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ABSTRACT

To carry out homologous recombination events
in the cell, recombination proteins must be able
to recognize and form presynaptic filaments on
single-stranded DNA (ssDNA) in the presence of a
vast excess of double-stranded DNA (dsDNA).
Therefore recombination machineries stringently
discriminate between ssDNA and dsDNA Ilattices.
Recent single-molecule studies of bacteriophage
T4 recombination proteins revealed that, surprising-
ly, the UvsY recombination mediator protein binds
stronger to stretched dsDNA molecules than to
stretched ssDNA. Here, we show that for relaxed
DNA lattices, the opposite is true: UvsY exhibits a
1000-fold intrinsic affinity preference for ssDNA over
dsDNA at moderate salt concentrations. This finding
suggests that UvsY preferentially loads UvsX
recombinase onto ssDNA under physiological con-
ditions. The biochemical basis for high-affinity
UvsY-ssDNA binding was investigated by hydro-
dynamic and cross-linking methods. Results show
that UvsY forms ring-like hexamers in solution, and
that ssDNA binds to multiple subunits within each
hexamer, consistent with ssDNA wrapping. The data
support a model in which ssDNA wrapping by UvsY
protein is important for the selective nucleation of
presynaptic filaments on ssDNA versus dsDNA, and
for the coordinated transfer of ssDNA from Gp32
(SSB) to UvsY (RMP) to UvsX (recombinase) during
filament assembly.

INTRODUCTION

Recombinases of the RecA/Rad51 family play central
roles in homologous recombination and homology-
directed DNA repair (1,2). RecA/Rad51 enzymes
catalyze strand exchanges between homologous single-
stranded DNA (ssDNA) and double-stranded DNA
(dsDNA) molecules. A prerequisite for DNA strand
exchange is the assembly of a presynaptic filament consist-
ing of many molecules of recombinase bound cooperative-
ly to ssDNA (3,4). The proper assembly of presynaptic
filaments is crucial for maintaining genetic stability, as
evidenced by defects in this process leading to hereditary
cancer predisposition syndromes in humans (5,6).
Presynaptic filament assembly faces several biochemical
hurdles in the cell: first, the ssDNA target for filament
assembly is present only transiently (i.e. as a resected
double-strand break or daughter-strand gap) and in vast
deficit with respect to cellular dsSDNA. Binding of dsDNA
in the proper kinetic order following presynaptic filament
assembly is an essential component of strand exchange.
Inappropriate dsDNA binding during presynapsis is
known to inhibit strand exchange (7-9). Second, the
ssDNA target for filament assembly is sequestered by
ssDNA-binding proteins (SSBs) that compete with recom-
binases for binding sites (10). Therefore the presynaptic
filament assembly machinery must discriminate stringently
between ssDNA and dsDNA lattices and also must suc-
cessfully promote recombinase/SSB exchange on ssDNA.
Studies of the bacteriophage T4 recombination system
have revealed many important biochemical principles
involved in presynaptic filament assembly (10-12). The
T4 recombination mediator protein, UvsY, has emerged
as a central player in this system, along with UvsX
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recombinase and Gp32, the T4 SSB protein. In vitro,
UvsY stimulates the enzymatic activities of UvsX recom-
binase by promoting UvsX-ssDNA filament assembly,
and by helping UvsX to displace bound Gp32 from
ssDNA (10,13). UvsY is essential for UvsX catalytic
activities at salt and Gp32 concentrations that simulate
physiological conditions (13-18). In vivo, uvsY and wuvsX
mutants have equivalent recombination-deficient pheno-
types, indicating that UvsX recombinase is dependent on
UvsY for biological activity (19-21).

The biochemical properties of UvsY include binding to
ssDNA and dsDNA, heteroprotein interactions with
UvsX, Gp32 and Gp46/47 (T4 recombination nuclease),
and self-association (11,14-16,22,23). Etheno-DNA-
binding assays demonstrated that UvsY binds to ssDNA
non-cooperatively but with high affinity, and with a
binding site size of 4nt residues per monomer (23).
UvsY exists in solution predominantly as a 95kDa
hexamer, and binds to ssDNA in this form (22). Key
features of UvsY’s RMP activity include its ability to
destabilize Gp32-ssDNA interactions and to stabilize
UvsX—ssDNA interactions (16-18,24). The destabilization
of Gp32-ssDNA interactions by UvsY is independent of
UvsY-Gp32  protein—protein  interactions  (17,24),
indicating that ssDNA structural changes induced by
UvsY are responsible for the destabilization effect. UvsY
can also directly displace Gp32 from ssDNA at low salt
concentrations (24). UvsY—ssDNA interactions also play
a major role in the observed stabilization of UvsX—ssDNA
interactions (18,25).

UvsY also binds to dsDNA (14,24), and so must dis-
criminate between ssDNA and dsDNA lattices in order to
promote presynaptic filament assembly. Pant et al. (24)
used force spectroscopy methods to measure the inter-
actions of UvsY with single, stretched dsDNA molecules.
The data showed that at high stretching forces, UvsY
exhibits higher affinity for dsDNA than it does for
ssDNA, a result that at first seems contrary to the need
for presynaptic filament assembly on ssDNA. However,
the same study showed that at low stretching forces,
UvsY strongly wraps ssDNA created by exposure of
stretched dsDNA to glyoxal (24). Together, these
findings suggested that inter-conversions between
extended and wrapped conformations of ssDNA could
be important for UvsY-mediated trafficking of UvsX
and Gp32 proteins on ssDNA. Similar inter-conversions
could also be important for ssDNA/dsDNA discrimin-
ation by UvsY during presynapsis. However, the
single-molecule studies of Pant et al. (24) were conducted
under the highly artificial conditions of over-stretched
dsDNA and/or ssDNA stabilized by chemical modifica-
tion. Therefore it is important to establish the relation-
ships  between UvsY-ssDNA and UvsY-dsDNA
interactions under native DNA conditions.

In this study, we measured and compared the intrinsic
affinities of UvsY for relaxed, native ssDNA and dsDNA
molecules at low binding density over a range of salt con-
centrations. The results indicate that individual UvsY
hexamers strongly prefer binding to ssDNA over
dsDNA under native DNA conditions and at physiologic-
ally relevant ionic strengths, which is opposite of what was

observed in DNA stretching studies (24). This preference
for ssDNA over dsDNA is preserved in UvsY mutants
that greatly reduce its overall DNA-binding affinity.
Results of sedimentation and cross-linking experiments
indicate that UvsY forms ring-like hexamers in solution,
and that ssDNA binds to multiple subunits within each
hexamer, consistent with ssDNA wrapping. The data
support a model in which ssDNA wrapping promotes
the selective localization of UvsY on ssDNA, where it
may direct the assembly of productive presynaptic fila-
ments. Our studies of UvsY—native DNA interactions
in the ensemble, combined with DNA stretching and mu-
tagenesis data (24,25), support a mechanism of
presynapsis in which UvsY captures an extended ssDNA
conformation created by Gp32 and converts it into a
wrapped conformation suitable for hand-off to UvsX re-
combinase. The coordinated hand-off of ssDNA from SSB
to mediator to recombinase is likely to be a conserved
mechanism in diverse recombination systems.

MATERIALS AND METHODS
Reagents, buffers and resins

All chemicals used were reagent grade and aqueous solu-
tions were made with water purified through a Barnstead
system. Buffer A used in quantitative DNA-—cellulose
chromatography experiments with UvsY and its mutants
contained 20 mM Tris—HCI (pH 7.4) and variable concen-
trations of NaCl. Buffer B used in analytical ultracentri-
fugation experiments contained 20mM Tris—-HCl (pH
7.4), ImM MgCl, and variable concentrations of NaCl.
ssDNA- and dsDNA-cellulose resins were prepared
from salmon sperm DNA (Sigma) and Whatman CF-11
cellulose fibers as described (26). Two different batches
of ssDNA-—cellulose used in these studies contained 1.7
and 2.0 mg of total immobilized DNA per packed milliliter
of resin, respectively, as determined by the release of Asgg
units upon boiling (26). By the same method, two different
batches of dsDNA-cellulose used in these studies were
shown to contain 0.6 and 1.0mg, respectively, of total
immobilized DNA per packed milliliter of resin.

Proteins and nucleic acids

Purification and storage conditions for T4 UvsY,
UvsYkssa and UvsYsga reoa proteins were as described
previously (23,27). The purity of each protein stock was
>98% based on SDS-PAGE gels stained with Coomassie
brilliant blue. All protein stocks were determined to be
nuclease-free according to published criteria (28). The
concentrations of protein stocks were determined by the
absorbance at 280 nm, using an extinction coefficient of
19180M~'em™"' for UvsY wild-type and mutant
proteins (29). HPLC-purified oligonucleotides (dT,, dTsg,
dT»4, dT,s) were purchased from Operon Biotechnologies
and quantified by the absorbance at 260 nm using molar
extinction coefficients provided by the manufacturer. The
dT,4 oligonucleotide was 5'-end labeled with [**P] using
T4 polynucleotide kinase (New England Biolabs), and
purified by ethanol precipitation.



Quantitative DNA—cellulose chromatography

The sequence non-specific, intrinsic DNA-binding
affinities of UvsY wild-type and mutant proteins for
native ssDNA and dsDNA lattices were determined
using quantitative DNA-—cellulose affinity chromatog-
raphy (30). Experiments were carried out at very low
binding densities of protein on nucleic acid, which
allows direct measurements of intrinsic association con-
stants independent of the binding site size and coopera-
tivity parameters of the proteins (31). The ssDNA—and
dsDNA-—cellulose resins were packed into 2ml columns
and pre-equilibrated with 2ml buffer A containing differ-
ent fixed concentrations of NaCl at a flow rate of 40 ml/h.
Hexamers (0.67nmol) of either UvsY, UvsYgsga oOr
UvsYkssareoa in 2ml of the same buffer were loaded
onto the columns by gravity (UvsY hexamers/total
nucleotide residues molar ratio ~107%). The flow was
then stopped and the loaded columns allowed to sit for
10-15min, which was sufficient to achieve an initial
binding equilibrium since doubling the loading time had
no effect on results. Thereafter, 20 ml of the same buffer
followed by 10ml of buffer A plus 1 M NaCl was used to
elute proteins from columns, with a flow rate of 40 ml/h
while 1ml fractions were collected. The protein con-
centration in each fraction was quantified by intrinsic
tryptophan fluorescence (excitation wavelength: 295 nm;
emission wavelength: 340 nm) on a Quantamaster QM6
fluorometer (Photon Technology International, South
Brunswick, NJ). To obtain the best signal/noise ratio,
the excitation/emission bandpass was set at 2 nm/3 nm.
Fluorescence data points represented an average of 20
fluorometer readings and were compared to calibration
curves to obtain protein concentrations. All chromatog-
raphy steps and fluorescence measurements were carried
out at room temperature (typically 23°C).

Chromatography elution profiles are presented in the
following format (30,31): log P.; versus fraction number,
in which P denotes the percentage of protein remaining
on columns and is calculated by the protein quantity in
each fraction and the total protein quantity. This type of
plot typically yields a linear relation of data points and the
slope is equal to—log(1+k), in which k is a proportionality
constant. After obtaining this proportionality constant for
each data set, the association constant of protein to DNA
at a given NaCl concentration was calculated according to
the following equation:

Ve

where K is the intrinsic association constant of protein
to DNA; V; is the fraction volume; and D, is the total
molar amount of protein-accessible DNA on the
column, which was determined as follows (30,31): the
2ml column resin was taken out and resuspended in
10ml of DNasel-cleavage buffer containing 20mM Tris
(pH 7.4), 10mM MgCl, and 100mM NaCl. DNasel
(2mg) was then added to this mixture and incubated at
37°C for 4h. The nucleotides released into solution were
considered protein-accessible and determined by phos-
phate analysis as described (32). Briefly, 10 ul of sample
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solution was mixed with 30pul of Mg(NO3), (10%
dissolved in 95% ethanol) and ashed over flame. HCI
(0.5N, 0.3 ml) was then added to hydrolyze pyrophosphate
formed in the last step. After hydrolysis at 100°C for
15min, 0.6 ml of ammonium molybdate (0.42% dissolved
in 1 N H,SOy4) and 0.1 ml of 10% ascorbic acid were mixed
with the sample and incubated at 45°C for 20min.
Absorbance at 820 nm was then measured and converted
to the quantity of nucleotide using a conversion factor of
0.260 absorbance unit = 0.01 umol of nucleotides. The
total amounts of protein-accessible DNA in ssDNA-
and dsDNA-cellulose columns were determined to be
7.2 £ 0.5umol and 2.3 + 0.2 pmol of nucleotide residues,
respectively. Thus the binding density of UvsY hexamers
per protein-accessible nucleotide residue was <3 x 10% in
all experiments.

Analytical ultracentrifugation

Sedimentation equilibrium and velocity studies were
carried out as previously described (22). All experiments
were performed in a Beckman Optima XL-I analytical
ultracentrifuge (Beckman Coulter Inc., Fullerton, CA)
equipped with both absorbance and Rayleigh interference
optics. All experiments utilized a Beckman An50-Ti 8-hole
rotor equipped with either two- or six-sector
charcoal-filled epon centerpieces and sapphire windows.
The rotor temperature was set between 20 and 25°C de-
pending on the experiment. Buffers consisted of buffer B
plus variable concentrations of NaCl. All solutions were
sterile filtered prior to use.

The stoichiometry of UvsY-oligonucleotide complexes
was evaluated in solution using a modification of the
meniscus depletion sedimentation equilibrium method
(33). Specific rotor conditions are selected that quantita-
tively remove the desired solute from the radial position
immediately adjacent to the solution—air meniscus. For
the case of hexameric UvsY protein, meniscus depletion
is achieved at equilibrium after 17h at 18000 rpm, 22°C,
in buffer B plus 300 mM NacCl, using a solution column
height of ~3.5 mm. Solutions containing both protein and
oligonucleotide ssDNA were subjected to meniscus deple-
tion sedimentation until equilibrium was achieved. In all
cases, oligonucleotide ssDNA (dTy, dTg or dT,s; 75 uM
nucleotide residues) was present in large stoichiometric
excess over UvsY (4.5uM monomers) assuming a
binding site size of n = 4 nucleotide residues/monomer
(23). Control experiments were identical except that
buffer contained 500 mM NaCl and lower concentrations
of solutes (25uM oligonucleotides and 1.5puM UvsY).
Evaluation of the state of equilibrium was performed as
previously described (22). Radial absorbance measure-
ments were collected at two wavelengths (260 and
280 nm) within a narrow radial interval corresponding to
the meniscus depleted region. As the molecular weight of
the UvsY hexamer (M, x95000) is very much greater
than the largest oligonucleotide used in these studies
(dTps, M, x7500), only the protein-containing species
are able to achieve meniscus depletion. Because of this,
the only observable absorbance within a narrow range
immediately adjacent to the solution—air meniscus must
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result from absorbance due to free sSDNA species residing
in the otherwise depleted region. This assumption is rea-
sonable since sedimentation velocity data indicate that the
UvsY hexamer is non-dissociable under identical condi-
tions, either by itself or when bound to ssDNA (22).
Therefore the UvsY hexamer represents the smallest
protein species available in this controlled system.

Hydrodynamic modeling

Hydrodynamic modeling was performed using directly
measured sedimentation and frictional coefficients (s and
/. respectively) for all species (22). All hydrodynamic par-
ameters were corrected to 20°C and zero concentration of
sedimenting solute in water (34). Molecular masses of
protein and nucleoprotein complexes were calculated
from primary sequence data for UvsY (35) and oligo-
nucleotides (Operon Technologies). The partial specific
volume, v, of the UvsY-ssDNA complex was calculated
using a v estimate for ssDNA of 0.55cm?/g (T. Laue,
personal communication) and weight-averaging the con-
tribution of both components in the complex. This
method makes the assumption that the v of each compo-
nent does not change upon association. Theoretical fric-
tional coefficients, f;, were calculated as described, using
volumetric determinants obtained from macromolecular
crystallography data (34,36). Calculation of f, depends
on R, the ‘equivalent radius’, which is the expected
radius of a rigid, impermeable and incompressible sphere
having the identical volume as the species of interest. R,
and f, values were calculated from Equations (2) and (3),
respectively:

R, =672x107°M'" (2)
fo = 6mnR, 3)

where 7 is the viscosity parameter. Note that f, calculated
in this manner corresponds to the predicted minimum
value of the frictional coefficient, and therefore results in
a maximum estimation of the sedimentation coefficient, s,
according to the Svedberg relationship:

o MA —vp)

4
Nof )
where p equals density and N, is Avogadro’s number.
The value of f/f, gives a rough approximation of the asym-
metry of the solute species, indicating the deviation from
an ideal sphere.

Structural models of associated oligomers were
calculated using hydrodynamic simulation and the rela-
tionship between predicted sedimentation parameters of
monomers and their oligomeric assemblies (37—40). Here
the monomeric sedimentation coefficient is related to the
n-state of oligomeric assembly by Equations (5) and (6):

0= [Hiii:i}? 5)
n I alj

i

where
=2 6
a/ RO ( )

In this relationship, s is the sedimentation coefficient pre-
dicted for a rigid structure containing » identical spherical
units, each with radius R, and sedimentation coefficient s.
R;; is the radial distance between units, and therefore o;; is
determined by the assumed geometry of unit assembly. By
designing various models that describe a state of n-
assembly, theoretical sedimentation parameters can be
determined.

Photochemical crosslinking of UvsY-dT,4

5-[**P]-labeled dT,4 (2uM nucleotides) was incubated
with or without 0.5uM UvsY at ambient temperature,
in buffer A plus 300 mM NaCl for 30 min to achieve equi-
librium. The above reaction solutions (20 pl) were spotted
onto a paraffin wax sheet (ParaFilm) and subjected to UV
exposure for the indicated times. UV light (254 nm) was
applied maintaining ~1cm between the liquid drop and
the UV source (hand-held UV lamp, UVP Inc.). After UV
crosslinking, samples were brought to 0.02% SDS and
heated to 100°C to fully disrupt non-covalent structures.
Crosslinked species were separated by SDS-PAGE and
visualized by autoradiography.

RESULTS

Intrinsic affinity of UvsY protein for isolated sites
on DNA

To establish the relationships between UvsY—ssDNA and
UvsY—dsDNA interactions under native DNA conditions,
we measured the binding of UvsY to isolated sites on
relaxed, unmodified dsDNA and ssDNA molecules,
using the quantitative DNA-cellulose chromatography
method (30,31). Measurements were made at very low
binding densities of protein on DNA (<3 x 10™* UvsY
hexamers per protein-accessible nucleotide residue; see
‘Materials and Methods’ section). For proteins that bind
to DNA with a cooperativity parameter ©, binding
to isolated sites is observed when the binding density
v <1/10® (31). UvsY binds non-cooperatively to ssDNA
(o 1) (23). Therefore the experimental conditions are
consistent with UvsY binding to isolated, not contiguous
sites on DNA, and the binding constants measured are
intrinsic  affinity values that do not depend on
cooperativity or binding site size (31). The intrinsic
affinity parameters of UvsY-dsDNA and UvsY-ssDNA
interactions were measured as functions of salt. These
studies provide the first quantitative details of UvsY—
dsDNA and UvsY-ssDNA interactions under native
DNA conditions, and allow direct comparisons of both
under identical solution conditions.

The elution profiles of UvsY from dsDNA-cellulose
and from ssDNA-cellulose are shown in Figure 1A and
B, respectively, and the derived intrinsic association con-
stants (Kys and K values) are listed in Table 1. The results
demonstrate that UvsY binds to dsDNA strongly
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Figure 1. Salt-dependent elution of UvsY protein from dsDNA- and ssDNA-cellulose columns. Elution profiles are presented in the format of Log
P versus fraction number as described in ‘Materials and Methods’ section. UvsY (4nmol) was loaded onto and eluted from dsDNA-cellulose
columns (A) or ssDNA—cellulose columns (B) in buffer A plus various concentrations of NaCl as denoted in the figure. The fractions were quantified
by intrinsic tryptophan fluorescence (excitation 295 nm, emission 340 nm) and calibrated against known concentrations of UvsY. All data points are
averaged values from three independent experiments and standard deviations are shown as error bars. At low NaCl concentrations, the error bars are

too small to be visualized on the plots.

Table 1. Intrinsic association constants of wild-type and mutant UvsY proteins for dsDNA and ssDNA lattices®

[NaCl] (mM) UvsY UVSYngA UVSYK58A‘ R60A
Kag M7 Ko (M) Kgs (M7 Ko M7 Kg (M7 Ko M7

50 4.0 x 107 N.D. 1.1 +0.03 x 10° 1.5 +0.2x 10* 2.8 +0.01 x 10? 29 +02x10°
100 3.5+ 1.1 % 10° N.D. N.D. 6.2 + 0.4 x 10° N.D. N.D

150 7.1 + 1.7 x 10* N.D. N.D. 2.0 +0.1x10° N.D. N.D.

200 1.5+ 0.1 x 10° 3.8 % 10°° N.D. 1.5+0.1x10° N.D. N.D.

250 6.1 £ 0.7 x 10> 1.8+ 1.0x10° N.D. 1.0 x 10°® N.D. N.D

300 5.0 £ 0.5 % 107 2.1+ 1.0x 10* N.D. N.D. N.D. N.D.

350 N.D. 7.3 + 1.0 x 10° N.D. N.D. N.D. N.D.

400 N.D. 3.7 + 0.4 x 10 N.D N.D. N.D N.D

N.D., not determined.
“Kgs and K equal intrinsic association constants of UvsY or mutants for dsSDNA and ssDNA, respectively, measured at the indicated NaCl
concentrations. Numbers in plain text represent the averages + standard deviation from three independent quantitative DNA-—cellulose experiments

similar to those shown in Figures 1-3. The reaction conditions were as described in ‘Materials and Methods’ section and in the text.
"Numbers in italics represent projected Kqs and Ky values derived from plots in Figure 4 by extrapolation.

under relatively low-salt conditions (Kqs ~10°~10"M~" in
50-100mM NaCl), however UvsY—dsDNA binding
affinity decreases dramatically with increasing salt con-
centration, becoming quite weak at 200mM NaCl and
undetectable by this method above 300mM NaCl
(Figure 1A, Table 1).

UvsY exhibits much higher intrinsic affinities for
ssDNA than for dsDNA when measured by the
DNA-cellulose method (Figure 1B, Table 1). At 250 mM
NaCl, the ratio of directly measured association constants
K/ Kgs ~300, while at 200mM NaCl the projected K/
Ky4s =~ 2500 (Table 1; see also Figure 4). NaCl (200 mM) is
taken as a reasonable approximation of physiological
ionic strength since the UvsY-dependence of UvsX bio-
chemical activities at this salt concentration mimics the
genetic requirement for both proteins in T4 recombination
pathways (19-21). Therefore we conclude that the intrinsic
affinity of UvsY for relaxed ssDNA exceeds that for

relaxed dsDNA by at least three orders of magnitude at
physiologically relevant ionic strengths. Intrinsic UvsY—
ssDNA association constants at lower salt concentrations
are too high to be measured by the DNA-cellulose
method.

Missense mutations destabilize UvsY—-DNA interactions

Missense UVSYngA and double missense UVSYKSSA,RGOA
mutant proteins have been characterized in our labora-
tory, and shown qualitatively to have decreased
ssDNA-binding activity while retaining overall hexameric
structure (18,27). To quantify their defects, the binding of
both mutants to dsDNA—-and ssDNA-cellulose columns
was measured (Figures 2 and 3), and the derived intrinsic
association constants are listed in Table 1. Figure 2A and
B shows the elution profiles of UvsYsga from dsDNA—
and ssDNA-cellulose columns, respectively. Figure 3A
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Figure 2. Salt-dependent elution of UvsYksga single mutant protein from dsDNA— and ssDNA-cellulose columns. UvsYgsga (4 nmol) was loaded
onto and eluted from dsDNA-cellulose columns (A) or ssDNA-cellulose columns (B) in buffer A plus various concentrations of NaCl as denoted in
the figure. All other experimental details were identical to those reported in Figure 1.
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Figure 3. Salt-dependent elution of UvsYgsga reoa double mutant protein from dsDNA- and ssDNA—cellulose columns. UvsYgsga reoa (4 nmol)
was loaded onto and eluted from dsDNA-cellulose columns (A) or ssDNA-cellulose columns (B) in buffer A plus various concentrations of NaCl as
denoted in the figure. All other experimental details were identical to those reported in Figure 1.

and B shows the elution profiles of UvsYksga reoa from
dsDNA-and ssDNA-—cellulose columns, respectively. The
intrinsic affinities of both UvsY mutants for both lattices
are dramatically reduced compared to wild-type UvsY.
K45 values of both mutants can only be accurately
determined at low salt (50 mM NaCl), and are at least
10*-fold lower than wild-type (Table 1). UvsYgssa
exhibits ~5-fold higher affinity for both ssDNA and
dsDNA than does UvsYsga.reoa 1N experiments per-
formed at 50 mM NaCl. At the same salt concentration,
the ratio K /Kys ~14 for UvsYgsga and ~10 for
UvsYkssa.reoa- Therefore in both mutants, the intrinsic
affinities for ssDNA are higher than those for dsDNA,
which follows the same trend as wild-type UvsY. The
UvsYksga mutant exhibits detectable binding to
ssDNA-—cellulose at salt concentrations up to 200 mM
NaCl, but its K, value is projected to be at least 10°-
fold lower than wild-type at 200mM NaCl (Table 1; see
also Figure 4). These observations are consistent with the
weak binding of these mutants to etheno-modified ssDNA
and to stretched dsDNA that was previously reported,
and may explain their partial defects in stabilizing

UvsX-ssDNA complexes and in stimulating UvsX enzym-
atic activities (13,18,24,27).

UvsY exhibits different electrostatic binding modes
for ssDNA and dsDNA

Salt effects on K, and Ky, for UvsY-DNA interactions
were determined from the slopes of plots of logK or
logKys versus log[NaCl] (Figure 4, Table 2). The slope
dlog K/dlog[NaCl] is related to the number of ionic inter-
actions involved in protein—-DNA binding (41-44). The
magnitude of dlog K,/dlog[NaCl] for UvsY—ssDNA inter-
actions is very large, —13.9, indicative of highly electro-
static binding. In contrast, the magnitude of dlog K/
dlog[NaCl] for UvsYgssa—sSDINA interactions is only—
1.7, demonstrating a major disruption of electrostatic
binding determinants caused by the loss of this single
basic residue within each subunit of a UvsY hexamer
(Figure 4, Table 2). Interestingly, the magnitude of dlog
Kgs/dlog[NaCl] for UvsY—dsDNA interactions is —6.6
(Figure 4, Table 2), or approximately half that observed
with the ssDNA lattice. Therefore UvsY exhibits different
binding modes for ssDNA and dsDNA, involving large
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Figure 4. lon effects on the intrinsic association constants of UvsY
for ssDNA and dsDNA, and of UvsYgsga for ssDNA, respectively.
The log-log plots are made using K and Kys values and corresponding
NaCl concentrations listed in Table 1. The error bars represent the
standard deviation from three independently determined Ky or Ky
values for UvsY-ssDNA (diamonds), UvsY-dsDNA (triangles) and
UvsYksga—sSDNA  (squares) interactions. The data in each series
have been fitted to a line yielding slopes representing the dlog K or
dsy/dlog[NaCl]  values for UvsY-dsDNA, UvsY-ssDNA and
UvsYgssa—ssDNA interactions. These dlogKs o ds)/dlog[NaCl]
values (slopes) are summarized in Table 2.

Table 2. Salt effects on the intrinsic association constants of
UvsY-DNA interactions

UvsY protein Lattice dlogK/dlog[NaCIJ*
Wild-type dsDNA (ds) —6.6
Wild-type ssDNA (ss) —13.9
K58A ssDNA (ss) —1.7

“Slopes derived from log-log plots of intrinsic association constant
(Kgs or Kg) versus [NaCl] as shown in Figure 4 and described in
the text.

differences in the electrostatic component of binding.
Implications for UvsY structure and function are dis-
cussed below (see ‘Discussion’ section).

ssDNA contacts multiple subunits within an
UvsY hexamer

Previous sedimentation studies demonstrated that UvsY
exists as a monodisperse hexamer of 95kDa at salt con-
centrations >200 mM NaCl (22). The hexameric structure
of UvsY protein suggests that it could wrap ssDNA
around itself through contacts of multiple subunits
with polynucleotide. To test this multi-subunit binding
hypothesis, we performed meniscus depletion sedimenta-
tion equilibrium experiments to measure the stoichio-
metries of small oligonucleotides (dT4, dTg and dT»4)
bound to UvsY. Results of one such experiment are
shown in Figure 5. In all cases, control experiments con-
ducted at the non-permissive salt concentration of
500mM NacCl resulted in no co-sedimentation of oligo-
nucleotides with UvsY protein (Figure 5A), consistent
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Figure 5. Meniscus depletion of dT,4 oligonucleotide by UvsY protein.
Meniscus depletion sedimentation equilibrium experiments were carried
out as described in ‘Materials and Methods’ section. (A) Depletion
experiments conducted under non-DNA-binding conditions (buffer B
plus 500mM NaCl) show no co-sedimentation of oligonucleotide
dT,4 with UvsY. (B) Similar experiments conducted under permissive
conditions for DNA binding (buffer B plus 300 mM NaCl) show a ~1:
1 stoichiometry of UvsYqdToy. In both experiments, oligonucleotide
dT,4 alone (squares), UvsY alone (circle) or both (triangles) were
centrifuged to equilibrium in a Beckman Optima XL-I analytical ultra-
centrifuge while scanning the absorbance at 260 and 280nm.
Co-sedimentation of dT,4 with UvsY under permissive binding condi-
tions lowers absorbance at the meniscus, allowing calculation of
complex stoichiometry.

with previous results (22). In contrast, when experi-
ments were performed at the permissive salt concentration
of 300mM NaCl, meniscus depletion of the oligo-
nucleotide dT,4 by co-sedimentation with UvsY was
evident (Figure 5B). The loss of DNA absorbance at the
meniscus allowed us to calculate a binding stoichiometry
of 1.2 dT,4 molecules per UvsY hexamer, a value consist-
ent with previous measurements of 1:1 stoichiometric
interactions between UvsY hexamers and dT,s or dTss
oligos [(22), H. Xu, H. Beernink and S. Morrical, unpub-
lished results]. Similar meniscus depletion studies per-
formed with dT4 and dTg oligonucleotides in 300 mM
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NaCl (data not shown) yielded stoichiometries of 5.3 and
2.7 oligos/hexamer, respectively. Given a solution average
binding site size of n = 4 nt residues per UvsY monomer
(23), the meniscus depletion data provide clear evidence
that multiple subunits within the UvsY hexamer can
interact with their binding sites on ssDNA simultaneously.
The most dramatic example is given by the dT, oligo,
which at 5.3 oligos/hexamer approaches the theoretical
maximum of six oligos/hexamer. Therefore with a short
enough oligo, it appears that all subunits of the UvsY
hexamer retain the ability to interact with ssDNA.

The situation may be more complex with a longer oligo,
however, as shown by the UV cross-linking experiment in
Figure 6. Here, the specific salt concentration of 300 mM
NaCl was chosen to allow formation of a discrete UvsY ¢
dT,4 complex (22). Therefore, the interaction between
UvsY monomers and ssDNA was restricted to within
the hexameric unit. 5-[*’P]-labeled dT,s was incubated

| <« Crosslinked
J species

6.0 —

<] FreedT,,

UvsY - + - + -
dT,, + + + + +
Time (sec) 0 15 30

Figure 6. Photochemical crosslinking of UvsY-dT,4 complex. UvsY
was crosslinked to 5-[**P]-labeled dT», by 254nm UV exposure as
described in ‘Materials and Methods’ section. The crosslinked species
(black arrows) were separated from free 5'-[>*P]-labeled dT,, (white
arrow) by SDS-PAGE and visualized by autoradiography. Different
exposure times (0, 15 and 30s) were applied as indicated and
pre-stained molecular weight standards (left) were used to estimate
the molecular weight of the crosslinked species.

with UvsY and exposed to 254nm UV light, then the
crosslinked species were separated by SDS-PAGE and
detected by autoradiography. The denaturing gel
disrupts non-covalent interactions so that the [**P]-
labeled crosslinked species should consist of a single
dT>4 molecule plus any UvsY monomers that are
crosslinked to it. As shown in Figure 6, the presence of
multiple crosslinked species (lanes 4 and 6) indicates that
multiple UvsY monomers within the hexamer can simul-
taneously contact the dT,4 oligonucleotide. However, only
three crosslinked species were observed, as opposed to the
six species expected if any of the six UvsY subunits could
be simultaneously crosslinked to dT,4. By comparing with
standards, the molecular weight of the three crosslinked
species appear to correspond to a dT»4 molecule covalent-
ly linked to 1, 3 and 5-6 UvsY monomers, respectively.
Control experiments with dT,4; alone resulted in no
crosslinking, therefore all crosslinked species were
generated by protein—ssDNA crosslinking (Figure 6,
lanes 3 and 5). Other control experiments with UvsY
protein alone (detected by silver staining; data not
shown) contained a small amount of crosslinked, dimeric
UvsY, which has an electrophoretic mobility distinct from
all of the protein-DNA crosslinked species visible in
Figure 6. The data suggest that there is asymmetry regard-
ing how individual subunits interact with a long ssDNA
molecule that transits the entire UvsY hexamer. This
asymmetry may be an intrinsic property of the UvsY
hexamer (see below), or it may be imposed on the
hexamer by the chain topology of ssDNA.

Hydrodynamic modeling suggests a ring-like
arrangement of UvsY subunits

Sedimentation velocity data were used to estimate the
overall apparent shape of the UvsY hexamer and of the
hexamer—ssDNA complex from f/f), the hydrodynamic
frictional ratio. Experimental frictional coefficients
(f-values) for UvsY4 and UvsY¢—ssDNA were calculated
from published 9, ,, values (22), and are listed in Table 3.
When compared with the theoretical frictional coefficient,
fo, calculated for a rigid, incompressible sphere of identical
molecular mass and partial specific volume, it appears that
the overall shape of UvsY deviates markedly from a
spheroid, as f/fy = 1.2 for both UvsY4 and UvsYdT,s
complexes. It is not possible to model UvsY oligomeric
shapes directly from the sedimentation properties of

Table 3. Hydrodynamic parameters of UvsY, hexamers in the presence and absence of dT,s oligonucleotide

M,* (Da) 7 (em’/g) 590, (x1075s) 7 (x107%g/s) fof (x10%g/s) '
UvsYs 94 389 0.738 6.0 6.9 5.8 1.2
UvsYg—dTss 101910 0.723 6.5 7.3 5.9 1.2

“Molecular weight, calculated from sequence.

®Partial specific volume. 7 for UvsY was calculated from the amino acid sequence. 7 for UvsYsdTos is the weight average assuming v = 0.55cm’/g

for dT,s. See ‘Materials and Methods’ section.

“Sedimentation coefficient at 20°C in water, corrected to zero concentration of the sedimenting solute. Data adapted from ref. (22).
dFrictional coefficient, calculated from empirical 53, values using Equation (3).
“Theoretical frictional coefficient for a rigid, incompressible sphere of identical mass and partial specific volume as the sedimenting solute.

Calculated as described in ‘Materials and Methods’ section.
"Frictional ratio.
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Figure 7. Hydrodynamic modeling of hexameric assemblies of spher-
ical beads. The frictional ratio f/f, was calculated for modeled
assemblies as described in ‘Materials and Methods’ and ‘Result’
sections. Assemblies are assumed to be rigid, and composed of identical
rigid, incompressible spheres. R is the equivalent radius of each sphere.
The UvsY hexamer (f/fy = 1.2) shows similarity to the open lockwasher
(A) and hexagonal (C) models.

monomers, because dissociation of UvsY hexamers into
monomers requires chaotropic reagents (22). Therefore we
estimated the oligomeric shape of UvsY indirectly by
comparing the experimental f/f; values to those of theor-
etical oligomers (36—40). Figure 7 presents a series of the-
oretical models and the corresponding frictional ratios for
hexameric associations of UvsY monomers based on this
method. The method assumes that each UvsY subunit is
globular and approximately spherical in shape. Based on
this assumption, the observed frictional ratio of
UvsYe £dTys (f/fo = 1.2) is best approximated by
ring-like structures such as the hexagonal model in
Figure 7C (f/fo = 1.17) or the open lockwasher model in
Figure 7A (f/fo = 1.20). Other reasonable hexameric ar-
rangements shown in Figure 7 are not consistent with the
experimental data. Independent biochemical evidence
exists for structural asymmetry within the UvsY
hexamer: UvsY contains one cysteine residue per
monomer (Cys-110) (35) and therefore six per hexamer.
However, covalent labeling of Cys-110 with excess
6-iodoacetamidofluorescein  (6-IAF) under  native
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hexamer conditions reproducibly yields a stoichiometry
of one fluorescein moiety incorporated per hexamer
(J. Liu, H. Xu and S. Morrical, unpublished results), sug-
gesting that Cys-110 is only accessible to reagent at one
end of an asymmetric structure. This finding is consistent
either with a stable open lockwasher arrangement or with
an equilibrium between open and closed forms of the hex-
agonal ring.

DISCUSSION
ssDNA wrapping promotes high-affinity binding by UvsY

The data demonstrate that UvsY has a strong thermo-
dynamic preference for binding to relaxed ssDNA over
relaxed dsDNA lattices (Figure 1, Table 1). The affinity
differential is a result of ssDNA wrapping by UvsY.
Results demonstrate that ssDNA is wrapped around
hexamers of UvsY protein, since ssDNA contacts
multiple subunits within each hexamer under monodis-
perse conditions (Figures 5 and 6) (22). The hydrodynamic
and biochemical properties of UvsY hexamers are consist-
ent with a ring- or lockwasher-like arrangement of sub-
units (Table 3; Figure 7A and C), suggesting that UvsY
may wrap ssDNA into ring- or screw-like structures.

DNA stretching studies provide additional evidence for
ssDNA wrapping by UvsY at the single-molecule level
(24). Force spectroscopy measurements indicate that
UvsY strongly wraps ssDNA that is created by the
exposure of stretched dsDNA molecules to glyoxal.
Presumably UvsY cannot wrap dsDNA because its per-
sistence length is much higher than that of ssDNA (45).
ssDNA wrapping occurs at low stretching forces where the
DNA is relatively relaxed, whereas wrapping is suppressed
when the DNA is under tension. This suppression of
wrapping leads to the loss of preferential binding to
ssDNA under the conditions of the DNA stretching ex-
periments—in fact, UvsY binds tighter to dsDNA than to
ssDNA under high stretching forces (24). In contrast,
under relaxed conditions where ssDNA wrapping occurs,
UvsY exhibits ~1000-fold higher affinity for ssDNA than
for dsDNA (Figure 1, Table 1). Further evidence that
ssDNA wrapping promotes high-affinity UvsY-ssDNA
binding comes from the observation that a monomeric
form of UvsY exhibits a 10*fold reduced affinity for
ssDNA while retaining the same binding site size (4nt
residues per monomer) on ssDNA that is observed in
hexameric UvsY (46).

Electrostatics of UvsY—-DNA interactions

Results indicate that UvsY uses different electrostatic
binding modes for ssDNA and dsDNA, based on
the large difference in the magnitude of the salt effect on
K versus Ky (Figure 4, Table 2). Theoretically the mag-
nitude of the salt effect on the affinity parameter for a
protein—DNA interaction is defined as

dlog K/dlog[NaCl] = —m'yy — a @)

where m’ equals the number of contacts between negative-
ly charged DNA phosphate residues and positively
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charged protein amino acid residues, a is the number of
anions displaced from the protein upon binding to DNA,
and W is a partitioning constant equal to 0.71 for ssDNA
or 0.88 for dsDNA (41-44). In this study, we used the
quantitative ssDNA-—cellulose method to measure UvsY
interactions with isolated sites on native ssDNA, and
found a large salt effect on Ky (dlog Ks/dlog[NaCl] =
—13.9). Previously we studied UvsY—ssDNA interactions
by titrating etheno-modified ssDNA (¢eDNA) with protein
at different salt concentrations, and found a much smaller
salt effect (dlog Ks/dlog[NaCl] = —6.8) (23). The latter
value is similar to the salt effect on dsDNA binding
(dlog K4s/dlog[NaCl] = —6.6) determined from dsDNA-—
cellulose binding data in this study (Figure 4, Table 2).
Possible explanations for the method-dependent difference
in salt effects on UvsY—-ssDNA interactions include:

Effects of DNA persistence length. The etheno modifica-
tion could increase the persistence length of ssDNA,
making it difficult to be fully wrapped by UvsY
hexamers, as is the case for dSDNA. This could explain
the nearly identical salt effects on UvsY—¢DNA (23) and
UvsY—dsDNA interactions (Figure 4, Table 2).

Effects of protein—ssDN A-binding density. An alternative
explanation is that binding density could affect the degree
of ssDNA wrapping by UvsY hexamers. Quantitative
ssDNA-—cellulose binding experiments are carried out at
very low binding density (v <3 x 10~* UvsY hexamers per
nucleotide residue), so that K values are for individual
hexamers interacting with isolated sites on ssDNA. In
contrast, using the eéDNA titration method, K values
are determined from the midpoints of titration curves
where v = 0.5 meaning that the Ilattice is relatively
crowded with protein. The larger salt effect on Ky seen
at low binding density on relaxed ssDNA may represent a
fully wrapped UvsYg—ssDNA complex. Full wrapping
might be precluded at high binding density, however.
Such is the case with Escherichia coli SSB protein, which
binds ssDNA in the fully-wrapped SSBgs mode at low
binding density and in the partially-wrapped SSBs3
mode at high binding density (47). Thus high binding
density might force UvsY to bind to ssDNA in a partially
wrapped or unwrapped mode that resembles the UvsY—
dsDNA complex. This could also explain the nearly iden-
tical salt effects observed in UvsY—e¢DNA titrations (23)
and in UvsY-dsDNA binding studies (Figure 4, Table 2).

Role of Lys-58 and Arg-60 residues in UvsY-DNA
interactions

The K58A and R60A mutations neutralize basic residues
within a conserved LKARLDY motif found in the
N-terminal domain of UvsY that is important for DNA
binding (18,27). The motif is conserved in several other
DNA-binding proteins including human ERCC2 and
yeast Rad3 proteins (48). By attenuating potential electro-
static contacts with DNA, the single mutant UvsYgsga 1s
expected to have lower affinity compared to wild-type and
the affinity of double mutant UvsYksga, reoa should be
even lower. This is exactly what is observed in this study.
The magnitude of the salt-dependence of K observed for

UvsYRrssa—sSDNA interactions is also lower than
wild-type (dlog Ks/dlog[NaCl] = —1.7 versus —13.9, re-
spectively), consistent with a loss of electrostatic
protein-DNA contacts. The large magnitude of this
change is surprising considering the single amino acid
change, however, and indicates that the K58A (and pre-
sumably R60A) mutations compromise a larger electro-
static network involved in UvsY-DNA contacts and/or
in the wrapping of ssDNA around UvsY hexamers.

A mechanism for lattice selectivity during T4
recombination

The results of this study suggest that UvsY could play an
important role in the selective assembly of presynaptic
filaments on ssDNA in the presence of excess dsDNA, a
partitioning that is essential for recombination transac-
tions both in vivo and in vitro. Driving this partitioning
is the >1000-fold intrinsic affinity advantage of UvsY-—
ssDNA over UvsY—dsDNA interactions at physiologically
relevant ionic strengths (Table 1). Like many recombin-
ases of the RecA/Rad51 family, the T4 UvsX protein
binds strongly to dsDNA as well as to ssDNA (8,49) (R.
Mabher and S. Morrical, manuscript in preparation). In the
case of eukaryotic Rad51, pre-bound dsDNA inhibits
DNA strand exchange, thus the translocation/remodeling
activities of Rad54 protein are needed to disrupt inappro-
priate Rad51-dsDNA contacts and to promote productive
filament assembly on ssDNA (50). In the T4 recombin-
ation system, the need for a Rad54-like function may be
circumvented by UvsY, which by virtue of its strong
affinity preference for ssDNA may selectively recruit
UvsX to and nucleate filament formation on ssDNA.
Reinforcing this partitioning is the fact that UvsY and
nucleoside triphosphate increase UvsX-ssDNA binding
affinity synergistically (18). The combination of factors
would therefore result in stringent discrimination in
favor of presynaptic filament assembly on ssDNA.

A double hand-off mechanism for presynaptic filament
assembly

The ability of UvsY to bind to ssDNA in either extended
or wrapped conformations has important implications
for its recombination mediator functions. As a classical
recombination mediator protein, UvsY promotes the
loading of UvsX recombinase onto pre-existing Gp32—
ssDNA complexes to form presynaptic filaments with con-
comitant displacement of Gp32 from ssDNA. Ensemble,
single-molecule and mutagenesis data are consistent with
a model in which UvsY induces changes in ssDNA struc-
ture that destabilize Gp32-ssDNA interactions and stabil-
ize UvsX-ssDNA interactions (17,18,24,25). Previous
studies of the UvsYgssa and UvsYkssa reoa mutants,
which bind weakly to ssDNA, established that UvsY-
ssDNA interactions are the major factor controlling
UvsY stabilization of UvsX-ssDNA interactions, while
UvsY-UvsX protein—protein interactions play a minor
role in stabilizing UvsX—ssDNA interactions (18,27).
Many nucleic acid pathways channel their DNA or
RNA substrates through a series of hand-off transactions
in which a nucleic acid intermediate is passed directly from
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Figure 8. A double hand-off model for the mechanism of mediator protein UvsY in T4 presynaptic filament assembly. Adapted with modifications
from ref. (25). UvsY protein facilitates the loading of UvsX recombinase onto ssDNA and the concomitant displacement of Gp32 ssDNA-binding
protein from ssDNA. The figure shows UvsX loading and Gp32 displacement from the perspective of a single UvsY hexamer, as if looking down the
helical axis of a nascent presynaptic filament. The cooperative binding of Gp32 to ssDNA extends the polynucleotide lattice. The first hand-off occurs
as hexameric UvsY recognizes and binds to the extended ssDNA (step 1), then converts it into a wrapped conformation(s) (steps 2 and 3),
destabilizing Gp32-ssDNA interactions in the process. The UvsY-wrapped ssDNA complex is postulated to be in equilibrium between ‘closed’
and ‘open’ conformations (step 3), the latter of which is recognized by the ATP-bound form of UvsX protein to nucleate presynaptic filament
assembly (step 4) while displacing Gp32. (A) Steps 3 and 4 constitute a step-wise mechanism for Gp32 displacement and UvsX loading by UvsY,
which may occur under low-salt conditions. (B) Under high-salt conditions UvsY does not displace Gp32 from ssDNA directly, so filament assembly
likely occurs by a concerted mechanism in which synergistic action of UvsY and ATP-bound UvsX is required to displace Gp32. See text for details.

one protein in the pathway to the next without ever being
released as free nucleic acid (51-54). The advantages of
this strategy include: potential cytotoxic effects of the
nucleic acid intermediate are minimized by keeping it se-
questered; also the nucleic acid is protected from inappro-
priate degradation or side reactions. Evidence suggests
that ssDNA in recombination pathways is similarly chan-
neled (25). Based on the DNA-binding properties of the
three protein players, we propose that the loading of
UvsX recombinase onto Gp32-ssDNA complexes
proceeds through a series of at least two sequential
hand-off steps (Figure 8) (12,24,25): Gp32 first binds to
ssDNA and converts it into an extended form resembling
the mechanically stretched DNA that was sampled in
single-molecule experiments. The first hand-off occurs as
UvsY recognizes and binds to the extended ssDNA, then
converts it into a wrapped form that destabilizes Gp32—
ssDNA interactions. The UvsY-wrapped ssDNA complex
is postulated to be in equilibrium between ‘closed’ and
‘open’ states (25). The closed form is the one that desta-
bilizes Gp32-ssDNA interactions, and it is inaccessible
to UvsX. The open form is optimal for UvsX-ssDNA
interactions. The second hand-off occurs as the ATP-
bound form of UvsX recognizes and binds to the open
UvsY-ssDNA structure, nucleating or propagating a
UvsX—ssDNA filament while inducing Gp32 to leave.
Conceivably UvsX loading/Gp32 displacement could
occur either in a stepwise fashion (Figure 8A) or in a con-
certed fashion (Figure 8B) depending on solution variables

including salt concentration (24,25). Superimposed on the
underlying hand-off mechanism are effects involving
UvsX cooperativity (55) and a nucleotide exchange
factor activity of UvsY (25) that have not been fully
explored. Also, linking ATP hydrolysis by UvsX to the
hand-off scheme creates dynamic instability in presynaptic
filaments that may be linked to filament turnover, trans-
location, or DNA strand exchange activity (12,13).

Implications for other recombination mediator proteins

Previously, recombination mediator proteins have been
thought of primarily as factors that facilitate the
exchange of bound SSB proteins for recombinase on
ssDNA (10). Results of this study suggest an additional
function for RMPs: that of recruiting recombinases onto
ssDNA while minimizing inappropriate recombinase—
dsDNA interactions during the presynaptic phase of hom-
ologous recombination. The universal role of RMPs
in promoting recombinase—ssDNA assembly suggests
that different RMPs may share common mechanistic
features. It is noteworthy that, like UvsY, many other
well-characterized RMPs have oligomeric structures with
multiple ssDNA-binding sites. Bacterial RMPs include
the RecO and RecR proteins which function together
as hetero-oligomers (56,57). The RecR protein of
Deinococcus radiodurans crystallizes as a tetrameric ring,
exhibits both ssDNA- and dsDNA-binding activity, and
interacts with RecO, whereas RecO itself contains multiple
DNA-binding sites (58,59). Eukaryotic RMPs include
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the Rad52 proteins, the human ortholog of which appears
to function as a heptameric ring, and ssDNA is proposed
to wind around the ring structure (60-62). Therefore
organizing ssDNA by wrapping may be a common
element of the function of certain homo- or
hetero-oligomeric RMPs.

Other eukaryotic proteins with RMP activity include
Rad51 paralogs and the tumor suppressor gene product
Brca2 (63). Rad51 paralogs (Rad55, Rad57 in
Saccharomyces cerevisiae; Rad51B, Rad51C, Rad5ID,
Xrec2, Xrec3 in humans) exist as heterodimers or oligo-
mers (64,65). Subsets of the human Rad51 paralogs exist
in two different ring-shaped complexes, BCDX2 and CX3,
and bind strongly to Holliday junctions (66). Other
aspects of their DNA-binding activities are incompletely
understood. Brca2 is thought to function as a monomer;
nevertheless it contains three OB fold motifs that bind
ssDNA, as well as sites for structure-specific DNA
binding (67). So it remains a possibility that Brca2, in
addition to its well-characterized protein-protein inter-
actions with Rad51 (68), also promotes recombination
through changes in ssDNA structure.
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