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Abstract: PMMA (Polymethylmethacrylate) is the material of choice to fabricate denture bases.
Recently, with the introduction of CAD-CAM and 3D printers in dentistry, new materials have been
proposed for complete denture manufacturing. Aim: This study compared the flexural strength
of different resins fabricated using different technologies (conventional, CAD-CAM-milled, and
3D-printed) and polymerization techniques. Methods: A total of 11 different resins were tested:
six PMMA conventional (Acrypol R, Acrypol LL, Acrypol HI, Acrypol Fast, Acryself and Acryslef
P), two milled obtained from UDMA PMMA disks (Ivotion disk and Aadva disk, control groups),
two 3D-printed PMMA resins (NextDent Denture 3D+, and SprintRayEU Denture Base), and one
3D-printed composite resin (GC Temp Print). Flexural strength was measured using a universal
testing machine. One-way ANOVA and Bonferroni post hoc tests were performed; the p-value was
set at 0.05 to consider statistically significant differences among the groups. Spearman test was used
to evaluate the correlation between polymerization technique and the flexural strength of 3D-printed
resins. Results: CAD-CAM-milled specimens showed the highest flexural strength (107.87 MPa for
UDMA) followed by 3D-printed composite resins (102.96 MPa). Furthermore, 3D-printed resins
polymerized for 40 min with the BB cure unit showed no statistically significant differences with
conventional resin groups. Moreover, in all the 3D-printed specimens, a high correlation between
polymerization technique and flexural strength was found. Conclusions: In terms of flexural strength,
the polymerization technique is a determinant for both acrylic and composite resins. Temp Print can
be a potential alternative to fabricating removable dentures and showed promising results when
used in combination with pink color resin powder.

Keywords: 3D printing; flexural strength; complete dentures

1. Introduction

Removable complete dentures represent, for edentulous patients, the least invasive and
most cost-effective prosthodontic rehabilitation [1]. Acrylic resins have been the material of
choice for denture bases since they were introduced in dentistry by Dr. Walter Wright and
the Vernon Brothers in Philadelphia in 1937. To this day, PMMA (polymethylmethacrylate)
remains the most used acrylic resin for denture base fabrication [2]. The PMMA used in the
dental field is conventionally obtained by mixing a liquid and a powder. The powder is
composed of repolymerized polymethylmethacrylate particles as well as a peroxide initiator.
The liquid component is made of a cross-linking agent, an inhibitor, and a monomer of
methyl methacrylate (MMA). In the transparent powder, pigments and other substances,
such as acrylic synthetic fibers and nylon, are added to imitate oral tissues [3].

PMMA gained popularity due to its good physicochemical properties as well as its
low cost and acceptable aesthetics [4,5]. Nevertheless, there have been increasing concerns
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about some characteristics of this material, such as the frequent fractures of dentures [6],
polymerization shrinkage, and cytotoxicity [3,7]. For instance, the addition of nanoparticles
and nanotubes was tested to improve the material’s mechanical properties [8–11]. To
overcome polymerization shrinkage found in heat-cured and cold-cured resins, injection
molding was introduced [12,13]. Chemical changes were tested to be stabilizers of PMMA,
but newer innovative methods have yet to be investigated [14].

The introduction of computer-aided design/computer-aided manufacturing technol-
ogy (CAD-CAM) and 3D printers in the dental field added new possibilities to improve
the materials and workflows used for denture fabrication. Some of the advantages of
CAD-CAM fabrication are a decreased denture weight and lower resin volume, two qual-
ities that can increase the patient’s comfort [15]. Moreover, the issue of polymerization
shrinkage was eliminated thanks to the use of pre-polymerized discs, leading to a better
adaptation fit and higher mechanical performance. In fact, in the milling technique, an
already polymerized block is milled to the final dimensions [16,17].

In terms of 3D-printing technologies, the most commonly used in dentistry are stere-
olithography apparatus (SLA) and digital light processing (DLP), which are two different
photopolymerization devices. Once the CAD model is converted into an STL file, it is
sliced into different layers and then built one layer at a time. To complete a layer, the
SLA technique cures it line by line using a laser beam, whereas DLP cures layer by layer
using a projector. This makes the DLP technique faster and less prone to errors caused
by repeated printing. Post-processing, defined by cleaning the object and post-curing, is
different according to each technology and recommendation of the manufacturer [18–21].

In the last few years, the mechanical properties of both acrylic and composite 3D-
printed resins have been investigated in the dental field. Printed composite resins are
mostly used for temporary crowns and bridges, and promising results in terms of flexural
strength, fracture load, and hardness have been found [22,23]. Moreover, composite resins
such as urethane dimethacrylate (UDMA) showed good dimensional stability and a lack
of residual monomers, reducing the risk of contact allergies [24,25]. For these reasons,
UDMA could be considered a suitable alternative for denture base fabrication. Therefore,
PMMA-milled resin-based materials were included in the present study as control groups
for the evaluation of different resin-based materials’ mechanical behavior.

Concerning the mechanical properties, flexural strength is the most frequent test
applied to dental materials, along with impact strength and hardness. Flexural strength is
the combination of compressive, tensile, and shear stress and is defined as the maximum
stress that a material experiences at its yielding point. This test is fundamental in the
evaluation of denture base materials as it gives an indication of the material’s resistance to
fracture and a prediction of its behavior under static loads. High values of flexural strength
will reduce the risk of denture base fractures. Conforming to the ISO-20795-1:2013 [26]
recommendations, the three-point bending test is the most commonly used to assess the
flexural strength of polymers [27,28]. Many studies have been conducted to compare the
flexural strengths of denture base materials fabricated analogically and through CAD-CAM
technologies using the three-point bending test [22,29–35].

The mechanical performance of resin composites is closely related to their formula-
tion [36,37]. The molecular backbone characteristics of the co-monomers involved will
determine the hydrophilicity, mobility, and kinetic parameters. When acrylic resin strengths
are compared, those with a lower degree of conversion exhibit inferior mechanical proper-
ties [38]. The higher flexural strength values of CAD-CAM specimens may be attributed to
a higher degree of conversion [15].

Nevertheless, despite the numerous investigations on the advantages of digital work-
flow, few studies exist comparing conventional, CAD-CAM subtractive, and additive
manufacturing methods at the same time [34,35]. In this study, the aim was to compare
the flexural strengths of denture base resins fabricated conventionally, CAD-CAM-milled
and 3D printed with different polymerization techniques. The null hypothesis was that
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there is no statistically significant difference in flexural strength between the different
tested materials.

2. Materials and Methods

In this study, 170 rectangular specimens of resin-based material having dimensions
of 64 × 10 × 3.3 mm were fabricated according to the ISO-20795-1:2013 standard [26].
Twelve different resins were used: Six analog acrylic resins, two PMMA-milled resins, two
3D-printed acrylic resins, and one composite 3D-printed resin, as described in Table 1.
They were divided according to the type of fabrication (analog, CAD-CAM-milled, or
3D-printed) and their polymerization method, as reported in Figure 1. Each group was
composed of 10 specimens.

Table 1. Materials tested in the study.

Name Manufacturer Material Content Batch n◦

ACRYPOL R Ruthinium-Dental Manufacturing
S.p.A., Rovigo, Italy

Heat curing, acrylic resin (PMMA)
Liquid: methyl methacrylate, ethylene

dimethacrylate (EDMA)
Powder: benzoyl peroxide, methyl

methacrylate.

Powder: J1584
Liquid: J1571

ACRYSEL P Ruthinium-Dental Manufacturing
S.p.A., Rovigo, Italy

Polymerizable cold-curing resin
(PMMA)

Liquid: methyl methacrylate, ethylene
dimethacrylate,

N-N-dimethylparatoluidine.
Powder: benzoyl peroxide, methyl

methacrylate.

Powder: LOT J0086
Liquid: LOT I0727

ACRYSELF Ruthinium-Dental Manufacturing
S.p.A., Rovigo, Italy

Polymerizable cold-curing resin
(PMMA)

Liquid: methyl methacrylate, ethylene
dimethacrylate,

N-N-dimethylparatoluidine
Powder: benzoyl peroxide, methyl

methacrylate.

Powder: LOT J2163
Liquid: LOT I0727

ACRYPOL HI Ruthinium-Dental Manufacturing
S.p.A., Rovigo, Italy

Heat curing acrylic resin with a high
molecular weight (PMMA)

Liquid: methyl methacrylate, ethylene
dimethacrylate.

Powder: benzoyl peroxide, methyl
methacrylate.

Powder: LOT H1172
Liquid: LOT J0890

ACRYPOL LL Ruthinium-Dental Manufacturing
S.p.A., Rovigo, Italy

Heat curing acrylic resin with a high
molecular weight (PMMA)

Liquid: methyl methacrylate, ethylene
dimethacrylate.

Powder: benzoyl peroxide, methyl
methacrylate.

Powder: LOT J1352
Liquid: LOT I1608

ACRYPOL FAST Ruthinium-Dental Manufacturing
S.p.A., Rovigo, Italy

Fast heat curing acrylic resin with
high molecular weight (PMMA)

Liquid: methyl methacrylate, ethylene
dimethacrylate.

Powder: benzoyl peroxide, methyl
methacrylate.

Powder: LOT I1160
Liquid: LOT H0759

IVOTION (control group) Ivoclar vivadent, Schaan,
Liechtenstein

PMMA
Polymethyl methacrylate, pigments.

IBPink-YB5WNZ-117
IBPink-YB5WNZ-118

AADVA DISC
(control group) GC Corporation, Tokyo, Japan PMMA. NA
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Table 1. Cont.

Name Manufacturer Material Content Batch n◦

NEXTDENT DENTURE 3D+ NextDent B.V., Soesterberg,
The Netherlands

3D-printed resin (PMMA)
2-hydroxyethyl methacrylate;

diphenyl(2,4,6-trimethylbenzoyl)
phosphine oxide;

2-hydroxyethyl methacrylate.

WW465N01

GC TEMP PRINT GC Corporation, Tokyo, Japan

Urethane dimethacrylate (UDMA)
dimethacrylate component **

quartz (SiO2)
photoinitiator

synergist
UV-light absorber.

2,212,091

GC TEMP PRINT+ Pink GC Corporation, Tokyo, Japan

Urethane dimethacrylate (UDMA)
dimethacrylate component **

quartz (SiO2)
photoinitiator

synergist
UV-light absorber

Urethane dimethacrylate methacrylate
monomer(s) photoinitiator(s).

NA

SprintRayEU Denture Base SprintRay Inc., Los Angeles, CA, USA

3D-printed resin
Ethoxylated bisphenol A
dimethacrylate (BisEMA)

7,7,9 (or 7,9,9)-trimethyl-4,13-dioxo-
3,14-dioxa-5,12-

diazahexadecane-1,16-diyl
bismethacrylate, 2-hydroxyethyl

methacrylate, Silicon dioxide,
diphenyl(2,4,6-

trimethylbenzoyl)phosphine oxide,
Titanium dioxide.

50,920,226

The substance is marked with **, then substance is a trade secret.

2.1. Analog Process

The analog group was composed of different resins: four resins were heat-cured
(Acrypol R, Acrypol LL, Acrypol HI, and Acrypol Fast) and two were cold-cured (Acryself
P and Acryself), as described in Table 2. All resins were produced by the same manufacturer,
Ruthinium-Dental Manufacturing S.p.A., Rovigo, Italy.

They were fabricated according to the manufacturer’s instructions with a 3:1 powder-
to-liquid ratio, except Acryself P, which had a 2:1 powder-to-liquid ratio. To fabricate these
resins, a wax die was 3D printed with rectangular shapes of accurate dimensions. Once
mixed, the resin was then poured inside the die, which was itself placed in a flask. It should
be noted that two different flasks were used for the fabrication of Acrypol LL.

Four resins were heat-cured (Acrypol R, Acrypol LL, Acrypol HI, and Acrypol Fast),
and two were cold-cured (Acryself P and Acryself), as described in Table 2.

The heat-cured resins were prepared by applying 3 tons/6000 lbs pressure to the flask.
While fore the cold curing resins, the polymerization was carried out in a pot at a pressure
of 2 ATM (standard atmosphere) for 10 min at a temperature of 45 ◦C.

2.2. CAD-CAM and Milling Process

For the milled group, rectangular specimens of accurate dimensions were designed
using the CAD software MESHMIXER 3.5. It was then saved as a Standard Tessellation
Language (STL) and sent to the milling machine. Pre-polymerized PMMA discs were fixed
on a sectioning machine and milled using a diamond saw.
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sample groups.

Table 2. Analog resins with corresponding polymerization technique used.

Name Polymerization

ACRYPOL R ACRYPOL LL

Place the flask in water at room temperature until completely immersed. Heat
the water in about 40/45 min at 70 ◦C, keep this temperature for 30 min, then
bring the water to a boil and keep it for 30 min, then let it cool slowly in the

water for another 30 min. Then, removing it from the water, allow the muffle to
cool to room temperature.

ACRYPOL HI

Place the flask in water at room temperature until completely immersed.
Slowly bring the water to the boil in at least 45 min. Simmer for 30 min, then
leave to cool slowly in the water for another 30 min. Then, removing it from

the water, cool the muffle at room temperature.

ACRYPOL FAST

Heat cured in boiling water for 20 min, remove the flask from water and leave
it to cool at room temperature. Then, restart the device and bring the water to
the boil and keep the temperature constant for 20 min. Remove from the water

and cool to room temperature.

ACRYSELF ACRYSELF P

Polymerization at a temperature of 22 ◦C/23 ◦C starts approximately
12–15 min after mixing. It is recommended to carry out polymerization in a

pot at a pressure of 2 ATM (standard atmosphere) for 10 min at a temperature
of 45 ◦C.
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2.3. 3D Printing and Curing Process

Three types of 3D-printed resins were used: NextDent Denture 3D+ (NextDent B.V.,
Soesterberg, The Netherlands), GC Temp Print (GC Corporation, Tokyo, Japan), and
SprintRayEU Denture Base (SprintRay Inc., Los Angeles, CA, USA).

The same STL file as the milled groups was used for the 3D-printed group. It was sent
to the DLP printer Asiga MAX UV (wavelength = 385, pixel resolution = 62) and printed at
a 0◦ build orientation, as suggested by the findings of Dai et al., 2023 [39]. After the printing
process, the specimens were cleaned with Liquidtech BT for 20 min using the BB Wash
machine (Meccatronicore S.R.L., Pergine Valsugana, TN, Italy). The resins then received
different types of post-curing procedures (as described in Table 3).

Table 3. 3D-printed resins with corresponding polymerization technique used.

Name Polymerization

NEXTDENT DENTURE 3D+ Polymerization with “LaboLight DUO” curing unit for 20 min.

NEXTDENT DENTURE 3D+ BB 40” Polymerization with BB cure unit for 40 min.

SPRINTRAYEU DENTURE BASE Polymerization with “LaboLight DUO” curing unit for 20 min.

SPRINTRAYEU DENTURE BASE BB 40” Polymerization with BB cure unit for 40 min.

GC TEMP PRINT Polymerization with “LaboLight DUO” curing unit for 20 min.

GC TEMP PRINT BB 20” Polymerization with BB cure unit for 20 min.

GC TEMP PRINT BB 40” Polymerization with BB cure unit for 40 min.

GC TEMP PRINT PINK BB 20” Polymerization with BB cure unit for 20 min.

GC TEMP PRINT PINK BB 40” Polymerization with BB cure unit for 40 min.

SprintRayEU Denture Base Group (SprintRay Inc.) was further divided into two subgroups
of n = 10 according to the polymerization technique used. One was polymerized for 20 min
using the LED curing unit “LaboLight DUO” (GC Corporation, Tokyo, Japan), and the other
was polymerized for 40 min using a BB cure machine (Model MTC-BB-CURE-COMPACT,
Meccatronicore S.R.L., Pergine Valsugana, TN, Italy). The same procedure was carried out
with the NextDent Denture 3D+ resin (NextDent B.V.).

The GC Temp Print specimens were divided into 3 subgroups depending on the
polymerization procedure used: one group was polymerized for 20 min with the LaboLight
DUO curing unit, the second group was polymerized for 20 min with the BB cure unit, and
the third group was polymerized for 40 min with the BB cure unit.

Since GC Temp Print resin is white, another experimental group was made, mixing
3 mL of Formlabs color pigment (color MAGENTA) and 300 mg of GC Temp Print resin to
reach acceptable esthetics. This resin was also divided into 2 subgroups of n = 10, with one
group being polymerized for 20 min with the BB cure unit and one for 40 min with the BB
cure unit.

2.4. Fabrication Accuracy

Once the curing procedure was completed, a slow-speed rotary instrument was used
to remove excesses and the specimen’s support structures. All specimens were polished
with a 600-grit sandpaper and measured using a digital caliper with ±0.02 mm accuracy.
Before performing the test, they were stored in distilled water for 24 h.

2.5. Flexural Strength Analysis

The three-point flexural strength tests were carried out using a universal testing
machine (5567 Universal Testing Machine; Instron Ltd., Nordwood, MA, USA), placing
each specimen on circular support beams with a 50 mm span as reported in Figure 2.
The loading force was applied to the center of each specimen at a crosshead speed of
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5 mm/min. The fracture load was recorded, and the flexural strength was then calculated
in megapascals (MPa) using the following formula:

FS = (3 P L)/(2 b d2)

FS: flexural strength, P: maximum load, L: span length (50 mm), b: width and
d: thickness.
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All measurements and tests were carried out by the same operator.

2.6. Statistical Analysis

Statistical analysis was carried out using Statistical Package for the Social Sciences
(SPSS) software, version 26 (IBM SPSS statistics, v. 26, Inc., Chicago, IL, USA). Means and
standard deviations were calculated for each group. The normality was tested using a
Kolmogorov–Smirnov, which confirmed a normal distribution of data. One-way ANOVA
and Bonferroni post hoc tests were then performed. All p-values < 0.05 were considered
statistically different. A Spearman correlation test was also used to measure the correlation
between the polymerization technique and the flexural strength of 3D-printed resins.

3. Results

Table 4 shows the mean flexural strengths and standard deviations (SD) for each group
of resin, as well as the ANOVA and p-value. In Figure 3, all the flexural strength means are
reported. Of all the tested groups, the AADVA disc had the highest mean flexural strength
(107.87 MPa), and Sprintray Denture Base 3D-printed specimens polymerized for 20 min
with the Labolight curing unit had the lowest (54.07 MPa).



Materials 2023, 16, 6559 8 of 13

Table 4. Mean flexural strengths (mean), standard deviations (SD) and significative differences (Sign).

Resin Type Mean (MPa) SD Sign

ACRYPOL R 89.15 14.31 adghij

ACRYSELF P 86.07 7.09 adghi

ACRYSELF 74.83 7.84 di

ACRYPOL HI 85.58 8.60 adghie

ACRYPOL LL 92.39 17.18 ghj

ACRYPOL FAST 98.86 10.66 hcj

IVOTION 91.88 4.43 egcj

AADVA DISC 107.87 7.56 cj

NEXTDENT LABO LIGHT 20” 60.11 5.72 b

SPRINTRAY LABO LIGHT 20” 54.07 3.55 b

TEMP PRINT LABO LIGHT 20” 75.58 9.36 i

TEMP PRINT PINK BB 20” 95.39 9.49 cghj

TEMP PRINT PINK BB 40” 102.96 9.37 j

TEMP PRINT BB 20” 90.87 7.44 aghj

NEXTDENT BB 40” 83.32 8.38 adgi

TEMP PRINT BB 40” 96.87 6.27 aghcj

SPRINTRAY BB 40” 85.44 5.30 adghij

ANOVA value
p

F = 24.421
0.000

Same letters per table denote no statistically significant differences (p > 0.05).
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For the analog group, the heat-cured Acrypol Fast had the highest mean (98.86 MPa),
whereas the lowest was found for the Acryself group (74.83 MPa).

The 3D-printed group with the highest flexural strength was PINK Temp Print poly-
merized for 40 min with the BB cure unit (102.96 MPa).

3.1. Analog Group

Acrypol R (89.15 MPa) showed no statistically significant differences with the other
groups except with the Nextdent and Spintray resins polymerized for 20 min with the
Labolight unit (p < 0.001). Nextdent and Sprintray resins polymerized for 20 min with the
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Labolight unit showed no statistically significant difference between them (p = 1.000) but
had a significantly lower mean than all the other groups (p < 0.05). Acryself (74.83 MPa)
had the lowest flexural strength mean within the analog group; it was significantly lower
than Temp Print resin polymerized for 20 min with the BB cure unit (p < 0.013), Temp Print
resin polymerized for 40 min with the BB cure unit (p < 0.001), PINK Temp Print resin
polymerized for 20 min with the BB cure unit (p < 0.001), and PINK Temp Print polymerized
for 40 min with the BB cure unit (p < 0.001).

Acryself P (86.07 MPa) and Acrypol HI (85.58 MPa) were significantly lower than
PINK Temp Print polymerized for 40 min with BB-cure (p = 0.006, p = 0.004, respectively).

Acrypol LL (92.39 MPa) was significantly higher than Temp Print polymerized for
20 min with the Labolight unit (p = 0.006).

Acrypol Fast had the highest mean (98.86 MPa) within the analog group. It was
significantly higher than the Temp Print resin polymerized for 20 min with the Labolight
unit (p < 0.001) and the Nextdent resin polymerized for 40 min with the BB cure unit
(p = 0.020).

There were no statistically significant differences between the analog groups them-
selves except Acrypol Fast and Acrypol LL, which were significantly higher than Acryself
(p < 0.001 and p = 0.003, respectively).

3.2. Milled Group

The AADVA disc’s flexural strength was significantly higher than all the other groups
(p < 0.02) except the Temp Print group polymerized for 40 min with the BB cure unit
(p = 0.839), the PINK Temp Print polymerized for 20 min with the BB cure unit (p = 0.275),
and the PINK Temp Print polymerized for 40 min with the BB cure unit (p = 1.000). It also
showed no statistically significant differences with Acrypol Fast (p = 1.000). Nevertheless,
it was significantly higher than the Ivotion disc (p = 0.013).

The Ivotion discs presented a significantly higher flexural strength than the Nextdent
and Sprintray groups polymerized for 20 min using the Labolight unit (p = 0.000) as well
as the Temp print group polymerized for 20 min using the Labolight unit (p = 0.010).
Compared to the analog group, it showed statistically significant differences only with
Acryself (p = 0.005).

3.3. 3D-Printed Group Comparison

In the 3D-printed group, the lowest flexural strengths found were for Sprintray
(54.07 MPa) and Nextdent (60.11 MPa) resins polymerized for 20 min with the Labolight
unit. They showed no statistically significant difference between them (p = 1.000); neverthe-
less, they did show statistically significant differences with all the other 3D-printed resins
(p < 0.04).

Nextdent and Sprintray groups, which were polymerized for 40 min with the BB-cure
unit, were significantly lower than the PINK Temp Print polymerized for 40 min with the
BB cure unit (p < 0.003).

Within the Temp Print resins, the one polymerized for 20 min with the Labolight unit
had the lowest mean (75.58 MPa). It was significantly lower than the Temp Print resin
polymerized for 20 min with the BB cure unit (p = 0.025). It was also significantly lower
than the Temp Print polymerized for 40 min with the BB cure unit (p < 0.001) and the PINK
Temp Print groups polymerized with the BB cure unit for 20 min (p < 0.001) and 40 min
(p < 0.001).

Finally, the PINK Temp Print group polymerized for 40 min with the BB cure unit
had the highest flexural strength (102.96 MPa) in the 3D-printed group. It was signifi-
cantly higher than the Nextdent (p < 0.001) and SprintRay (p = 0.003) groups, which were
polymerized for 40 min with the BB cure.

Spearman tests showed a high association between flexural strength and polymeriza-
tion technique. The correlation coefficient was 0.811 for PINK Temp Print, 0.867 for Temp
Print, 0.867 for Sprintray, and 0.867 for Nextdent.
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4. Discussion

This study was conducted to compare the flexural strengths of acrylic and composite
resins for denture base fabrication according to their fabrication technique (conventional,
CAD-CAM-milled, and 3D-printed) and polymerization process. The results of this research
revealed statistically significant differences among the resins tested. Therefore, the null
hypothesis was rejected.

Concerning the results obtained in the present study, it can be speculated that the
content and the degree of chain conversion during the polymerization may influence the
flexural strength of the different resin-based materials evaluated.

As previously reported for PMMA resins, the polymerization process can be initiated
by benzoyl peroxide, which can be activated by thermal energy (heat curing resins) or by
the use of tertiary amines (cold curing resins) [40,41].

In the present study, it was confirmed that the mechanical properties of self-curing
resins were lower (Acryself P and Acryself) than those made with heat-activated resins
(Acrypol R, Acrypol LL, Acrypol HI, and Acrypol Fast) because of excess residual monomer.

Regarding the high flexural strength of GC TempPrint, the enhanced strength can be at-
tributed to the fact that the UDMA material has a lower molar volume and molecular weight
than alternative resins. This could enhance the preliminary methacrylate functionality of
the un-polymerized material. It is highly likely that this increased functionality increases
the crosslink density within the matrix of the polymer. When this occurs, polymeric resins
exhibit enhanced mechanical properties, one of which is flexural strength [42].

The influence of BisEMA monomers with low viscosity and high MW on the me-
chanical behavior of resin composites has not been extensively investigated. However,
the total replacement of BisGMA by BisEMA in composites with TEGDMA resulted in
higher conversion, but no improvement was observed in flexural and diametral tensile
strengths [43].

According to ISO-20795-1:2013 [26], the minimal flexural strength required for denture
bases is 65 MPa. Of all the resins tested, only the Sprintray (54.07 MPa) and Nextdent
(60.11 MPa) groups polymerized for 20 min with the Labolight unit did not meet such
standards. Another study also found values under 65 MPa for the Nextdent resins using a
different printer and printing orientation [30].

The highest values for flexural strength were found for the CAD-CAM-milled groups,
which supports previous findings [33,35].

Flexural strength is affected by the degree of polymerization achieved. When acrylic
resin strengths are compared, those with a lower degree of conversion exhibit inferior
mechanical properties. The higher flexural strength values of CAD-CAM specimens may
be attributed to a higher degree of conversion [44].

Thus, CAD-CAM-milled dentures can be considered a valid substitute for convention-
ally fabricated dentures.

Three-dimensionally printed resins polymerized with the BB cure unit, either for 20 or
40 min, always showed higher flexural strength compared to the resins polymerized with
the Labolight unit; moreover, the Spearman test showed a high correlation between flexural
strength and the polymerization technique used. This confirms that polymerization does
play a role in mechanical properties [30].

Flexural strengths for Nextdent and Sprintray polymerized for 40 min with the BB cure
unit showed no statistically significant differences with the analog groups except Acryself.
Such a finding implies that 3D-printed fabrication can lead to similar results as those found
for analog procedures while using a material with lower cost and less dependence on
manual expertise. Three-dimensionally printed resins also implicate shorter chair time and
working time, as a denture could be printed directly after scanning the edentulous arches
or the analog impression. Additionally, the lower cost would also allow broader access to
dental cures and reduce the economic issue of denture fractures, as it would be easier and
cheaper to print a new denture compared with starting a full conventional process again.
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Such an outcome is in accordance with al-Qarni et al. (2022) results, who conducted a
similar experiment and found a mean flexural strength of (93.4 ± 10.8 MPa) for heat-cured
analog resins and (56.4 ± 4.7 MPa) for NextDent specimens, which were printed with DLP
technology and cured for 10 min at 60 degrees with an LC-D print box machine [31].

This study also confirmed the data previously obtained by Di Fiore et al. (2021) in
a study conducted with a similar protocol. A flexural strength of 80.79 (±7.64 MPa) for
heat-cured analog resins was found and of 110.23 (±5.03 MPa) for the CAD-CAM-milled
PMMA block (Ruthinium Disc; Dental Manufacturing Spa). The 3D-printed Nextdent
specimens showed a very similar flexural strength (87.34 ± 6.39 MPa) even though they
were printed using an SLA printer and polymerized for 20 min with a light box (Moonlight;
VertySystem) [34].

Temp Print resins showed higher flexural strengths than the other 3D-printed resins,
which can be explained by the fact that it is a different material. It also showed statistically
significant differences with the analog group. The use of a 3D-printed composite for a
denture base could be a possible alternative, given that it also presents good dimensional
stability. Temp Print showed good results of dimensional stability over time when used
for full arch restorations [45], but more studies should be carried out when used for
complete denture fabrication. It was shown that the addition of a pigment in order to have
an acceptable aesthetic for the fabrication of dentures did not interfere with mechanical
properties but improved the flexural strength. Since the material GC Temprint PINK is an
experimental material never tested before the present study, it is mandatory to test in vitro
and in vivo conditions in order to obtain a comprehensive evaluation before clinical use.

A limitation of its use for denture bases can be the lack of evidence on the bonding
abilities of 3D-printed composite resins to liners, which could mean a new denture should
be printed with the added modifications each time relining is needed. Nevertheless, studies
were conducted to find the best surface treatments for both PMMA and UDMA to increase
their bond to soft liners [46]. More studies should be carried out on the use of pink pigment
on 3D-printed composites for dentures since the good flexural strength values found in
this study.

In order to validate the materials for clinical use, further tests should be carried
out, such as impact strength tests, surface hardness tests, and color stability evaluations,
but mostly dimensional stability tests. Long-term studies or the use of thermocycling to
imitate resins’ aging are needed to better understand the changes in mechanical properties
over time.

Of course, in order to standardize the in vitro procedure, the specimens were prepared
according to ISO-20795-1:2013, but further studies are indicated in order to evaluate the
mechanical properties in the oral environment.

5. Conclusions

Within the limits of the present study, it can be concluded that:

• Temp Print specimens reported no statistically significant differences with both control
groups, Ivotion and AADVA discs, proving that it can be a potential alternative to
fabricating removable dentures.

• The experimental 3D-printed Temp Print composite showed promising results with
the highest flexural strength within the combination of pink color resin.

• It was confirmed that flexural strength and polymerization methods are correlated.
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