assessment for insulin resistance; ALA, α-linolenic acid; EPA, eicosapentaenoic acid; DHA,
docosahexaenoic acid; Omega-3 Index, 20:5n3 + 22:6n3. 1 Values are mean ± standard deviation or %, as appropriate (Student’s t test); Hyperglycemic and normoglycemic were referred
to as fasting glucose level ≥ 126 mg/dL and fasting glucose level < 126 mg/dL, respectively.

Table 2. Association between erythrocyte n-3 polyunsaturated fatty acids and hyperglycemia by multivariate regression analysis 1.

Quintiles of Erythrocyte n-3 Polyunsaturated Fatty Acid Content
p-Value for Trend 2 p-Value for Interaction

with Weight Groups 3
1 2 3 4 5

ALA

Cutoff (%) ≤0.10 0.10< to ≤0.12 0.12< to ≤0.14 0.14< to ≤0.17 >0.17 0.712

Normal weight

Cases/controls (n) 175/4011 169/4169 179/4810 170/4964 225/6029

OR (95% CI) 1.00 1.05 (0.85–1.31) 1.07 (0.86–1.33) 1.01 (0.81–1.26) 1.15 (0.94–1.42) 0.275

Overweight
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Table 2. Cont.

Quintiles of Erythrocyte n-3 Polyunsaturated Fatty Acid Content
p-Value for Trend 2 p-Value for Interaction

with Weight Groups 3
1 2 3 4 5

Cases/controls (n) 634/6863 502/6445 502/6748 496/6139 564/6282

OR (95% CI) 1.00 0.91 (0.81–1.03) 0.91 (0.81–1.03) 1.03 (0.91–1.16) 1.18 (1.05–1.33) 4 0.003

Obese

Cases/controls (n) 1569/7725 1308/6919 1322/7107 1200/6431 1207/5708
OR (95% CI) 1.00 0.99 (0.91–1.07) 1.04 (0.95–1.12) 1.09 (1.00–1.19) 4 1.32 (1.21–1.43) 5 <0.001

EPA

Cutoff (%) ≤0.34 0.34< to ≤0.45 0.45< to ≤0.61 0.61< to ≤0.98 >0.98 0.010

Normal weight

Cases/controls (n) 233/4478 194/3925 142/4073 158/4957 191/6550

OR (95% CI) 1.00 0.89 (0.73–1.09) 0.62 (0.50–0.77) 4 0.53 (0.43–0.66) 4 0.44 (0.36–0.54) 4 <0.001

Overweight

Cases/controls (n) 623/5793 555/6089 484/6488 494/7009 542/7098

OR (95% CI) 1.00 0.83 (0.74–0.94) 5 0.66 (0.59–0.75) 4 0.58 (0.51–0.66) 4 0.58 (0.51–0.65) 4 <0.001

Obese

Cases/controls (n) 1659/7388 1624/7832 1367/7449 1093/6370 863/4851

OR (95% CI) 1.00 0.90 (0.84–0.98) 5 0.79 (0.73–0.85) 4 0.69 (0.63–0.75) 4 0.65 (0.59–0.71) 4 <0.001

DHA

Cutoff (%) ≤2.95 2.95< to ≤3.59 3.59< to ≤4.32 4.32< to ≤5.36 >5.36

Normal weight 0.010

Cases/controls (n) 197/3959 168/3791 169/4312 160/5129 224/6792

OR (95% CI) 1.00 0.87 (0.70–1.08) 0.74 (0.60–0.92) 5 0.56 (0.45–0.70) 4 0.56 (0.46–0.69) 4 <0.001

Overweight

Cases/controls (n) 513/5944 529/6125 521/6351 557/6987 578/7070

OR (95% CI) 1.00 0.91 (0.80–1.04) 0.82 (0.72–0.93) 5 0.76 (0.67–0.86) 4 0.72 (0.64–0.82) 4 <0.001

Obese

Cases/controls (n) 1552/7975 1610/7891 1422/7316 1127/6158 895/4550

OR (95% CI) 1.00 0.97 (0.90–1.05) 0.89 (0.82–0.96) 5 0.79 (0.72–0.86) 4 0.80 (0.73–0.88) 4 <0.001
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Table 2. Cont.

Quintiles of Erythrocyte n-3 Polyunsaturated Fatty Acid Content
p-Value for Trend 2 p-Value for Interaction

with Weight Groups 3
1 2 3 4 5

Omega-3
Index

Cutoff (%) ≤3.35 3.35< to ≤4.04 4.04< to ≤4.93 4.93< to ≤6.33 >6.33

Normal weight 0.036

Cases/controls (n) 192/3986 177/3796 176/4247 157/5138 216/6816

OR (95% CI) 1.00 0.92 (0.75–1.14) 0.81 (0.66–1.00) 0.57 (0.46–0.71) 4 0.54 (0.44–0.66) 4 <0.001

Overweight

Cases/controls (n) 525/5923 542/6043 516/6401 537/7011 578/7099

OR (95% CI) 1.00 0.93 (0.82–1.06) 0.79 (0.70–0.90) 4 0.71 (0.62–0.81) 4 0.70 (0.61–0.79) 4 <0.001

Obese

Cases/controls (n) 1596/7896 1608/7973 1438/7325 1101/6157 863/4539

OR (95% CI) 1.00 0.93 (0.86–1.00) 0.86 (0.80–0.94) 4 0.74 (0.68–0.80) 4 0.74 (0.67–0.81) 4 <0.001

ALA, α-linolenic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; Omega-3 Index, 20:5n3 + 22:6n3. 1 Values are odds ratios (OR) with 95% confidence intervals (CI) after
adjusting for age, sex, and BMI; Normal weight is if BMI is 18.5 to <25.0 kg/m2; Overweight is if BMI is 25.0 to <30.0 kg/m2; Obese is if BMI is ≥30.0 kg/m2. 2 The likelihood ratio test
was used for the detection of linear trend. 3 p-value for the interaction with BMI was determined using a two-way ANOVA. 4 p-value of <0.001 compared with the first quintile by
logistic regression analysis. 5 p-value of <0.05 compared with the first quintile by logistic regression analysis.
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Table 3. Pearson’s correlation coefficient between erythrocyte long-chain n-3 polyunsaturated fatty
acid composition and markers of glucose metabolism (n = 100,572) 1.

ALA p-Value EPA p-Value DHA p-Value Omega-3
Index p-Value

HbA1c

Normal weight (n = 24,901) 0.007 0.259 −0.066 <0.001 −0.059 <0.001 −0.066 <0.001

Overweight (n = 35,175) 0.036 <0.001 −0.071 <0.001 −0.058 <0.001 −0.067 <0.001

Obese (n = 40,496) 0.046 <0.001 −0.070 <0.001 −0.066 <0.001 −0.071 <0.001

Insulin

Normal weight (n = 24,901) −0.023 <0.001 −0.044 <0.001 −0.013 0.043 −0.025 <0.001

Overweight (n = 35,175) 0.014 0.009 −0.019 <0.001 0.007 0.164 −0.001 0.915

Obese (n = 40,496) 0.016 −0.010 0.049 0.013 0.008 0.007 0.144

HOMA-
IR

Normal weight (n = 24,901) −0.014 0.014 −0.038 <0.001 −0.012 0.056 −0.022 <0.001

Overweight (n = 35,175) 0.017 0.001 −0.024 <0.001 −0.001 0.892 −0.008 0.111

Obese (n = 40,496) 0.028 <0.001 −0.015 0.004 −0.0004 0.936 −0.005 0.350

ALA, α-linolenic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; HbA1c, hemoglobin A1c; HOMA-
IR, homoeostatic model assessment for insulin resistance; Omega-3 Index, 20:5n3 + 22:6n3. 1 Pearson’s correlation
coefficient (r) was adjusted for age, sex, and BMI.

4. Discussion

The present study showed that higher Omega-3 Index and erythrocyte levels of EPA
and DHA were associated with lower odds of hyperglycemia, and the association was
stronger in the normal weight than the obese group. In addition, HbA1c was negatively
correlated with the Omega-3 Index and erythrocyte levels of EPA and DHA in all weight
groups. Levels of insulin and HOMA-IR were negatively correlated with erythrocyte levels
of EPA in all weight groups, and with the Omega-3 Index in the normal weight group, but
not in the overweight and obese groups.

Previous studies reported that the Omega-3 Index was negatively correlated with
HbA1, levels of insulin, and HOMA-IR [13,15], and inversely associated with the risk of
T2D [11,14]. Moreover, dietary supplementation of EPA and DHA decreased the levels
of glucose and HbA1c [26–28]. Long-chain n-3 PUFAs are an important component of
phospholipids in cell membranes and can indirectly influence the expression of genes
regulating glucose metabolisms and insulin signaling [29,30]. Pooled analysis of prospec-
tive cohort studies also reported negative association between the incidence of T2D and
long-chain n-3 PUFAs measured in adipose tissue or blood [11], but the meta-analysis of
published prospective cohort studies reported that the risk of T2D was not associated with
blood levels of long-chain n-3 PUFAs [9]. First, this discrepancy could be partly due to
the difference in study population. Chen et al. [9] included studies performed in Europe,
Australia, and Asia, but Qian et al. [11] also included studies conducted in the USA. There
were only two published studies in the US subjects, and in them, there was a lower risk of
T2D associated with higher blood levels of EPA + DHA [31]. A study in elderly American
women found the risk of T2D was inversely associated with the Omega-3 Index [32], which
was consistent with our findings. The Omega-3 Index is the validated biomarker of tissue
levels and intake of long-chain n-3 PUFAs, and originally developed as a risk factor for
coronary heart disease, categorized as desirable (≥8%), suboptimal (<8 to 4%), and low
(≤4%) levels [33]. Omega-3 Index has been reported to be lower in the USA (less than
4% to 5%) than in European countries (4% to more than 8%) and Australia (4–6%) [34,35].
The intake of long-chain n-3 PUFA in the USA (100–149 mg/day) was also lower than in
European countries (150 to more than 550 mg/day) and Australia (250–349 mg/day) [36],
suggesting different levels of the Omega-3 Index or long-chain n-3 PUFA intake might
in part explain this inconsistency. In addition, Qian et al. [11] observed that the sum of
long-chain n-3 PUFAs including EPA, docosapentaenoic acid (22:5n3; DPA), and DHA were
negatively associated with the risk of T2D, but Chen et al. [9] did not report total long-chain
n-3 PUFAs. The sum of all three long-chain n-3 PUFAs may be a better biomarker than
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each individual n-3 PUFA because there is some interconversion among long-chain n-3
PUFAs [37]. Djoussé et al. [31] also reported that the risk of incident of T2D was negatively
associated with plasma total long-chain n-3 PUFAs, but not associated with individual EPA
and DHA.

Since most patients with T2D are obese, BMI is a major risk factor for the development
of T2D [2]. The Omega-3 Index and blood levels of long-chain n-3 PUFAs were negatively
correlated with BMI and glucose in previous cross-sectional studies [13,16,20,21,38]. More-
over, BMI may modulate the negative association of blood levels of long-chain n-3 PUFAs
with the risk of T2D [39]. Qian et al. [11] reported the stronger negative association of
long-chain n-3 PUFAs with the risk of T2D in participants with BMI over 30 kg/m2 than
under (relative risk: 0.70, 0.86, respectively). Abbott et al. [39] also showed that plasma
levels of EPA + DHA were negatively associated with the risk of T2D in women with
BMI over 25 kg/m2, but not under 25 kg/m2. The present study observed that there was
a similar inverse association in patients with BMI over 25 or 30 kg/m2, but stronger inverse
association in patients with BMI under 25 or 30 kg/m2. In our multivariable regression
analysis, the association of the Omega-3 Index with hyperglycemia was attenuated in
the overweight and obese groups after additional adjustment for BMI, as compared with
normal weight group (data not shown). The results suggested that BMI had a greater
impact on the association between the Omega-3 Index and risk of hyperglycemia in the
obese than normal weight group. In our multivariable regression analysis, the association
of the Omega-3 Index with hyperglycemia were significant at quintile 3 in the overweight
(p < 0.001) and obese (p < 0.001) groups but not in the normal weight group (p = 0.054).
However, ORs at quintile 3 were not statistically significant in all weight groups (data
not shown).

One possible explanation regarding the inconsistency between the present and pre-
vious studies may be the different biomarker compartment measured. The present study
measured long-chain n-3 PUFA in erythrocyte, while Qian et al. [11] used adipose tissue,
plasma, serum, or erythrocyte, and Abbott et al. [39] used plasma. Erythrocyte long-chain
n-3 PUFA, especially Omega-3 Index has been suggested to be superior to plasma or
serum long-chain n-3 PUFA since its reflection of long-term dietary intake of long-chain
n-3 PUFA [19]. In addition, Qian et al. [11] did not examine association as a function of
BMI categories, and Abbott et al. [39] had small numbers of normal weight participants
with T2D.

Bhaswant et al. [40] showed that EPA and DHA were different in their effectiveness
to improve insulin resistance and promote insulin secretion, since EPA, but not DHA
was involved in activating G-protein-coupled receptor 40 and insulin-like growthfactor-1
pathway. In this study, levels of insulin and HOMA-IR were negatively correlated with
erythrocyte levels of EPA, whereas not with erythrocyte levels of DHA. A meta-analysis
reported insulin sensitivity was significantly improved in EPA-enriched group (1 ≤ ratio
EPA to DHA), but not in DHA-enriched group (1 > ratio EPA to DHA) [41]. Interestingly,
the present study also showed that erythrocyte levels of DHA were negatively correlated
with insulin in the normal weight group, while positively in the obese group. Similarly,
Iggman et al. [42] observed that adipose tissue levels of DHA were negatively correlated
with insulin sensitivity in the overweight and obese groups, but not in underweight and
normal weight groups. In addition, supplementation of DHA significantly increased insulin
in overweight hyperlipidemic men [43]. The putative adverse effect of DHA on insulin in
obese participants may be caused by the impact of hepatic insulin or insulin secretion rates
through an increased hepatic glucose output [44,45].

Unlike long-chain n-3 PUFA, adipose-tissue or blood levels of ALA were not associated
with the risk of T2D in a meta- and pooled analyses of prospective cohort studies [9,11].
The present study consistently observed no association of erythrocyte levels of ALA with
the risk of T2D in underweight and normal weight groups, but positive association in
the overweight and obese groups. Takkunen et al. [46] also observed serum levels of
ALA were associated with higher incidence of T2D in overweight and obese participants.
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Moreover, Petersen et al. [16] found blood levels of ALA were positively associated with
glucose, insulin, and HOMA-IR in participants whose BMI was similar to our participants.
A meta-analysis of randomized controlled trials reported that the supplementation of ALA
increased insulin levels in participants with or without T2D [6]. Therefore, the inconsistency
of association between blood levels of ALA and the risk of T2D might be partly due to the
weight status, since the majority of previous studies conducted with relatively low BMI.
Although the mechanisms of how ALA has effect on T2D by weight status are unknown,
ALA has been shown to enhance the development of pro-inflammatory environment within
the vascular endothelium in vitro study [47], known as a marker of T2D [48].

This present study had a few limitations. First, although some potential confounders
were adjusted for statistically, other factors affecting hyperglycemia and erythrocyte levels
of long-chain n-3 PUFA may have played a role. Particularly, because of a lack of informa-
tion on medical history, patients with gestational diabetes might be included, and BMI was
self-reported. Second, since the USA is a country known to have a lower Omega-3 Index
than Asian populations, the findings may not be generalized to other populations. Finally,
because of the cross-sectional study design, only associations rather than cause–effect
relationships between erythrocyte long-chain n-3 PUFA composition and hyperglycemia
are defined.

In conclusion, the present study found that an inverse association exists between
the Omega-3 Index and glycemic status, and that this relationship was modified by BMI.
Although there was a suggestion that the relationship between the Omega-3 Index and
glycemic status might be a little different across BMI, the interaction was not strong and
likely to be of no clinical significance. Thus, regardless of BMI, the higher the Omega-3
Index, the lower the odds of being hyperglycemic. Further studies of this question in large,
population-based longitudinal studies with homogeneous samples of diverse geographical
regions are needed.
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