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Introduction  
 

A variety of animal and cell studies have shown 

that mesenchymal stem cells (MSCs) therapy can 

ameliorates renal dysfunction in chronic kidney 

disease (CKD)(1). MSCs are multipotent stromal 

cells and capable of differentiating into a variety 

of cell types, for example chondrocytes, osteo-

Abstract 

Background: Mesenchymal stem cells (MSCs) have recently shown promise for the treatment of various 

types of chronic kidney disease models. However, the mechanism of this effect is still not well understood. 

Our study is aimed to investigate the effect of MSCs on transforming growth factor beta 1 (TGF-β1)-induced 

epithelial mesenchymal transition (EMT) in renal tubular epithelial cells (HK-2 cells) and the underlying mech-

anism related to the reciprocal balance between hepatocyte growth factor (HGF) and TGF-β1. 

Methods: Our study was performed at Ningbo University, Ningbo, Zhejiang, China between Mar 2017 and Jun 

2018. HK-2 cells were initially treated with TGF-β1，then co-cultured with MSCs. The induced EMT was 

assessed by cellular morphology and the expressions of alpha-smooth muscle actin (α-SMA) and EMT-related 

proteins. MTS assay and flow cytometry were employed to detect the effect of TGF-β1 and MSCs on HK-2 

cell proliferation and apoptosis. SiRNA against hepatocyte growth factor (siHGF) was transfected to decrease 

the expression of HGF to identify the role of HGF in MSCs inhibiting HK-2 cells EMT. 

Results: Overexpressing TGF-β1 decreased HGF expression, induced EMT, suppressed proliferation and 

promoted apoptosis in HK-2 cells; but when co-cultured with MSCs all the outcomes were reversed. Howev-

er, after treated with siHGF, all the benefits taken from MSCs vanished. 

Conclusion: TGF-β1 was a motivating factor of kidney cell EMT and it suppressed the HGF expression. 

However, MSCs provided protection against EMT by increasing HGF level and decreasing TGF-β1 level. Our 

results also demonstrated HGF is one of the critical factor in MSCs anti- fibrosis. 

Keywords: Mesenchymal stem cells; Transforming growth factor beta 1 (TGF-β1); Epithelial mesenchymal 

transition (EMT); Hepatocyte growth factor (HGF); Apoptosis 

 

 

http://ijph.tums.ac.ir/


Wei et al.: Mesenchymal Stem Cells Attenuates TGF-β1-Induced EMT … 

 

Available at:    http://ijph.tums.ac.ir   909 

blasts myocytes and adipocytes (2). MSCs have 

the ability to modulate immune responses, atten-

uate extracellular matrix deposition and repair 

epithelial tissues (3). MSCs also can secrete a 

number of growth factors and cytokines includ-

ing vascular endothelial growth factor (VEGF), 

fibroblast growth factor (FGF), transforming 

growth factor beta 1 (TGF-β1) and hepatocyte 

growth factor (HGF), which are important for 

antiapoptotic, angiogenesis and cytoprotection 

(4). The protecting effects of MSCs are partially 

mediated by secreted factors and cytokines (5). 

Interestingly, TGF and HGF play the opposite 

roles in the process of fibrosis. HGF is a mul-

tipotent growth factor which exerts anti-fibrotic 

and anti-inflammatory responses via inducing the 

c-Met expression (6). It improves cells growth, 

reduces cells apoptosis, and exerts a beneficial 

effect on neovascularization and tissue remodel-

ing (7). Furthermore, the anti-fibrotic effect of 

HGF in renal interstitial fibrosis is achieved by 

inhibiting TGF-β1expression (8). TGF-β1 is a 

pathogenic mediator in the development of fi-

brosis in distinct organs (9, 10). It can induces 

renal tubular epithelial cells to undergo a pheno-

typic transformation and then cells detach from 

the tubular basement membrane and migrate into 

the interstitium (11). TGF-β1 is considered as a 

strong EMT inducer in different cell lines such as 

lung cancer cells (12), prostate cancer cells (13), 

osteosarcoma cells (14) and epithelial cells (15). 

In the past 2 decades, the potential role of TGF-

β1 in the progression of nephropathy has also 

been recognized. Additionally, TGF-β1 is a sup-

pressor factor in the regulation of HGF expres-

sion in many types of cells (16-18). 

There is a reciprocal relationship between TGF-

β1 and HGF in the progress of renal fibrosis in 

mice. The increased expression of TGF-β1 and 

the decreased expression of HGF may be re-

sponsible for renal fibrosis (19). Given the effects 

of TGF-β1 in the renal tubular epithelial cells 

EMT and the anti-fibrotic effect of HGF, we are 

wondering whether the protect potential of 

MSCs on renal fibrosis is associated with restor-

ing the balance between HGF and TGF. In this 

study, HK-2 cells are induced EMT with TGF-β1 

treatment. Then, we investigated the effect of 

MSCs on TGF-β1 induced EMT in HK-2 cells 

and the underlying mechanisms related to HGF. 

 

Materials and Methods 
 

Cell culture and transfections 

All experiments between Mar 2017 and Jun 2018 

were performed at Ningbo University, China in 

this study. The immortalized proximal tubule epi-

thelial cell line (HK-2) was purchased from 

American Type Culture Collection (ATCC, Ma-

nassas, VA, USA) and Human Bone Marrow 

Mesenchymal Stem Cells (MSCs) were purchased 

from Cyagen Biosciences Inc. (SuZhou, China). 

HK-2 cells were cultured in DMEM (HyClone, 

UT, USA) medium supplemented with 10% fetal 

bovine serum (FBS, ExCell Bio, Shanghai, China) 

and MSCs were cultured in Human Bone Mar-

row Mesenchymal Stem Cell Basal Medium sup-

plemented with 10% Human Bone Marrow Mes-

enchymal Stem Cell-Qualified Fetal Bovine Se-

rum, 1% penicillin, 1%U/mL streptomycin and 

1% Glutamine (Cyagen Biosciences, SuZhou, 

China). All cells were cultured in a 37 °C humidi-

fied chamber with 5% CO2 (20).  

SiNC (sense: 5’-

UUCUCCGAACGUGUCACGUTT-3’, anti-

sense: 5’-ACGUGACACGUUCGGAGAATT-

3’) and siHGF (sense: 5’-

GCACACCAAUGUGCUAAUATT-3’, anti-

sense: 5’-

UAUUAGCACAUUGGUCUGCUGCTT3-’) 

were purchased from GenePharma (Shanghai，

China). Transfection Reagent (Promega Corpora-

tion, USA) were used to transfect siRNA accord-

ing to the manufacturer’s instructions. 
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Co-culture of MSCs and HK-2 cells 

HK-2 cells and MSCs were performed an indirect 

co-culture system by using transwell membranes 

(12mm, 0.4 μm pore; Corning, NY, USA). Brief-

ly, HK-2 cells treated with or without TGF-β1 

(10 ng/mL; R&D Systems, Minneapolis, MN) 

were seeded in bottom chamber. MSCs with or 

without transfected with siHGF for 24h were 

seeded in upper chamber (21). Co-cultivation was 

maintained for 48 h, then HK-2 cells were har-

vested to detect cell proliferation, apoptosis, 

western blot and cell morphology analysis.  

 

Cell proliferation assay 

Cell proliferation was evaluated by [3-(4,5-

dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTS). Cells were plated in a 96-well 

plate (6000 cells/well) in quintuplicate. Following 

incubation for 1, 2, 3, and 4 d, 20 μl of Cell Titer 

96® Aqueous One Solution Reagent 

(PROMEGA, Madison, USA) was added to each 

well and the cells were incubated for another 3 h 

at 37 °C. The absorbance at 490 nm was read 

using a spectrophotometer (22). 

 

Flow cytometric analysis of apoptosis  

Cells were dissociation with trypsin (without 

EDTA), then washed twice with PBS and resus-

pended with binding buffer. Every sample incu-

bated with 5 μl Annexin V and 10 μl PI (Multi 

Sciences, Hangzhou, China) following the manu-

facturer’s recommendation (23). 

 

Western blot analysis 

Cells were harvested and lysed with RIPA buffer 

(Solarbio, Beijing, China). The proteins (50 µg) 

were separated using 12% SDS-polyacrylamide 

gel and then electrophoretically transferred to 

0.42 μm PVDF membranes (Millipore, Billerica, 

MA). The blots were blocked with 5% BSA in 

Tris–buffered saline (TBS, pH 7.4) for 1h, and 

then incubated with appropriate dilutions of 

specifc primary antibodies overnight at 4 °C. The 

following antibodies were used: HGF β (52445), 

α-Smooth Antibody (14968), TGF-β1 Antibody 

(3711), E-cadherin(3195), N-cadherin(14215), 

Bax (5023), Bcl-2 (15071), GAPDH Antibody 

(5174) (Cell Signaling Technology, MA, USA), 

fibronectin (ab2413) and Ki-67 (ab15580) 

(Abcam, Cambridge, UK). Then, the membranes 

were incubated with horseradish peroxidasela-

beled secondary antibody (Boster, Wuhan, Chi-

na). The protein bands were visualized using en-

hanced chemiluminescence reagent. The images 

were analysed with Tanon GIS version 4.1.2 

software (Tanon Science and Technology Co., 

Ltd., Shanghai, China) to determine the integrat-

ed density (24). 

 

Cell morphology analysis 

After HK-2 cells and MSCs co-culture 48h, the 

morphology of HK-2 were photographed (Mag-

nification 10×) (Motic AE31; Motic China 

Group Co., Ltd., Xiamen, China). 

 

Statistical analysis 

All experiments were repeated three times. The 

data were expressed as means ± SD. One‑way 

analysis of variance and Fisher's least significant 

difference tests were used to evaluate the differ-

ences between groups. Statistical analyses were 

performed with SPSS 18.0 software (Chicago, IL, 

USA). Differences were considered significant if 

P<0.05. 

 

Results 
 

MSCs attenuated TGF-β1-stimulated EMT in 

HK-2 cells 

To investigate the effect of MSCs on TGF-β1-

stimulatejd HK-2 cell EMT, HK-2 cells were 

treated with TGF-β1, then co-cultured with 

MSCs. TGF-β1 treatment increased the expres-

sion of TGF-β1 and α-SMA (Fig.1a). And HK-2 

cell morphology changed from normal to spin-
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dle-shape (Fig.1b), accompanying decrease of the 

expression of E-cadherin and the increase of the 

expression of fibronectin and N-cadherin in the 

TGF-β1 group (Fig.1c). However, all these re-

sults were attenuate by co-culture with MSCs. 

The expression of TGF-β1, α-SMA fibronectin 

and N-cadherin were lower, while E-cadherin 

was higher in TGF-β1+MSCs group than TGF-

β1 group (Fig.1a and c). And TGF-β1+MSCs 

group had the similar cell morphology compared 

with control group (Fig. 1b).  

 

 

 
Fig. 1: MSCs attenuated TGF-β1-stimulated EMT in HK-2 cells. The expression of TGF-β1 and α-SMA were as-

sessed by western blot analysis (a). The influence of TGF-β1 and MSCs on the morphological change of HK-2 cells 

(b). Western blot was used to detect the expression of E-cadherin, N-cadherin and fibronectin in HK-2 cells (c). 

*Significant difference (P<0.05) and **Significant difference (P<0.01). Scale bars = 100 μm 

 

MSCs promote the HK-2 cell proliferation 

and suppressed apoptosis 

In TGF-β1 group, we found the viability of HK-

2 cells were significantly decreased compared 

with control group (P=0.0067), but the prolifera-

tion of TGF-β1+MSCs group was remarkable 

higher than TGF-β1 group (P=0.034) by MTS 

assay. The results meant MSCs could partially 

promote the down-regulated viability of cells 

caused by TGF-β1 treatment (Fig. 2a). Annexin 

V/PI dual staining was used to evaluate the effect 

of TGF-β1 and MSCs on cell apoptosis. In the 

control group, the late apoptotic rate was 13.9%, 

but the apoptosis rate of TGF-β1 treatment 

group was 39.3%. Furthermore, TGF-β1+MSCs 

group had apoptosis rate of 14.0%, and signifi-

cantly lower than TGF-β1 group (P=0.001) (Fig. 

2b). Therefore, TGF-β1 and MSCs co-treatment 

was less potent in inducing apoptotic than only 

TGF-β1 treatment. 

 

SiHGF decreased the expression of HGF 

To explore whether HGF is an important factor 

in MSCs improving cell fibrogenesis, we down-
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regulated the expression of HGF by transfecting 

siHGF into HK-2 cells. The western blotting re-

sults confirmed that siHGF remarkable decreased 

the expression of HGF in HK-2 cells (P<0.01) 

(Fig. 3). 

The anti- EMT effect of MSCs on HK-2 cells 

was blocked by the down-regulation of HGF 

The expression of TGF-β1 and α-SMA in TGF-

β1 group was higher, while HGF expression was 

lower compared with control group. However, 

the expression of TGF-β1 and α-SMA in TGF-

β1+MSCs+siHGF group was higher and HGF 

expression was lower compared with TGF-

β1+MSCs (Fig. 4a). Moreover, in TGF-β1 and 

TGF-β1+MSCs+siHGF group compared with 

the control and TGF-β1+MSCs group, HK-2 

cells were morphologically defined by a spindle-

like appearance (Fig. 4b). 

 

 

 
Fig. 2: MSCs promoted the HK-2 cell proliferation and suppressed apoptosis. Cell proliferation was detected by 

MTS assay (a). Late apoptosis of HK-2 cells was examined by flow cytometric analysis (b). *Significant difference 

(P<0.05) and **Significant difference (P<0.01) 
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Fig. 3: SiHGF decreased the expression of HGF. The expression of HGF was assessed by western blot analysis. 

**Significant difference (P<0.01), compared with control group 

 

Furthermore, HK-2 cells were further character-

ized by confirming EMT protein expression. The 

expression of E-cadherin was decreased, and the 

expression of fibronectin and N-cadherin was 

increased in TGF-β1+MSCs+siHGF group 

compared with TGF-β1+MSCs group, the same 

as in TGF-β1 group compared with control 

group (Fig. 4c). 

 

 
Fig. 4: The anti-EMT effect of MSCs on HK-2 cells was blocked by the down-regulation of HGF. The expression 

of HGF, TGF-β1 and α-SMA were assessed by western blot analysis (a). The influence of TGF-β1 and MSCs on the 

morphological change of HK-2 cells (b). Western blot assay for E-cadherin, N-cadherin and fibronectin expressions 

in HK-2 cells. *Significant difference (P<0.05) and **Significant difference (P<0.01) (C). Scale bars = 100 μm 

 

MSCs attenuated the TGF-β1 induced growth 

inhibition in HK-2 cells by HGF 

We further evaluated the effects of HGF on 

MSCs attenuating the TGF-β1 induced growth 

inhibition in HK-2 cells. The proliferation of 
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TGF-β1+MSCs+siHGF group was lower that 

TGF-β1+MSCs group. After treated with siHGF, 

MSCs were failed to improve the proliferation 

inhibition induced by TGF-β1 (Fig. 5a). The 

apoptosis rate of TGF-β1+MSCs+siHGF group 

was 36.5% and that was 15.1% in TGF-

β1+MSCs group. The treatment of siHGF in-

creased the late apoptosis rate of TGF-β1 and 

MSCs co-treatment cells (Fig. 5b). We also de-

tected the expression of the proliferation-related 

protein Ki67 and the apoptosis-associated pro-

teins Bax and Bcl-2, and the results were con-

sistent with the previous experimental results 

(Fig. 5c).  

 

 
 

Fig. 5: MSCs attenuated the TGF-β1-induced growth inhibition in HK-2 cells by HGF. Cell proliferation was de-

tected by MTS assay (a). Late apoptosis of HK-2 cells was examined by flow cytometric analysis (b). Ki67, Bax and 

Bcl-2 proteins expression were detected by western bolt (c) 
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Discussion  
 

MSCs therapy is becoming an attractive strategy 

for CDK, but it is urgent need an improving un-

derstanding of how MSC act and the therapeutic 

potentiality (25, 26). In the present study, we 

sought to explore the protect potential of MSCs 

in culture systems of HK-2 cells and search the 

underlying mechanisms. We found that MSCs 

reversed TGF-β1-induced EMT, -suppressed 

proliferation and -promoted apoptosis by increas-

ing HGF expression in HK-2 cells.  

TGF-β, known for its vital role in fibrogenesis by 

modulating the fibroblast phenotype and func-

tion, inducing myofibroblast transdifferentiation 

and promoting matrix accumulation (27), are also 

very important to induce EMT and further con-

tribute to the development of kidney fibrosis 

(28), cardiac fibrosis (29) pulmonary fibrosis (30) 

and liver cirrhosis (31). In our study, TGF-β1 

also increased the expression of α-SMA, trans-

formed the cell morphology to spindle-shape and 

decreased the expression of epithelial marker E-

cadherin and increased the expression of mesen-

chymal markers fibronectin and N-cadherin. 

TGF-β1 down-regulated epithelial markers ex-

pression, up-regulated α-SMA and mesenchymal 

markers expression, changed the cell morpholo-

gy, and thereby induced HK-2 cells fibrogenesis 

characterized (32). The expression of HGF also 

decreased by TGF-β1 treatment. These results 

indicated when HK-2 cells developed EMT, the 

TGF-β1 would be in high level, and on the con-

trary, the HGF was in low level. We then ob-

served that co-culture with MSCs counter all of 

the performance induced by TGF-β1 treatment 

including growth inhibition, EMT phenotype 

changing and apoptosis promotion. And the ex-

pression of TGF-β1 was decreased and HGF was 

increased. This effect of MSCs inhibiting the 

process of EMT can also been seem in liver(33) 

and lung (34). Thus we confirmed the anti-EMT 

role of MSCs in renal tubular cell line and it was 

highly relevant with the reciprocal balance be-

tween HGF and TGF-β1.  

TGF-β1 shows different effects on proliferation 

and apoptosis in different cell types (35). TGF-β1 

potently inhibits the growth of a variety of cells, 

including those derived from epithelium, endo-

thelium, the glomerular mesangium, and the lym-

phoid system (36). Actually, MSCs were reported 

to improve the proliferation of renal epithelial 

cells and inhibit apoptosis (37). By flow cytome-

try analysis following annexin V and PI staining, 

compared with complete media, hMSCs-

conditioned media reduced cisplatin induced 

HK-2 cells death and thus led to significantly im-

proved survival (38). In this study, we also dis-

covered TGF-β1 treatment suppressed HK-2 

cells proliferation and promoted apoptosis. Im-

portantly, we also found, after co-culture with 

MSCs, HK-2 cells had higher viability and less 

apoptosis than that no co-cultured cells. Based 

upon these evidences we believed that MSCs can 

reversed the TGF-β1 induced EMT, proliferation 

suppression and apoptosis promotion. However, 

the mechanism of this process is not clear. 

HGF is a cytokine that may play an important 

role in mitosis, anti-apoptosis and antifibrosis 

(39). There is a consensus that the protective and 

tissue reparative effects of MSCs may be 

achieved by the trophic factors such as HGF in 

lung injury (34, 40). Renal fibrosis of many types 

of kidney disease such as acute kidney injury and 

chronic aristolochic acid nephropathy could be 

protected by MSCs transplantation, and the 

mechanism probably via upregulation of HGF 

(41). These previous reports support our obser-

vation which MSCs exerted significant anti-EMT 

effects in the TGF-β1 induced EMT, however all 

these effects were abolished with HGF knock-

down. From these results, we concluded that 

HGF played a critical role in the MSC anti-

fibrotic in proximal tubules. Therefore, MSCs 

inhibited the expression of TGF-β1 by secreting 

HGF, thus inhibiting EMT in renal tubular epi-

http://ijph.tums.ac.ir/


Iran J Public Health, Vol. 50, No.5, May 2021, pp.908-918  

 

916  Available at:    http://ijph.tums.ac.ir  

thelial cells. In addition, MSCs transfected with 

HGF improved cardiac function in the infarcted 

porcine heart by increasing angiogenesis and re-

ducing fibrosis (42). HGF improved the thera-

peutic efficacy of human bone marrow MSCs via 

RAD51 (43). Co-cultivation with the MSCs-Lcn2 

not only inhibited cisplatin-induced cytotoxicity, 

but prevented cisplatin-induced apoptosis, in-

creased proliferation rate and raised expression of 

growth factors and the amount of antioxidants in 

the HK-2 and HEK293 cells (44). We believed 

there are beneficial effects of the treated-MSCs in 

cell therapy of kidney injury. 

Since the current results are only validated in cell 

lines, future investigations will require in chronic 

renal injury models. MSCs with or without 

knocking down HGF will subcapsular injected in 

unilateral ureteral obstruction rat, then detect the 

anti-fibrosis effect of MSCs and the expression 

of HGF and TGF-β1 in vivo. 

 

Conclusion 
 

When EMT occurred in HK-2 cells, TGF-β1 and 

HGF showed opposite patterns. MSCs reversed 

TGF-β1 induced EMT by increasing HGF level 

and decreasing TGF-β1. These findings provided 

an important basis for a further exploration on 

understanding the action mechanisms of MSCs. 

Therefore, we suggest TGF-β1 is a motivate fac-

tor in renal fibrosis and MSCs can suppress the 

effect of TGF-β1 by secreting HGF.  
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