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Tertiary lymphoid structures (TLSs) display phenotypic and functional characteristics of secondary lymphoid organs, and often

develop in tissues affected by chronic inflammation, as well as in certain inflammation-associated cancers where they are

prognostic of improved patient survival. However, the mechanisms that govern the development of tumour-associated TLSs

remain ill-defined. Here, we observed tumour-associated TLSs in a preclinical mouse model (gp130F/F) of gastric cancer, where

tumourigenesis is dependent on hyperactive STAT3 signalling through the common IL-6 family signalling receptor, gp130. Gas-

tric tumourigenesis was associated with the development of B and T cell-rich submucosal lymphoid aggregates, containing

CD211 cellular networks and high endothelial venules. Temporally, TLS formation coincided with the development of gastric

adenomas and induction of homeostatic chemokines including Cxcl13, Ccl19 and Ccl21. Reflecting the requirement of gp130-

driven STAT3 signalling for gastric tumourigenesis, submucosal TLS development was also STAT3-dependent, but independent

of the cytokine IL-17 which has been linked with lymphoid neogenesis in chronic inflammation and autoimmunity. Interest-

ingly, upregulated lymphoid chemokine expression and TLS formation were also observed in a chronic gastritis model induced

by Helicobacter felis infection. Tumour-associated TLSs were also observed in patients with intestinal-type gastric cancer, and

a gene signature linked with TLS development in gp130F/F mice was associated with advanced clinical disease, but was not

prognostic of patient survival. Collectively, our in vivo data reveal that hyperactive gp130-STAT3 signalling closely links gastric

tumourigenesis with lymphoid neogenesis, and while a TLS gene signature was associated with advanced gastric cancer in

patients, it did not indicate a favourable prognosis.

Introduction
Gastric cancer (GC) is the third most lethal cancer worldwide
and affects over half a million people per year.1 Chronic infec-
tion with Helicobacter pylori accounts for >75% of GC, and a

well-established causal relationship exists between H. pylori-
triggered immune dysregulation and GC progression.1 Thus,
GC represents a growing number of cancers including colon,
lung, liver and prostate where chronic inflammation is a

Key words: gastric cancer, tertiary lymphoid structures, ectopic lymphoid structures, STAT3, interleukin-17

Additional Supporting Information may be found in the online version of this article.

Conflict of interest: No conflicts of interest are declared.

Grant sponsor: Arthritis Research UK; Grant number: 20305; Grant sponsor: Medical Research Council; Grant sponsor: The Wellcome

Trust ISSF; Grant sponsor: Cancer Research UK Cardiff Centre; Grant sponsor: Victorian Government’s Operational Infrastructure

Support Program; Grant sponsor: National Health and Medical Research Council of Australia (NHMRC); Grant sponsor: NHMRC Senior

Research Fellowships; Grant sponsor: Australian Government Australian Postgraduate Award; Grant sponsor: Life Sciences Research

Network Wales; Grant sponsor: International Postgraduate Scholarship (Monash University)

DOI: 10.1002/ijc.31298

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and

reproduction in any medium, provided the original work is properly cited.

History: Received 5 Oct 2017; Accepted 30 Jan 2018; Online 8 Feb 2018

Correspondence to: Gareth W. Jones, Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff,

CF14 4XN, UK, Tel.: 144 29 2068 7303, E-mail: jonesGW6@cf.ac.uk; or Brendan J. Jenkins, Centre for Innate Immunity and Infectious

Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia, Tel.: 161 3 8572 2740, E-mail: brendan.

jenkins@hudson.org.au

T
um

or
Im

m
un

ol
og

y
an

d
M
ic
ro
en
vi
ro
n
m
en
t

Int. J. Cancer: 143, 167–178 (2018) VC 2018 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of
UICC

International Journal of Cancer

IJC

http://orcid.org/0000-0002-7552-4656
http://orcid.org/0000-0002-0125-4841
http://creativecommons.org/licenses/by/4.0/


prominent feature. Two major contributing factors to the poor
overall survival rate (<25%) in GC are late diagnosis and the
limited effectiveness of current treatment options. These factors
are compounded by the heterogeneity of the host mucosal
immune response and the diverse molecular complexity of gas-
tric adenocarcinomas.2,3 Thus, intra- and inter-tumour hetero-
geneity present challenges to identifying robust biomarkers,
that can aid early detection of disease and inform personalised
treatment strategies for GC patients.

Persistent non-resolving gastritis, associated with defective
anti-inflammatory control and a failure to eradicate microbial
pathogens, provides a microenvironment that supports acceler-
ated tumour progression, invasion of surrounding tissues,
angiogenesis and metastasis.1 However, the mechanisms that
link chronic inflammation to the development and progression
of GC are ill-defined. Tertiary lymphoid structures (TLSs; also
called ectopic lymphoid structures, ELSs) are inducible lym-
phoid aggregates that phenotypically and functionally resemble
secondary lymphoid organs.4 TLSs can develop in tissues
where persistent inflammation is present, and a correlation
between high TLS densities and prolonged patient survival has
been reported for several cancers including breast,5,6 lung,7,8

melanoma,9 pancreatic10 and colorectal.11,12 TLS gene signa-
tures, that include homeostatic chemokines such as CXCL13,
CCL19 and CCL21, have the potential to represent prognostic
indicators of cancer progression in melanoma13 and colorectal
cancer.14,15 Several studies propose that tumour-associated
TLSs provide a local environment for establishing and main-
taining anti-tumour immunity.4,12 For example, clonal expan-
sion of interferon-(IFN)-g producing T cells reactive to
tumour antigens, which inhibit tumour growth, have been
observed in experimental mouse melanoma.16,17 Improved
patient survival in non-small-cell lung carcinoma has also
been linked with TLSs, where follicular B cells and plasma
cells show antibody specificity to tumour antigens.8 However,
TLS involvement and activity may only have prognostic value
in certain stages of tumour development or for certain types
of cancer.11,18,19 Thus, greater mechanistic insights are required
to establish the link between TLS formation, tumour progres-
sion and clinical outcome.

Recently, tumour-associated TLSs were described in GC,
and histological evidence of a coordinated local B cell
(CD201) and T helper (Th)1 (T-bet1) response was associated
with improved relapse-free survival.20 Therefore, TLSs repre-
sent attractive immunomodulatory targets for improving anti-

tumour immunity.4,12 Members of the IL-6 cytokine family,
including IL-6 and IL-27, and other cytokines such as IL-21
that activate the oncogenic latent transcription factor STAT3,
have emerged as regulators of TLS development, maintenance
and activity.21–23 We have previously generated gp130F/F mice,
which spontaneously develop inflammation-associated intesti-
nal-type gastric tumours.24,25 At the molecular level, these
mice contain a knock-in phenylalanine mutation at tyrosine
757 in the cytoplasmic domain of gp130, the common IL-6
family signalling receptor, disrupts the negative feedback
imposed on gp130 signalling by suppressor of cytokine signal-
ling (SOCS)3. Consequently, gastric tumourigenesis in gp130F/F

mice is driven by STAT3 hyperactivation in response to the
IL-6 family cytokine, IL-11.25,26 The clinical relevance of the
gp130F/F mouse model is illustrated by the observation that
human GC tumours are associated with high IL-11 expression
and STAT3 hyperactivation.27,28 Using the gp130F/F GC model,
we reveal that the gp130/STAT3 signalling axis drives TLS
development concomitant with a lymphoid chemokine signa-
ture, which although is associated with advanced GC in
patients, does not indicate a favourable prognosis.

Materials and Methods
Patient samples

Antral gastric biopsies were collected from GC patients
enrolled at Monash Medical Centre (n5 6) undergoing surgi-
cal resection. In addition, tissue biopsies were collected by
endoscopy (performed at Monash Medical Centre) from the
gastric antrum and corpus regions of individuals displaying
gastritis with intestinal metaplasia (n5 10). Biopsies were
stored in 10% formalin for histopathological assessment and
H. pylori status using the updated version of the Sydney Sys-
tem.29,30 Full, informed patient consent was obtained and
biopsy collections were approved by the Monash Health and
Monash University Human Research Ethics Committees.

Mice

The gp130F/F mice and their compound mutant derivatives
either heterozygous for Stat3 (gp130F/F:Stat36) or deficient in
Il17a (gp130F/F:Il17a2/2), have been described previ-
ously.24,26,30 Where appropriate, experiments used age-
matched wild-type (WT) mice. All mice were on a mixed
C57BL/6 3 129/Sv background and were housed under spe-
cific pathogen-free conditions. Experiments were approved by

What’s new?

Tertiary lymphoid structures (TLSs) develop in chronically inflamed tissues, and have been associated with improved survival

in certain cancer patients. Here, the authors examined mechanisms governing the development of submucosal TLSs in the

gp130F/F mouse model of gastric cancer and in patients afflicted with intestinal-type disease. TLS formation was observed

both mice and patients but a TLS gene signature identified in mice did not predict improved patient survival, pointing to need

for more research into TLSs and gastric cancer prognosis.
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the Monash Medical Centre ‘A’ Monash University Animal
Ethics Committee.

Helicobacter infection model

Helicobacter felis suspensions for mouse inoculation were
prepared by harvesting bacteria from horse blood agar plates
using Brain Heart Infusion broth (BHI; Oxoid).31 Six- to
eight-week-old SPF wild-type 129Sv 3 C57BL/6 mice were
intragastrically administered a single 100 mL aliquot of either
control BHI, or approximately 107 H. felis bacteria, using
polyethylene catheters.31 Infection was confirmed at 16 weeks
by polymerase chain reaction (PCR) amplification of the H.
felis flaB gene (see Supporting Information Table S1).

Histology and immunohistochemistry

Formalin-fixed paraffin-embedded mouse stomachs were sec-
tioned and stained with H&E for histology as described previ-
ously.30 Submucosal lymphoid aggregates were characterised in
serial sections by immunohistochemistry, using antibodies spe-
cific to mouse B220 (BD Biosciences, UK), CD3 (Dako, Agilent
Technologies, UK), podoplanin (BioLegend, UK), p-
Y705STAT3 (Cell Signaling Technology, from New England
BioLabs, UK), CD21 (Santa Cruz Biotechnology, Germany),
CXCL13 (R&D Systems, UK), PNAd (MECA-79), Bcl-6 (Santa
Cruz Biotechnology) and Ki67 (Abcam, UK). Lymphoid aggre-
gates in human GC biopsies were detected using antibodies
against CD20 and CD3 (both from Dako). Antigen unmasking
and blockade of endogenous peroxidase activity, endogenous
biotin and non-specific antibody binding was performed as
described previously.22 Antibody labelling was detected using
biotinylated secondary antibodies (Dako), the Vectastain ABC
kit and diaminobenzidine chromagen (DAB) (Vector Labora-
tories, UK). For the staining of multiple antigens in the same
tissue section, DAB chromagen was used in conjunction with
VIP (Vector Laboratories). For the detection of germinal
centres, sections were first incubated with biotinylated peanut
agglutinin before staining using the Vectastain ABC kit and
DAB chromagen (all from Vector Laboratories). The Leica
QWin microscope imaging software was used to quantify posi-
tive staining.

RNA isolation and quantitative real-time PCR (qPCR)

Total RNA was recovered from snap-frozen gastric antrum
and tumour tissues using TRIzol reagent (Thermo Fisher Sci-
entific, Australia) followed by DNase treatment. The Tran-
scriptor High Fidelity cDNA Synthesis Kit (Roche, Australia)
was used to prepare cDNA. For RNA extraction from laser
microdissected gastric tissues, stroma samples were firstly col-
lected from OCT-embedded frozen sections stained with
toluidine blue using laser microdissection (Leica Microsys-
tems, Japan), following which total RNA was extracted using
the miRNeasy microkit (Qiagen, Japan) and then reverse
transcribed with the PrimeScript RT Reagent Kit (Takara,
Japan). SYBR Green (Invitrogen, Thermo Fisher Scientific,
Australia) detection of transcript amplification was performed

on the 7900HT Fast RT-PCR System (Applied Biosystems,
Thermo Fisher Scientific, Australia). Gene expression analysis
was performed using the Sequence Detection System Version
2.3 software (Applied Biosystems). Primer sequences for
amplification of target gene transcripts and housekeeping 18S
rRNA are presented in Supporting Information Table S1.

Bioinformatic analysis of intestinal-type GC patient

cohorts

Clinical information and mRNA sequencing data were
obtained from The Cancer Genome Atlas (TCGA) data portal
(https://portal.gdc.cancer.gov/projects/TCGA-STAD). Align-
ment of sample identifiers yielded 389 tumour cases, with 176
intestinal-type GC patients. Matched tumour and non-tumour
tissues were available for 35 GC patients. Clinicopathological
features and patient demographics are presented in Supporting
Information Table S2. We used reads per kilobase of exon per
million mapped reads (RPKM)32 to represent expression levels.
Single-sample Gene Set Enrichment Analysis (ssGSEA)33 was
used to investigate a three-gene signature (CXCL13, CCL19,
CCL21) linked with TLS development in gp130F/F mice. This
data was also validated in an independent cohort of intestinal-
type GC patients from the Asian Cancer Research Group
(ACRG; GEO accession number GSE62254).34

Statistics

Statistical analysis was performed using GraphPad Prism
software. For normally distributed data, statistical significance
between groups was determined using one-way ANOVA with
Tukey’s multiple comparison’s test. Where genotypes were
compared across multiple time points, a two-way analysis of
variance (ANOVA) was performed. For data that was not
normally distributed, a non-parametric Mann–Whitney U-
test was performed. A p< 0.05 was considered statistically
significant. Graphs are presented as mean6 standard error of
the mean (SEM).

Results
Gastric tumourigenesis in gp130F/F mice is associated with

submucosal TLS development

The spontaneous development of gastric antrum adenomas
in gp130F/F mice is associated with inflammatory infiltrates
and accumulations of large extra-tumoural inflammatory
aggregates in the gastric submucosa, the latter of which are
absent in age-matched 6-month-old control WT (gp1301/1)
mice24–26 (Figs. 1a and 1b). We initially employed immuno-
histochemistry to assess whether these submucosal inflamma-
tory aggregates were characteristic of TLSs. Indeed, consistent
with the cellular features of tumour-associated TLSs, immu-
nohistochemistry revealed a typical pattern of lymphoid orga-
nisation, with a co-localisation of B2201 B cells and CD31 T
cells within cellular aggregates (Fig. 1c). Further characterisa-
tion identified the presence of cellular CD211 networks and
peripheral lymph node addressin (PNAd)1 high endothelial
venules (HEV) (Fig. 1d). TLSs also contained podoplanin
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(Pdpn; also called gp38) expressing cells, marking the pres-
ence of stromal cells required for lymphoid organ develop-
ment, and the support of lymphocyte migration and antigen

presentation4,35 (Fig. 1d). The presence of CXCL13-
expressing cells, a homeostatic chemokine involved in TLS
and secondary lymphoid organ development, was also

Figure 1.
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observed (Fig. 1d). Consistent with the presence of CD211

networks, TLSs formed reactive germinal centres as detected
by peanut agglutinin (PNA) and Bcl-6 staining in sequential
tissue sections (Fig. 1e), and the presence of Ki671 proliferat-
ing cells characteristic of germinal centre B cells (Fig. 1f).
Interestingly, the TLSs observed were heterogeneous, ranging
from dense aggregates of co-localised B and T cells to com-
partmentalised TLSs displaying B and T cell segregation (Fig.
1g). While this suggests the presence of TLSs with differing
degree of maturity, immunohistochemical staining of sequen-
tial sections revealed that compartmentalised TLSs, as well as
those lacking fully distinct B and T cell zones, developed
reactive germinal centres (Fig. 1g). These cellular features
consistent with the presence of TLSs were also supported at
the molecular level, whereby qPCR confirmed the expression
of Cxcl13, and that of Ccl19, Cxcl12 and Ccl21 in laser micro-
dissected submucosal lymphoid aggregates (Fig. 1h). Thus,
tumourigenesis in gp130F/F mice is associated with the pres-
ence of organised lymphoid-rich aggregates within the sub-
mucosa of the gastric antrum. The cellular composition and
gene expression pattern displayed by these regions closely
resemble TLSs.

TLS development during gastric tumourigenesis coincides

with the temporal induction of homeostatic chemokines

The development of TLSs is highly disease- and context-
dependent,12 and while their formation is linked with a num-
ber of cancers, their precise contribution to inflammation-
driven tumourigenesis in GC is unknown. Since the sponta-
neous development of gastric adenomas in gp130F/F mice
occurs by 6 weeks of age,24,25 we investigated whether hyper-
active gp130 signalling induced submucosal TLSs prior to the
development of gastric adenomas by staining for the presence
of TLSs in 4-week-, 3-month- and 6-month-old mice.

Immunohistochemistry for CD3 and B220 in 4-week-old
gp130F/F mice that had not yet developed gastric adenomas
revealed that TLSs were absent (Fig. 2a). In older 3- and 6-
month-old gp130F/F mice that had developed gastric tumours,
submucosal TLSs were clearly identified as dense accumula-
tions of T and B cells (Fig. 2a). While B2201 B cells were
mostly confined to lymphoid aggregates, T cells could also be
detected as diffuse infiltrates throughout the gastric submu-
cosa (Fig. 2a). Given that B cells were most prominently

associated with TLSs, lymphoid aggregates were quantified
based on B2201 immunohistochemistry staining. Both the
total number of lymphoid aggregates, the total area of sub-
mucosal TLSs and the average size of TLSs was significantly
increased in gp130F/F mice compared to control WT mice
(Figs. 2b–2d), with no differences in these parameters
between 3- and 6-month-old gp130F/F mice. Thus, TLS devel-
opment in response to hyperactive gp130 signalling is tempo-
rally linked with the establishment of gastric adenomas.

Homeostatic chemokines play a central role in the devel-
opment of secondary lymphoid organs and TLSs,4,12 and our
earlier data revealed transcripts for Cxcl13, Ccl19, Ccl21 and
Cxcl12 in laser microdissected TLSs from 6-month-old
gp130F/F mice with well-established gastric tumours (see Fig.
1h). To determine whether TLS development was associated
with the temporal induction of key lymphoid chemokines, we
quantified Cxcl13, Ccl19, Ccl21 and Cxcl12 in the gastric
antrum of gp130F/F and control WT mice (Fig. 3). Notably,
in 4-week-old gp130F/F mice the expression of Cxcl13, Ccl21
and Cxcl12 was comparable to WT mice (Fig. 3a). Further-
more, at this early time point that preceded the development
of gastric adenomas and submucosal TLSs, transcripts for the
homeostatic chemokine Ccl19 were not detected. Expression
of Bcl6, the master transcriptional regulator of T follicular
helper (Tfh) cells and germinal centre B cells, was also com-
parable between 4-week-old gp130F/F and WT mice (Fig. 3a).
In 3- and 6-month-old gp130F/F mice, TLS development was
associated with increased expression of Cxcl13, Ccl19 and
Ccl21 in the gastric antrum tissue (FFA; primarily comprising
submucosal tissue) when compared to control WT antrum,
or when expression was compared between the gp130F/F gas-
tric antrum and mucosal tumour (FFT) tissues of these mice
(Figs. 3b and 3c). Consistent with the detection of Bcl-6 at
tumour-associated TLSs (see Fig. 1e), Bcl6 expression was
increased in gp130F/F antrum tissue suggesting the presence
of germinal centre B cells or Tfh cells, and was also highly
expressed in the tumours of gp130F/F mice (Figs. 3b and 3c).
However, no significant differences were observed for the
expression of the Th17/Tfh effector cytokine, IL-21 (Fig. 3d).
We recently described the cytokine IL-27 as an inhibitor of
synovial TLS development in inflammatory arthritis.22 The
expression of Il27, which encodes for the IL-27p28 subunit,
was also comparable between WT and gp130F/F stomach

Figure 1. Gastric tumourigenesis in gp130F/F mice is associated with TLS development. (a and b) Representative haematoxylin and eosin

(H&E) stained cross-sections through the antral gastric region of 6-month-old gp1301/1 (WT) and gp130F/F (FF) mice. Boxed region in (a)

indicates cellular aggregates in the tumoural submucosa of gp130F/F mice. (c) Representative immunohistochemistry of serial sequential

sections showing co-localisation of B220 (B cells) and CD3 (T cells) at lymphoid aggregates in 6-month-old gp130F/F mice. (d) Representa-

tive immunohistochemistry of CD21, PNAd1 HEV with high-power image inset, podoplanin (Pdpn) and CXCL13 at lymphoid aggregates in 6-

month-old gp130F/F mice. (e and f) Representative immunohistochemistry of peanut agglutinin (PNA) and Bcl-6 in sequential sections (e)

and the proliferative marker Ki67 (f) at germinal centres in 6-month-old gp130F/F mice. (g) Dual staining for CD3 (purple) and B220 (brown)

(left image) and PNA (right image) in sequential sections at lymphoid aggregates in 6-month-old gp130F/F mice. PNA staining at germinal

centres is seen in lymphoid aggregates displaying segregated B and T cell zones, and in less organised cellular aggregates. (h) Quantitative

RT-PCR (qPCR) analyses of Cxcl13, Ccl19, Cxcl12 and Ccl21 normalised to 18S rRNA and displayed as median qPCR cycle threshold (DCT) in

RNA purified from laser capture microdissected submucosal lymphoid aggregates in 6-month-old gp130F/F mice (n 5 3). *p<0.05;

**p<0.01. Scale bars: (a) 0.5 cm; (b and c) 500 mm; (d–g) 125 mm. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 2. Temporal control of lymphoid neogenesis coincides with gastric tumour development in gp130F/F mice. (a) Representative immu-

nohistochemistry of T cell (CD3) and B cell (B220) staining of lymphoid aggregates at time points representing pre (4-week old), early (3-

month old) and advanced (6-month old) gastric tumour development in gp130F/F mice. (b–d) The number (b), total area (c) and average

size (d) of lymphoid aggregates were quantified in antral tissue cross-sections of wild-type (WT) and gp130F/F (FF) mice following immuno-

histochemical detection of B220 (n 5 3/group at 4 weeks, n 5 3/group at 3 months, n 5 6–8/group at 6 months). Graphs represent mean

6SEM. p-Values (*p<0.05; ***p<0.001) reveal a significant increase in the quantification of TLSs in the gp130F/F compared to wild-type

mice (G, genotype) by two-way ANOVA. A significant increase in the quantification of TLSs is also observed over time (T, time point)

between early (4 weeks) and late time points (3 and 6 months). Scale bars: 500 mm. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Tumour-associated TLS development is accompanied with heightened expression of lymphoid chemokines. Temporal qPCR analy-

sis of TLS-associated genes in the gastric antrum of gp1301/1 mice (WT) and gp130F/F mice (FFA). Relative gene expression is presented in

mice without GC at 4 weeks (a), 3 months (b) and 6 months (c) of age. Expression of the cytokines Il21 (d) and Il27 (e) was also deter-

mined in the gastric antrum of 6-month-old gp130F/F and WT mice. In 3- and 6-month-old gp130F/F mice, gene expression was also deter-

mined in the gastric tumour tissue (FFT) (n 5 4 per group at 4 weeks, n 5 7 per group at 3 months, n 5 6–7 per group at 6 months). Graphs

represent mean 6 SEM. *p<0.05; **p<0.01; ***p<0.001.
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antrum (Fig. 3e), suggesting that TLS development in gp130F/F

mice was not linked to a loss of an inhibitory IL-27 signal.
Collectively, these observations suggest that a temporal induc-
tion of homeostatic chemokines during gastric tumourigenesis
drives the development and maintenance of TLSs.

Given that chronic gastritis as a consequence of H. pylori
infection is linked with the development of >75% of intestinal-
type GC cases,36 we also assessed formation of TLSs in a
chronic Helicobacter infection model. Upon infection with H.
felis, 100% of WT mice developed submucosal TLSs (Figs. 4a–
4d). Consistent with the clinical presence of mucosal lymphoid
aggregates and the expression of homeostatic chemokines in H.
pylori-infected individuals,37 TLS development in H. felis-
infected mice was associated with the heightened expression of
Cxcl13, Ccl19, Bcl6 and Il17a (Fig. 4e). Thus, these data suggest
that TLS formation is a feature of Helicobacter infection-
induced gastritis prior to the onset of gastric tumours.

Activation of gp130/STAT3 signalling is essential for TLS

development in gp130F/F mice, but lymphoid neogenesis is

independent of IL-17

Cytokines that activate STAT3 have previously been linked
with TLS development and maintenance, including IL-6, IL-21
and IL-22.21,23,38,39 Consistent with a potential role for gp130-
mediated STAT3 activity in TLS development, immunohisto-
chemistry of sections from 6-month-old gp130F/F mice revealed
the presence of phosphorylated tyrosine (p-Y)705STAT31 cells

in submucosal TLSs (Supporting Information Fig. S1). While
p-Y705STAT3 was detected at TLSs, STAT3 activity was not
restricted to lymphoid aggregates but was also found in
regions of diffuse lymphocyte infiltration. In light of the above
observations, we genetically defined whether reducing endoge-
nous STAT3 activity in gp130F/F mice, which we have previ-
ously shown abrogates the development of gastric adenomas,25

would influence submucosal TLS development. Indeed, the
close association between gastric tumourigenesis and submuco-
sal lymphoid neogenesis was further confirmed by the absence
of TLSs in the gastric antrum of gp130F/F:Stat36 mice (Fig. 5).
Thus, the development of gastric adenomas in gp130F/F mice
and the associated development of TLSs are tightly coupled,
and are dependent on hyperactivation of STAT3 via gp130
signalling.

Effector Th17 cell responses and IL-17 have emerged as
mediators of lymphoid neogenesis in various chronic inflam-
matory or autoimmune models.35,40,41 Interestingly, analysis
of non-tumour tissue from GC patients in TCGA data sets
revealed that IL17A expression correlated significantly with
that of CXCL13 and CCL19 (Supporting Information Fig.
S2). Given that gp130-mediated STAT3 activity drives Th17
cell responses, and that we have previously described elevated
expression of the Th17-associated markers Il17a, Il23 and
Rorct in the gp130F/F GC model,30 we determined whether
Il17a was required for the development of tumour-associated
TLSs. Notably, the formation of TLSs remained intact

Figure 4. Chronic Helicobacter infection drives TLS development in the absence of gastric tumourigenesis. (a) Representative immunohisto-

chemistry for CD31 T cells and B2201 B cells in the gastric submucosa of WT mice intragastrically treated with BHI broth (top panel) or

H. felis (middle and bottom panels). (b–d) The number (b), total area (c) and average size (d) of lymphoid aggregates were quantified in

gastric tissue cross-sections following immunohistochemistry for B220 (n 5 3/group). (e) qPCR for the indicated genes was normalised to

18S rRNA in the gastric antrum of H. felis-infected and control mice (n 5 5/group). Graphs represent mean 6 SEM. *p<0.05; **p<0.01.

Scale bars: 500 mm top and middle panels, 125 mm bottom panel. [Color figure can be viewed at wileyonlinelibrary.com]
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following the genetic ablation of IL-17 in gp130F/F:Il17a2/2

mice (Fig. 5 and Supporting Information Fig. S3). Therefore,
the development of TLSs in the gp130F/F model of
inflammation-associated GC is not IL-17 dependent.

A chemokine gene signature linked with TLS development

in gp130F/F mice is associated with advanced GC in

patients

Gene signatures of TLS development or activity have shown
prognostic value in certain cancers.13–15 We therefore evalu-
ated whether lymphoid aggregates reminiscent of TLSs were
present in biopsy samples from intestinal-type GC patients.
In all patients with adenocarcinomas, extra-tumoural CD201

B cell- and CD31 T cell-rich lymphoid aggregates were
observed in the gastric submucosa (Fig. 6a and Supporting

Information Fig. S4). Consistent with the appearance of TLSs
in the gp130F/F model of GC, TLSs in clinical disease ranged
from aggregates of co-localised B and T cells to TLSs display-
ing B and T cell segregation (Fig. 6a, right panel). TLSs were
not observed in gastritis patients with precursor lesions such
as intestinal metaplasia.

To determine the clinicopathological relevance of TLSs in
intestinal-type human GC, we investigated the expression of
a 3-gene TLS signature comprising the homeostatic chemo-
kines CXCL13, CCL19 and CCL21 (identified in the gp130F/F

mouse model; see Fig. 3) in TCGA data sets (Figs. 6b–6d).
Here, compared to patients where tumour growth was con-
fined to the mucosa and submucosa (stage T1), increased
expression of the 3-gene signature was observed in patients
where the tumour had invaded the subserosal layer, the

Figure 5. Development of tumour-associated TLSs in gp130F/F mice is STAT3 driven but is independent of IL-17. H&E and immunohisto-

chemistry for B cells (B220) and T cells (CD3) in tumour-associated TLSs of 6-month-old gp1301/1 (WT), gp130F/F (FF), gp130F/F:Stat31/2

(FF:St3) and gp130F/F:IL17a2/2 (FF:Il17) mice (representative images from n 5 6 gp1301/1, n 5 5 gp130F/F, n 5 4 gp130F/F:IL17a2/2, n 5 4

gp130F/F:Stat31/2). Scale bars: 500 mm. [Color figure can be viewed at wileyonlinelibrary.com]
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serosa or nearby organs or structures (stages T2, T3 and T4)
(Fig. 6b). Consistent with the temporal development of TLSs
during STAT3-driven tumourigenesis in gp130F/F mice, the
TLS gene signature was enriched in patients with more
advanced stage GC (stages ii, iii and iv) (Fig. 6c), and corre-
lated with the expression of the STAT3 target gene, SOCS3
(Supporting Information Fig. S5). While an association was
observed between the expression of the CXCL13/CCL19/
CCL21 signature and tumour growth (T stage), no association
was observed with lymph node involvement (N stage) or
degree of metastasis (M stage) (Supporting Information Fig.
S6). Similar trends were observed when the expression of
CXCL13, CCL19 and CCL21 were individually assessed in
TCGA data sets for intestinal-type GC (Supporting Informa-
tion Fig. S6). Finally, when we evaluated the expression of
the TLS signature genes in relation to patient survival, no sta-
tistical significance was observed (Fig. 6d and Supporting
Information Fig. S6). Similarly, no statistical significance was
observed when the TLS gene signature was evaluated in an
independent Asian Cancer Research Group (ACRG) cohort
of GC patients (GEO accession GSE62254; Supporting

Information Fig. S7).34 Thus, mirroring the temporal devel-
opment of TLSs in established disease in the gp130F/F GC
model, TLSs and an associated 3-gene signature were also
observed in human GC, albeit without prognostic value.

Discussion
Over the last decade, an appreciation that TLSs are associated
with cancers has resulted in an increasing interest in
understanding their development and potential as immuno-
modulatory targets for enhancing anti-tumour immunity. His-
topathological evaluation of tumour biopsies has revealed a
positive correlation between the frequency of tumour-associated
TLSs and patient survival in numerous cancers.5–11 It is there-
fore proposed that TLSs control the recruitment and induction
of tumour-specific T and B cell responses that can limit cancer
progression.4,12 While these studies emphasise the role of TLSs
in anti-tumour immunity, the mechanisms governing TLS
development remain poorly defined. Using a clinically relevant
mouse model of STAT3-driven GC,24–26 we demonstrate that
tumourigenesis coincides with the development of organised
TLSs. Here, TLS formation was accompanied by the expression

Figure 6. A TLS gene signature is associated with advanced GC in patients, but has no prognostic significance. (a) Representative immuno-

histochemistry for CD201 B cells and CD31 T cells in serial sections of human GC tissue biopsies showing the presence of TLSs in the

tumoural submucosa (Scale bars: 500 mm left images; 125 mm right images). Sequential sections on the right show higher-power images

of a TLS (corresponding to the boxed regions in the left panel) displaying T and B cell segregation. (b–d) Evaluation of the expression of a

TLS gene signature comprising CXCL13, CCL19 and CCL21 in TCGA data sets of 176 GC patients with intestinal-type GC. An association

between the TLS gene signature and tumour growth (b), the stage of GC (c) and patient survival (d) is presented. *p<0.05; **p<0.01;

***p<0.001; ****p<0.0001. Scale bars: 500 mm (left); 125 mm (right). [Color figure can be viewed at wileyonlinelibrary.com]
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of homeostatic chemokines (e.g., Cxcl13, Ccl19 and Ccl21)
linked with the arrangement of lymphocytes, stromal cells and
monocytic cells within lymphoid structures. Consistent with
our previous studies that highlight submucosal inflammation as
an ever-present feature of gastric tumourigenesis,24–26 while
TLS development and tumourigenesis were closely linked in
gp130F/F mice, gastritis as a result of Helicobacter infection
could also trigger lymphoid neogenesis.

Recently, a histological evaluation of GC patients revealed
that the presence of peri-tumoural CD201 B cell aggregates
was associated with improved relapse-free survival.20 Thus,
GC progression is influenced by the development and activity
of immune cell networks within tumour-associated TLSs.
Detection of a TLS-associated gene signature may therefore
act as a reliable prognostic indicator of patient outcome.
Notably, the expression of TLS-related genes including
CXCL13, CCL19 and CCL21, has been linked with a good
prognosis in colorectal cancer14,15 and melanoma.13 Interest-
ingly, expression of a 3-gene TLS signature comprising
CXCL13, CCL19 and CCL21 was increased in patients with
advanced GC. Consistent with the heightened expression of
Il17a and lymphoid chemokines in the gp130F/F mouse model
of GC, IL17A expression also correlated with the 3-gene TLS
signature, CXCL13 and CCL19 in clinical disease. However,
the 3-gene TLS signature investigated herein did not predict
favourable GC patient outcomes. Consistent with this obser-
vation, a B cell metagene signature investigated in a recent
study of GC only had prognostic significance when combined
with a Th1 gene signature.20 In the same study, the authors
noted that while the histological presence of peri-tumoural
TLSs was linked with improved relapse-free survival, greater
prognostic value was observed when TLSs were associated
with the presence of T-bet1 tumour-infiltrating lymphocytes
marking a robust Th1 response.20 Thus, histopathological
evaluation of TLS development may have better prognostic
potential in GC than the use of B cell or TLS gene signatures.
To better exploit the therapeutic potential of TLSs, further
research is required to develop improved TLS gene signatures
that can mark the presence of robust anti-tumour responses.

Lymphokines that signal through gp130 are key regulators
of TLSs in chronic inflammatory conditions. For example,
transgenic overexpression of IL-6 and the IL-6 receptor
(IL-6R), which results in potent STAT3 activation, drives
CXCL13 production and TLS development in the lung.21 The
IL-6 related cytokine, IL-27, also utilises gp130 for signalling.
However while IL-6 is primarily pro-inflammatory, IL-27 can
preferentially activate STAT1 to exert suppressive effects on
adaptive immune cells.42 For example, IL-27 inhibits effector
T cell responses, counteracts the IL-6/STAT3 driven differen-
tiation of Th17 cells and suppresses TLS development.22,42,43

Our analysis of gastric antrum in WT and gp130F/F mice
revealed a comparable expression of Il27, suggesting that the
development of tumour-associated TLSs was independent of
any inhibitory action potentially imposed by IL-27. The stud-
ies outlined above suggest that gp130-mediated STAT3

activation may be a key determinant of TLS development in
inflamed tissues. Consistent with this, both TLS development
and gastric tumourigenesis in gp130F/F mice were closely
linked, and were dependent on hyperactive STAT3 activity.
Normalisation of STAT3 levels in gp130F/F:Stat36 mice
inhibited both tumour development and lymphoid neogene-
sis. Notably, while STAT3 phosphorylation was clearly
detected in TLSs, STAT3 activation was not confined to these
sites but was also found in areas of diffuse lymphocyte infil-
tration. Therefore, despite a role for STAT3 activating cyto-
kines in lymphoid neogenesis,4,21,23,38,39 localised STAT3
activity remains a poor indicator of TLS involvement.

Many of the above STAT3-activating cytokines are linked
with the development, maintenance or effector function of
Th17 cells.44 This T cell subset, and its signature cytokine
IL-17, has been associated with TLS development in infection,
autoimmunity, allograft rejection and cancer.4,35,39–41 Never-
theless, a role for Th17/IL-17 in TLS development remains
controversial and is likely disease- and context-dependent. For
example, IL-17 drives the development of TLSs (called induced
bronchus associated lymphoid tissue; iBALT) in the lungs of
neonatal mice challenged with lipopolysaccharide.41 Compara-
ble studies show that the formation of iBALT in response to
Pseudomonas aeruginosa infection is IL-17 dependent.40 How-
ever, the development of iBALT following infection with mod-
ified vaccinia virus Ankara was unimpaired in the absence of
IL-17.40,45 A similar context-dependent role for IL-17 in TLS
development is observed in models of autoimmunity. Th17
cells and IL-17 play a prominent role in the development of
TLSs during experimental autoimmune encephalomyelitis,35

but are not central to lymphoid neogenesis in inflamed sali-
vary glands.38 Our data illustrates that while GC development
in gp130F/F mice is linked with the heightened expression of
the Th17-associated markers Il17a, Il23 and Rorct,30 the signa-
ture Th17 cytokine IL-17 is not required for gastric tumouri-
genesis or the development of submucosal TLSs. Nevertheless,
other cytokines linked with the Th17 programme may contrib-
ute to lymphoid neogenesis in GC. For example, IL-22 and
IL-23 have emerged as drivers of lymphoid neogenesis in other
inflammatory settings,4,35,38 and are linked with human GC
progression.30,46,47

Studies have demonstrated that coordinated B cell and
Th1 cell responses at TLSs favour improved patient outcomes
in GC and non-small cell lung carcinoma.7,20 While follicular
B cells within TLSs support humoral immunity, and can gen-
erate antibodies that recognise tumour antigens,8 they also
provide costimulatory signals that drive T cell priming and
expansion.48 Thus, an environment that favours Th1-type
responses at TLSs, as has been described in other types of
cancer,5,7,14,49 may be required to sustain anti-tumour
responses that favour improved patient outcomes. While the
tumour-associated TLSs observed in gp130F/F mice display B
and T cell compartmentalisation and germinal centre reac-
tions, the failure to mount robust anti-tumour responses that
prevent tumourigenesis may relate to the location of TLSs.
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Tumour-associated TLSs were observed in the tumoural and
gastric submucosa of gp130F/F mice and humans with GC,
but were not seen in the tumour stroma. High densities of
intra-tumoural TLSs and HEV have been linked with
enhanced local Th1 responses and improved patient sur-
vival.6,50 By contrast, and consistent with the location of
TLSs in our study of GC, the presence of extra-tumoural
TLSs in colorectal cancer did not yield a positive prognosis
but reflected a pro-inflammatory microenvironment sur-
rounding tumours in advanced disease.18 Therefore, in some
cancers extra-tumoural TLSs may reflect a pathological con-
sequence of inflammation-associated tumourigenesis, rather
than markers of an effective anti-cancer response. Further
studies are thus required to better define the relationship
between the location of TLS development and patient prog-
nosis. In a previous study of TLSs in GC, a B cell gene signa-
ture representative of TLSs only provided prognostic value
when combined with a robust Th1 gene signature.20 There-
fore, in certain cancers, TLSs may mark an unsuccessful
attempt to establish anti-tumour immunity, and in some
cases even provide immunopathological microniches that
support cancer progression.19

In summary, our data show that gastric tumourigenesis as
a consequence of hyperactive gp130/STAT3 signalling, is

intrinsically linked with the development of submucosal TLSs
in gastric antrum tissue. A TLS gene signature was associated
with advanced disease in GC patients, but did not indicate
favourable prognosis. Given that TLSs and associated Th1
responses have emerged as predictors of improved patient
outcomes in certain cancers, further translational studies are
needed to define robust context-dependent biomarkers of
TLS activity. Such insight offers the opportunity to better
understand the role of TLSs in GC progression as a route to
improved patient diagnosis and treatment.
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