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Abstract: Oxidized low-density lipoprotein (ox-LDL) is a
significant risk factor for various brain vascular diseases.
Circular RNA (circRNA) is involved in the pathogenesis of
brain vascular diseases. This study revealed the roles of
circ_CHFR in ox-LDL-medjiated cell proliferation, apoptosis,
and endothelial-to-mesenchymal transition (EndoMT). Our
results showed that circ_CHFR and EGFR expressions were
dramatically upregulated, while miR-15a-5p expression was
downregulated in ox-LDL-induced human brain micro-
vessel endothelial cells (HBMECs) relative to control groups.
circ_CHFR knockdown hindered the effects of ox-LDL expo-
sure on cell proliferation, cell cycle, apoptosis, and EndoMT
in HBMECs, whereas these impacts were abolished by miR-
15a-5p inhibitor. In addition, circ_ CHFR functioned as a
sponge of miR-15a-5p and miR-15a-5p bound to EGFR.
Thus, we concluded that circ_ CHFR silencing hindered
ox-LDL-mediated cell proliferation, apoptosis, and EndoMT
by downregulating EGFR expression through sponging miR-
15a-5p in HBMECs. Our findings provide a new mechanism
for studying circRNA-directed therapy in ox-LDL-induced
human brain vascular diseases.
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1 Introduction

Endothelial cells are vital cells in regulating the function
and the structure of vessels [1]. Therefore, endothelial
cell dysfunction is regarded as a universal physiological
phenomenon of vascular diseases [2]. Brain endothelial
cells play a key part in modulating blood—-brain barrier
(BBB) function and cerebrovascular homeostasis, and
their dysregulation is considered a primary cause of cerebro-
vascular diseases [3-5]. Oxidized low-density lipoprotein
(ox-LDL) is a crucial inducement of cerebrovascular dis-
eases based on its ability in increasing oxidative stress,
upregulating the number of inflammatory factors and
abnormally modulating cell proliferation and migration
[6-8]. In inflammatory reactions, mediators and cyto-
kines, as well as inflammatory cells, play an important
role [9]. However, the pathogenesis of cerebrovascular
diseases induced by ox-LDL has not been completely
demonstrated.

Circular RNA (circRNA) is a stable noncoding RNA
with its closed-loop structure [10,11]. Previous studies
have illustrated that circRNA is widely expressed in
many organs, especially in the brain [12]. For example,
Peng et al. explained that circRNA HECT domain E3 ubi-
quitin protein ligase 1 (circ_HECTD1) was highly expressed
in acute ischemic stroke (AIS) and could be employed as a
biomarker in distinguishing AIS with other diseases [13].
Shen et al. also illustrated that circ-0044073 was highly
expressed and contributed to cell proliferation and inva-
sion in atherosclerosis [14]. The aforementioned data sug-
gest that circRNA may be enrolled in the pathogenic
mechanism of brain-related diseases. In addition, circRNA
was disclosed to regulate ox-LDL-induced deleterious
effects in endothelial cells. For instance, Li et al. proved
that circ_0003575 modulated ox-LDL-induced cell prolif-
eration and angiogenesis in endothelial cells [15]. Qin et al.
presented that circ_0003645 knockdown hindered cell
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apoptosis and inflammation induced by ox-LDL in endothe-
lial cells [16]. Nevertheless, there are no data on regulating
ox-LDL-induced human brain microvessel endothelial cells
(HBMECs) injury by circ_CHFR.

microRNA (miRNA) is a small noncoding RNA and
regulates transcriptional and posttranscriptional processes
[17]. miRNAs have been indicated to modulate many bio-
logical processes in cells, such as proliferation, apoptosis,
and differentiation [18]. Existed researches also explained
that miRNAs were involved in endothelial cell develop-
ment. For example, miR-17 was reported to accelerate
cell proliferation and suppress cell apoptosis in endothe-
lial cells [19]. Li et al. elucidated that miR-210 accelerated
endothelial cell apoptosis in atherosclerosis [20]. How-
ever, the effects of miR-15a-5p on HBMEC development
are unknown. Epidermal growth factor receptor (EGFR),
one of the receptor tyrosine kinases, has been unveiled
to participate in physiological and pathological processes
of vessels [21]. In addition, Fu et al. also explained that
EGFR facilitated the invasion of BMEC via recruiting
actinin-4 [22]. These pieces of evidence demonstrate
that EGFR may play a vital part in HBMEC development.

Herein, the expression profiles of circ_CHFR, miR-
15a-5p, and EGFR were determined in ox-LDL-induced
HBMECs. In addition, the effects of ox-LDL treatment on
the proliferation, apoptosis, and endothelial-to-mesench-
ymal transition (EndoMT) were disclosed. Furthermore,
rescue experiments were employed to illustrate that circ_
CHFR knockdown regulated ox-LDL-mediated cell proli-
feration, apoptosis, and EndoMT by downregulating EGFR
expression through binding to miR-15a-5p.

2 Materials and methods

2.1 Cell acquirement and culture

HBMECs were purchased from Otwo Biotech (Shenzhen,
China). HBMECs were cultured in Dulbecco’s modified
Eagle’s medium (DMEM; HyClone, Logan, UT, USA) with
10% fetal bovine serum (FBS; HyClone) and antibiotics
(100 pg/mL penicillin, 100 pg/mL streptomycin; Gibco,
Carlsbad, CA, USA) at 37°C in an incubator with 5% CO..

2.2 Plasmid construction and cell
transfection

The small-interfering RNA against circ_CHFR (si-circ_CHFR),
miR-15a-5p mimic (miR-15a-5p), miR-15a-5p inhibitor (anti-
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miR-15a-5p), the overexpression plasmid of EGFR (EGFR),
and control groups (si-NC, miR-NC, anti-miR-NC, and pcDNA)
were synthesized by GENEWIZ Co., Ltd. (Suzhou, China).
Cell transfection was performed using Lipofectamine 2000
(Thermo Fisher, Waltham, MA, USA) as previously described
[23]. The synthesized sequences were si-circ_. CHFR 5’-CTCA
GCAGTCCAGCCATACGT-3’, miR-15a-5p mimic 5-UAGCAGC
ACAUAAUGGUUUGUG-3, miR-15a-5p inhibitor 5-CACAAAC
CAUUAUGUGCUGCUA-3, si-NC 5’-CCAACCAGTTAACTCG
AAT-3’, miR-NC 5-UUUGUACUACACAAAAGUACUG-3, and
anti-miR-NC 5’-CAGUACUUUUGUGUAGUACAAA-3".

2.3 Quantitative reverse transcription
polymerase chain reaction (qRT-PCR)

0Ox-LDL-induced HBMECs were collected and lysed using
TransZol (TransGen, Beijing, China). RNA was reversely
transcribed into cDNA with a High-Capacity cDNA RT Kit
(Thermo Fisher) or MiX-x™ synthesis Kit (TaKaRa, Dalian,
China). To determine the expression of circ_CHFR, check-
point with forkhead and ring finger domains (CHFR), miR-
15a-5p, and EGFR, SuperReal PreMix (Tiangen, Beijing,
China) was employed. Data were analyzed with the 272
method with U6 and glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) as references. The sequences of forward
and reverse primers were circ_CHFR 5-CCCTCTGCAAGGAA
GCCACG-3’ and 5-TGCGCCGCCTGCCTTCTGTA-3’; CHFR 5'-
CTCGTGTTGGGCTCGTGTC-3’ and 5-GAGCAGGTTTCACAGG
AGTCA-3’; miR-15a-5p 5’-CTCACGTAGCAGCACATAA-3’ and
5-ACCTCAAGAACAGTATTTCCAGG-3’; EGFR 5-GACGACAG
GCCACCTCG-3’ and 5-ATCGCTGCTCCCCGAAGA-3’; U6 5'-
CTCGCTTCGGCAGCACATATACT-3’ and 5’-ACGCTTCACGAA
TTTGCGTGTC-3’; GAPDH 5’-AACGGATTTGGTCGTATTGGG-3’
and 5-CGCTCCTGGAAGATGGTGAT-3".

2.4 RNase R and actinomycin D treatment
assays

The two types of assays were performed following the
previously shown method [24]. In short, HBMECs were
collected and lysed using TransZol (TransGen), and RNA
was isolated in the same manner as shown earlier. Extracted
RNA was incubated with RNase R (Epicentre, Madison, WI,
USA) at 37°C for 30 min. RNeasy MinFElute Cleaning Kit
(Qiagen, Valencia, CA, USA) was employed to purify RNA.
In addition, HBMECs were incubated with actinomycin D
(Millipore, Bradford, MA, USA) for 0, 4, 8, 16, and 24 h to
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block RNA synthesis. The levels of circ_. CHFR and CHFR were
determined by quantitative reverse transcription polymerase
chain reaction (qRT-PCR). CHFR was used as a control.

2.5 Cell cycle and apoptosis analysis

Cell cycle and cell apoptosis were investigated with
Cell Cycle and Apoptosis Analysis Kit (Yeasen Biotech,
Shanghai, China) according to manufacturer’s instruc-
tions. In short, cells were treated with 50 pg/mL ox-LDL
(Solarbio, Beijing, China) and transfected. Forty-eight hours
later, the medium was discarded, and cells were collected.
Then, cells were washed using cold phosphate-buffered
solution (PBS; Thermo Fisher). Cells were fixed with 70%
ethanol (Millipore) overnight. Following that, cells were
incubated with Annexin V-fluorescein isothiocyanate
(Annexin V-FITC; Yeasen Biotech), propidium iodide (PI;
Yeasen Biotech), or RNase A (Yeasen Biotech) at 37°C for
30 min. Finally, cell cycle process and apoptosis were ana-
lyzed using flow cytometry (BD Biosciences, San Diego,
CA, USA).

2.6 3-(4,5)-Dimethylthiahiazo(-z-y1)-3,5-di-
phenytetrazoliumromide assay

3-(4,5)-Dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazolium-
romide (MTT) assay was carried out with the MTT kit
(Beyotime, Shanghai, China) according to the instructions
of the manufacture. In brief, HBMECs were seeded in a 96-
well plate for 24 h. The medium was removed, and fresh
DMEM mixed with 10% FBS (HyClone, Logan, UT, USA)
was added. 50 pg/mL ox-LDL (Solarbio) was exposed into
the wells, and cell transfection was performed. Cells were
continued to be cultured for 1, 2, and 3 days. Then, MTT
solution (Beyotime) was added, and cells were cultivated
for another 4 h. The medium was discarded, and dimethyl
sulfoxide (DMSO; Sigma, St. Louis, MO, USA) was exposed
to the plate to dissolve formazan crystal. Cell proliferation
was detected by measuring absorbance at 570 nm using a
microplate reader (Thermo Fisher).

2.7 Western blot analysis

Cells were harvested after various treatments. Western
blot analysis was conducted based on the published
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procedures [25]. Briefly, lysis buffer (Beyotime) was used
to lyse cells. Lysates were mixed with loading buffer
(Thermo Fisher), which was then boiled in boiling water
for 8 min. The protein sample was loaded on 12% bis-tris-
acrylamide gel (Thermo Fisher). Then, the protein bands
were electrotransferred onto polyvinylidene fluoride (Milli-
pore) and then immersed in 5% nonfat milk (Solarbio).
Following that, the membranes were incubated with pri-
mary antibodies at 4°C overnight and secondary antibodies
(peroxidase-conjugated IgG; 1:1,000; Abcam, Cambridge,
UK) at 37°C for 2h. Protein bands were visualized with
eyoECL Plus Kit (Beyotime). GAPDH was employed as a
control. Primary antibodies were anti-Ki67 antigen (anti-
Ki67; 1:250; Abcam), anti-B-cell lymphoma-2 (anti-Bcl-2;
1:1,000; Abcam), anti-BCL2-associated x protein (anti-Bax;
1:1,000; Abcam), anti-Cleaved poly (ADP-ribose) poly-
merase (PARP) (anti-Cleaved PARP; 1:1,000; CST, Boston,
MA, USA), anti-collagen typel2 (anti-COL1A2; 1:1,000;
Abcam), anti-actin alpha 2 (anti-ACTA2; 1:500; Abcam),
and anti-GAPDH (1:1,000; CST).

2.8 Dual-luciferase reporter assay

The binding sites between miR-15a-5p and circ_CHFR or
EGFR were predicted by the starbase3.0 online database.
The wild-type (WT) plasmids of circ_CHFR (circ_CHFR-
WT) and EGFR (EGFR-WT) were built by inserting the
sequences of circ_CHFR and the 3’-untranslated regions
(3’UTR) of EGFR into the pmirGLO vector (Promega,
Madison, WI, USA). The mutant (MUT) plasmids of
circ_CHFR (circ_CHFR-MUT) and EGFR (EGFR-MUT) were
constructed by subcloning the mutant sequences of circ_
CHFR and EGFR 3’UTR into pmirGLO vector (Promega).
Plasmids were transfected into cells with miR-15a-5p mimic
or miR-NC. Luciferase activities were detected using Dual-
Lucy Assay Kit (Solarbio) as per the guidebook. Ranilla
luciferase activity acted as a control.

2.9 Data analysis

Data were assessed by SPSS 21.0 software (IBM, Somers,
NY, USA) based on three replicates. Data were presented
as means + standard deviations (SDs). Significant differ-
ences were compared via two-tailed Student’s t-tests or
one-way analysis of variance (ANOVA). P < 0.05 was
considered statistically significant.
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3 Results

3.1 circ_CHFR expression was dramatically
upregulated in ox-LDL-induced HBMECs

The effect of ox-LDL treatment (10, 30, and 50 pg/mL) on
circ_CHFR expression was first detected. Results showed
that circ_CHFR expression was upregulated by ox-LDL
(30 and 50 ug/mL; Figure 1a), especially by 50 pg/mL
ox-LDL. Based on the aforementioned data, cells were
treated with 50 pg/mL ox-LDL in a further study. Subse-
quently, results presented that the content of circ_CHFR
was not changed after RNase R treatment, whereas the
expression of its linear form (CHFR) was significantly
downregulated (Figure 1b). Meanwhile, data also displayed
that circ_CHFR expression level was not obviously changed
after actinomycin D exposure, and CHFR expression was
significantly reduced (Figure 1c). Thus, these results
demonstrated that circ. CHFR was more stable than linear
RNA, and ox-LDL treatment upregulated circ_CHFR expres-
sion in HBMECs.

3.2 circ_CHFR knockdown hindered the
effects of ox-LDL treatment on cell
proliferation, apoptosis, and EndoMT
in HBMECs

Whether circ_CHFR could mediate the effects of ox-LDL
treatment on the biological behaviors of HBMECs was
further studied. Results first illustrated that circ. CHFR
expression was dramatically downregulated in HBMECs
transfected with si-circ_CHFR, whereas there was no
obvious change in CHFR expression (Figure 2a) after
circ_CHFR silencing, meaning that the interfering plasmid
of circ_CHFR was successfully built. Subsequently, data
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disclosed that cell cycle arrested at GO/G1 phase after ox-
LDL treatment in HBMECs, whereas this effect was attenu-
ated by circ_CHFR silencing (Figure 2b). The proliferation
of HBMECs was also inhibited by ox-LDL treatment, but
circ_CHEFR silencing reversed this impact (Figure 2c). Wes-
tern blot showed that the expression of proliferation-related
protein Ki67 was inhibited after ox-LDL treatment in
HBMECs; however, this effect was restored by circ_CHFR
silencing (Figure 2d). In addition, results displayed that
ox-LDL treatment-induced cell apoptosis, which was
restrained by circ_CHFR depletion (Figure 2e). Western
blot results also displayed that the protein expression of
Bcl-2 was dramatically downregulated, and the protein
expression of Bax, cleaved PARP, COL1A2, and ACTA2 was
obviously upregulated in HBMECs treated with ox-LDL;
however, these influences were abolished by circ_. CHFR
knockdown (Figure 2f and g). The aforementioned data
demonstrated that circ_CHFR silencing could protect against
ox-LDL-induced cell injury.

3.3 circ_CHFR was a sponge of miR-15a-5p in
HBMECs

The underneath mechanism of circ_CHFR in regulating
ox-LDL-mediated biological behaviors of HBMECs was
revealed in this part. Starbase3.0 online database showed
that miR-15a-5p contained the binding sites of circ_CHFR
(Figure 3a). Dual-luciferase reporter assay demonstrated
that the luciferase activity of circ_CHFR-WT and miR-15a-5p
group was dramatically repressed, whereas there was no
obvious change in the luciferase activity of circ_CHFR-
MUT and miR-15a-5p group (Figure 3b). Subsequently,
results showed that miR-15a-5p expression was dramati-
cally upregulated by circ_CHFR knockdown and down-
regulated after ox-LDL treatment (Figure 3c and d). These
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Figure 1: circ_CHFR was highly expressed in HBMECs treated with ox-LDL. (a) circ_CHFR expression was detected by qRT-PCR in HBMECs
treated with ox-LDL (10, 30 and 50 pg/mL). (b and c) RNase R and actinomycin D treatment assays were employed to demonstrate circ_CHFR

was a circular RNA. *P < 0.05.
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Figure 2: circ_CHFR silencing abolished the impacts of ox-LDL treatment on the biological behaviors of HBMECs. (a) The knockdown
efficiency of si-circ_CHFR was determined by gRT-PCR. (b) The effects between ox-LDL treatment and circ_CHFR silencing on cell cycle
process were disclosed by cell cycle assay in HBMECs. (c) The effects between ox-LDL treatment and circ_CHFR knockdown on the

proliferation of HBMECs were investigated by MTT assay. (d, f, and g)

Western blot was employed to explain the impacts between ox-LDL

treatment and circ_CHFR repression on the protein expression of Ki67, Bcl-2, Bax, cleaved PARP, COL1A2, and ACTA2 in HBMECs. (e) Cell
apoptosis assay was conducted to unveil the influences between ox-LDL exposure and circ_CHFR silencing on the apoptosis of HBMECs.

*P < 0.05.

data explained that circ_CHFR was associated with
miR-15a-5p.

3.4 circ_CHFR regulated ox-LDL-medicated
cell proliferation, apoptosis, and
EndoMT by sponging miR-15a-5p in
HBMECs

To determine whether circ_CHFR regulated ox-LDL-medi-
cated cell proliferation, apoptosis, and EndoMT by asso-
ciating with miR-15a-5p, loss-of-function experiments were

employed. Results first showed that miR-15a-5p expression
was significantly upregulated by circ_CHFR knockdown,
whereas this effect was attenuated after transfection of
miR-15a-5p inhibitor (Figure 4a). Subsequently, it was
found that circ_CHFR silencing restored the promoting
effect of ox-LDL treatment on cell cycle arrest, whereas
this effect was hindered by miR-15a-5p inhibitor (Figure 4b).
MIT assay also demonstrated that miR-15a-5p inhibitor
attenuated the promoting effect of circ_CHFR knockdown
on cell proliferation under ox-LDL treatment (Figure 4c).
Also, western blot showed that Ki67 protein expression
was upregulated by circ_CHFR knockdown after ox-LDL
treatment, which was restrained after miR-15a-5p inhibitor
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Figure 4: circ_CHFR regulated ox-LDL-medicated cell proliferation, apoptosis, and EndoMT by interacting with miR-15a-5p in HBMECs. (a)
The effects between circ_CHFR silencing and miR-15a-5p inhibitor on miR-15a-5p expression were demonstrated by qRT-PCR. (b and c) Cell
cycle and MTT assays were employed to determine the influences between circ_CHFR silencing and miR-15a-5p inhibitor on cell proliferation
under ox-LDL treatment in HBMECs. (d, f, and g) Western blot was employed to explain the impacts between circ_CHFR repression and miR-
15a-5p inhibitor on the protein expression of Ki67, Bcl-2, Bax, cleaved PARP, COL1A2, and ACTA?2 after ox-LDL treatment in HBMECs. (e) Cell
apoptosis assay was carried out to explain the impacts between circ_CHFR silencing and miR-15a-5p inhibitor on the apoptosis of HBMECs
after ox-LDL treatment. *P < 0.05.

transfection (Figure 4d). In addition, the apoptosis of HBMECs treatment; however, miR-15a-5p inhibitor relieved this
was repressed by circ_CHFR knockdown under ox-LDL influence (Figure 4e). The protein expression of Bcl-2 was
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upregulated, and the protein expression of Bax, cleaved
PARP, COL1A2, and ACTA2 was downregulated by circ_
CHFR silencing after ox-LDL treatment, but miR-15a-5p
inhibitor abolished these effects (Figure 4f and g). All these
pieces of evidence demonstrated that circ_CHFR regulated
ox-LDL-mediated cell proliferation, apoptosis, and EndoMT
by binding to miR-15a-5p in HBMECs.

3.5 miR-15a-5p was associated with EGFR in
HBMECs

The target gene of miR-15a-5p was identified in this part.
Starbase3.0 online database showed that EGFR 3'UTR
contained the binding sites of miR-15a-5p (Figure 5a).
Luciferase reporter assay also illustrated that luciferase
activity was dramatically inhibited in EGFR-WT and miR-15a-
5p group, but there was no dramatic change in EGFR-MUT
and miR-15a-5p group (Figure 5b). Subsequently, qRT-PCR
results showed that miR-15a-5p expression was dramatically
increased by miR-15a-5p mimic and decreased by miR-15a-5p
inhibitor (Figure 5c), suggesting that miR-15a-5p mimic and

Role of circ_CHFR in the proliferation, apoptosis, and EndoMT of HBMEC = 1059

inhibitor were effective in increasing or decreasing miR-15a-
5p expression. The mRNA and protein expressions of EGFR
were downregulated by miR-15a-5p and were upregulated by
miR-15a-5p inhibitor (Figure 5d and e). Furthermore, results
showed that the mRNA and protein expressions of EGFR
were increased after ox-LDL treatment (Figure 5f and g).
These results demonstrated that miR-15a-5p bound to EGFR
in HBMECs.

3.6 miR-15a-5p mimic contributed to cell
proliferation and repressed cell
apoptosis and EndoMT by binding to
EGFR under ox-LDL treatment in HBMECs

Given that miR-15a-5p was associated with EGFR, whether
miR-15a-5p regulated ox-LDL-mediated cell proliferation,
apoptosis, and EndoMT by interacting with EGFR was
further illustrated. First, results showed that the mRNA
and protein expression of EGFR was dramatically down-
regulated by miR-15a-5p, whereas this effect was attenu-
ated by EGFR overexpression (Figure 6a and b).
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Figure 5: miR-15a-5p interacted with EGFR in HBMECs. (a) The binding sites between miR-15a-5p and EGFR were predicted by starbase3.0
online database. (b) Luciferase activity was detected by dual-luciferase reporter assay. (c) The efficiency of miR-15a-5p mimic and inhibitor
in increasing or decreasing miR-15a-5p expression was determined by qRT-PCR. (d and e) The effects of miR-15a-5p mimic and inhibitor on
the mRNA and protein levels of EGFR were determined by gRT-PCR and western blot, respectively. (f and g) The impacts of ox-LDL treatment
on the mRNA and protein expression of EGFR were severally determined by gRT-PCR and western blot. *P < 0.05.
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Figure 6: miR-15a-5p mimic contributed to cell proliferation and suppressed cell apoptosis and EndoMT via binding to EGFR in ox-LDL-
induced HBMECs. (a and b) The effects between miR-15a-5p and EGFR on the mRNA and protein expression of EGFR were verified by qRT-PCR

and western blot, respectively. (c and d) Cell cycle and MTT assays wer

e employed to demonstrate the effects between miR-15a-5p and EGFR on

cell proliferation in ox-LDL-induced HBMECs. (e, g, and h) Western blot was employed to disclose the influences between miR-15a-5p and EGFR
on the protein expression of Ki67, Bcl-2, Bax, cleaved PARP, COL1A2, and ACTA2 in ox-LDL-induced HBMECs. (f) The impacts between miR-15a-5p
mimic and ectopic EGFR expression on the apoptosis of ox-LDL-induced HBMECs were investigated by cell apoptosis assay. *P < 0.05.

Subsequently, results showed that miR-15a-5p mimic atte-
nuated the promoting effect of ox-LDL treatment on cell
cycle arrest, but this impact was restored after EGFR over-
expression (Figure 6¢). miR-15a-5p mimic also facilitated
cell proliferation and Ki67 protein expression under
ox-LDL treatment, whereas these effects were attenuated
by EGFR overexpression (Figure 6d and e). In addition, miR-
15a-5p mimic repressed cell apoptosis after ox-LDL treat-
ment; however, this influence was restored after EGFR
transfection (Figure 6f). The protein expression of Bcl-2
was upregulated, and the protein expression of Bax,
cleaved PARP, COL1A2, and ACTA2 was downregulated

by miR-15a-5p after ox-LDL treatment, but enforced EGFR
expression abolished these effects (Figure 6g and h).
These results indicated that miR-15a-5p promoted cell
proliferation and repressed cell apoptosis and EndoMT
by binding to EGFR in ox-LDL-induced HBMECs.

3.7 circ_CHFR regulated EGFR expression by
sponging miR-15a-5p

This study continued to study whether circ_CHFR regu-
lated EGFR expression by sponging miR-15a-5p. Results



DE GRUYTER

showed that the mRNA and protein expression of EGFR
were dramatically downregulated by circ_CHFR knock-
down, whereas this effect was attenuated after miR-15a-5p
depletion in HBMECs (Figure 7a and b). This finding man-
ifested that circ_CHFR regulated EGFR expression via
associating with miR-15a-5p in HBMECs.

4 Discussion

Brain endothelial cells form the capillary wall and thereby
are vital cells in regulating the function of BBB and the
balance of brain vessels [26]. Ox-LDL is harmful to many
cells, including endothelial cells, and commonly induces
endothelial cell injury [27]. Preventing ox-LDL-induced
endothelial cell injury becomes a new target in treating
vascular diseases [28]. In this study, the effects and under-
lying mechanism of circ_CHFR in ox-LDL-mediated cell
proliferation, apoptosis, and EndoMT in HBMECs are
revealed.

Recently, circRNA attracts much attention in regulating
endothelial cell development. For example, circ_0003575
knockdown contributed to cell proliferative and angiogenic
abilities in human umbilical vein endothelial cells (HUVECS)
[15]. Dang et al. reported that circ_0010729 repression inhib-
ited cell proliferative and apoptotic abilities in HUVECs [29].
circ_0029589 (circ_CHFR) was unveiled to suppress cell pro-
liferation and metastasis in vascular smooth muscle [30]. In
this study, circ_CHFR was unveiled to regulate cell prolifera-
tion, apoptosis, and EndoMT in ox-LDL-induced HBMECs for
the first time. First, our finding showed that circ. CHFR
expression was dramatically upregulated in ox-LDL-induced
HBMECs. Subsequently, to reveal the effects of circ_CHFR on
ox-LDL-induced deleterious effects on the HUVEC develop-
ment, loss-of-function experiments were performed. Results
showed that ox-LDL treatment suppressed cell proliferation

(a) e si-NC = si-circ_CHFR e si-NC
A si-circ_CHFR+anti-miR-NC

si-circ_CHFR+anti-miR-15a-5p

_
o
-
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and accelerated cell arrest at GO/G1 phase, cell apoptosis,
and EndoMT, whereas these effects were attenuated after
circ_ CHFR knockdown. Our results demonstrated that circ_
CHEFR could regulate ox-LDL-induced deleterious effects on
the HUVEC process and circ_CHFR acted as a suppressor in
HUVEC development.

The function of miR-15a-5p in ox-LDL-mediated cell
proliferation, migration, and EndoMT was also explained
in this study. Data have displayed that miR-15a-5p
represses cell growth and promotes cell apoptosis in
chronic myeloid leukemia [31]; miR-15a-5p overexpres-
sion was illustrated to hinder cell proliferation and
metastasis in neuroblastoma [32]. In addition, miR-15a-5p
was indicated to participate in the progression of color-
ectal cancer [33], lung cancer [34], and endometrial
cancer [35]. In this study, miR-15a-5p was presented to
regulate HBMEC development for the first time. In this
study, miR-15a-5p was found to bind to circ_CHFR, and
its expression was downregulated in ox-LDL-induced
HBMECs. In addition, for the sake of revealing the func-
tion of miR-15a-5p in HBMEC development, miR-15a-5p
inhibitor and si-circ_CHFR were co-transfected into
ox-LDL-induced HBMECs. Results showed that miR-15a-5p
depletion restored the influences of circ_CHFR silencing
on cell proliferation, cell cycle, apoptosis, and EndoMT in
ox-LDL-induced HBMECs, suggesting miR-15a-5p con-
tributed to HBMEC development.

miRNA mediates gene expression via associating
with mRNA 3’UTR [36]. Thus, the target gene of miR-
15a-5p was continued to be predicted. Our result showed
that EGFR was a binding gene of miR-15a-5p. Previous
researches indicated that EGFR participated in BBB [37]
and ischemia [38]. Besides, it was revealed that EGFR
was a new target in brain injury [39]. In this study, we
found that EGFR expression was significantly increased
in ox-LDL-induced HBMECs. Moreover, enforced EGFR
expression hindered the impacts of miR-15a-5p on cell
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Figure 7: circ_CHFR knockdown downregulated EGFR expression by binding to miR-15a-5p. (a and b) QRT-PCR and western blot were carried
out to determine the effects between circ_CHFR silencing and miR-15a-5p inhibitor on the mRNA and protein expression of EGFR, respec-

tively, in HBMEC. *P < 0.05.
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proliferation, cell cycle, apoptosis, and EndoMT, meaning
that EGFR repressed cell proliferation and contributed to
cell apoptosis and EndoMT in ox-LDL-induced HBMECs.
Furthermore, to demonstrate whether circ_CHFR regulated
EGFR expression via associating with miR-15a-5p, the
influences between circ_CHFR depletion and miR-15a-5p
inhibitor on EGFR expression were unveiled. Results showed
EGFR expression was downregulated by circ_CHFR silen-
cing, which was relieved after miR-15a-5p inhibitor transfec-
tion, implicating that circ_CHFR regulated EGFR expression
by sponging miR-15a-5p.

Collectively, circ_CHFR and EGFR expression levels
were dramatically upregulated, and miR-15a-5p expres-
sion was strikingly downregulated in ox-LDL-induced
HBMECs. In addition, ox-LDL exposure repressed cell
proliferative ability and accelerated cell GO/G1 phase
arrest, apoptosis, and EndoMT, whereas circ_CHFR silen-
cing reversed these effects. circ_CHFR was a sponge of
miR-15a-5p, and miR-15a-5p inhibitor attenuated the
impacts of circ_CHFR downregulation on cell proliferation,
cell cycle, apoptosis, and EndoMT in ox-LDL-induced
HBMECs. Furthermore, miR-15a-5p bound to EGFR and
circ_CHFR regulated EGFR expression via sponging miR-
15a-5p. All in all, circ_CHFR silencing restrained the effects
of ox-LDL treatment on the proliferation, apoptosis, and
EndoMT of HBMECs by miR-15a-5p/EGFR axis. These find-
ings provide a new mechanism for studying the treatment
of cerebrovascular diseases.
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