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Abstract

Accumulation of proteins is a recurring event in many neurodegenerative diseases, including Alzheimer’s dis-
ease (AD). Evidence has suggested that protein accumulation may result from a dysfunction in the ubiquitin
proteasome system (UPS). Indeed, there is clear genetic and biochemical evidence of an involvement of the
ubiquitin proteasome system in AD. This review summarizes the data supporting an involvement of the UPS
in the pathogenesis of AD, focusing on the data showing the relationship between A� and tau, the two hall-
mark lesions of AD, and the UPS.
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Introduction

Over 24 million people worldwide suffer from some
form of dementia with 4.6 million new diagnoses
made every year and it is estimated that by 2040, 80
million people will be demented [1]. Alzheimer’s dis-
ease (AD) is the most common neurodegenerative
disorder and is responsible for approximately 60% of
dementia cases [1]. Short-term memory loss and
visual-spatial confusion are one of the earliest clini-
cal manifestations in AD. As the disease progresses,
memory loss becomes more severe and patients are
unable to recognize familiar objects or persons.
Eventually, decline in other cognitive domains mani-
fests, including deficits in attention, language and
spatial orientation and patients will not be able to
maintain personal independence [2–5].

Pathologically, the AD brain is characterized by
prominent atrophy and by a profound loss of neurons
and synapses, which is restricted to specific brain
regions critical for learning and memory, including
the temporal and parietal lobes, the frontal cortex
and the cingulate gyrus. In addition to neuronal loss
and atrophy, the AD brain has two main lesions,
extracellular amyloid plaques and intraneuronal neu-
rofibrillary tangles (NFTs) [6]. Amyloid plaques are
mainly formed by a small peptide called amyloid-�
(A�) [7, 8], which can also accumulate intraneuronal-
ly [9], whereas NFTs are formed by hyperphosphory-
lated tau [10–13].

A� is generated by the sequential cleavage of a
larger precursor, the amyloid precursor protein
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(APP), which is encoded by a gene located on chro-
mosome 21 [14]. APP can be processed by a non-
amyloidogenic pathway or an amyloidogenic path-
way. In the non-amyloidogenic pathways, which is the
most common, APP is cleaved by the �-secretase
enzymes, which cut APP in the middle of the A�
sequence, therefore precluding the formation of A�
[15]. In the non-amyloidogenic pathway APP is
cleaved by BACE1 [16–18], at the beginning of the
A� sequence, thus liberating �APP and a small car-
boxiterminal fragment, C99. Subsequently, C99 is
further cleaved by the �-secretase complex, formed
by PS1 or PS2, Aph1, Pen2 and nicastrin generating
A�40 and A�42 [19–23]. A�42 is more amyloido-
genic form of A� and is the major species that accu-
mulates in the AD brain [24]. A� can aggregate to
form multimeric complexes of different molecular
weights, ranging from low molecular weight
oligomers to high molecular weight, highly organized
fibrils. Although A� fibrils are the major component of
the extracellular plaque deposits, recent evidence
has elucidated the role of A� oligomers in the patho-
genesis of AD [25–27].

NFTs are composed of tau, a microtubule-binding
protein with several cellular functions, including reg-
ulation of cytoskeletal structure and function [28, 29].
Six different tau isoforms have been identified in the
adult human brain, which differ by the presence of
three or four microtubule binding domains at the C-
terminal, represented by 18 amino acid repeat
sequences that are tubulin binding sites [30]. At the
N-terminal, tau is characterized by the presence or
absence of one or two 29 amino-acid inserts. All six
isoforms are generated by the alternative splicing of
a single gene product [13, 31, 32]. Notably, the ratio
of three to four repeats is equal in the adult brain;
however, only the four-repeat isoforms are present in
the fetal brain [33, 34]. This differential expression
likely reflects the more plastic status of the foetal
brain where tau is normally more phosphorylated
than in the adult brain. The microtubule-binding prop-
erties of tau are mainly regulated by post-translational
modifications, including phosphorylation at specific
serine/threonine sites, glycation, ubiquitylation,
sumoylation, nitration, proteolyis and glycosylation
[35]. Importantly, there is direct evidence that tau
phosphorylation inversely regulates its ability to bind
to microtubules [36].The phosphorylation state of tau
is controlled by the activity of several kinases and
phosphatases [37–39]. In AD and other tauopathies,

tau is abnormally hyperphosphorylated therefore
there is an increase in total levels of unbound tau that
aggregates to form straight and paired helical fila-
ments that form NFTs [36, 40]. Although evidence
showed a correlation between NFTs and the memo-
ry decline in AD [41, 42], recent findings have disso-
ciated NFTs with cognition and have indicated that
more soluble forms of tau may be more toxic for the
cell [43–46]. Although both views are not necessarily
mutually exclusive, further studies are needed to elu-
cidate the relationship between different forms of tau
and cognitive impairments.

Biology of the UPS 

The accumulation of A� and tau makes AD a pro-
teins-misfolding disease, or proteopathy, and sug-
gests that alterations in protein quality control mech-
anisms may be directly or indirectly involved in the
disease pathogenesis [47–50]. This review will focus
on evidence linking A� and tau pathology to the UPS.

Protein clearance by the UPS occurs in two
sequential steps, a tagging reaction and a subse-
quent degradation of the tagged proteins by the pro-
teasome system.

The tagging reaction

Ubiquitin is a small, highly conserved peptide pres-
ent in all eukaryotic cells that is conjugated to the
proteins that needs to be targeted to the proteasome
[51].This process occurs in three steps. First an ubiq-
uitin monomer is activated in an ATP-dependent
reaction by the ubiquitin-activating enzyme (E1).
Subsequently ubiquitin is transferred to an ubiquitin-
conjugating enzyme (E2). In the final step, ubiquitin
is transferred to the target protein via an ubiquitin lig-
ase (E3). The E3 ligase binds both the target protein
and the complex E2-ubiquitin and facilitates the for-
mation of a covalent bond between the ubiquitin
monomer from the E2 enzyme and the target protein.
Activated ubiquitin molecules are sequentially added
to the first ubiquitin proteins to form a polyubiquitin
chain [52, 53]. Proteins tagged with chains of four or
more ubiquitins are recognized by the 26S protea-
some for degradation [52–54]. It is the E3 ligase that
confers specificity to the process by selectively 
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binding to a protein target. Ubiquitin monomers are
liberated after proteasome degradation or are 
actively removed by the ubiquitin carboxyl-terminal
hydrolases [55].

Structure of the proteasome

The proteasome, known as 26S proteasome, is
formed by three major subunits, a 20S catalytic core
and two 19S regulatory caps. The catalytic core,
known as 20S proteasome, has a cylindrical struc-
ture formed by four-stacked rings. It contains three
distinct proteolytic activities, a tripsin-like activity, a
chymotrypsin-like activity and a peptidylglutamyl-like
activity [56–58]. At each end of the 20S proteasome
is a 19S regulatory subunit, which is formed by two
different subcomplexes: a base formed by 10 differ-
ent proteins that binds to the 20S proteasome and a
lid, formed by 9 different proteins that recognize and

binds polyubiquitinated proteins. In addition to recog-
nizing the substrates for the 20S proteasome, the
regulatory caps facilitate the access of the target pro-
teins into the 20S proteasome by unfolding the sub-
strate and opening the catalytic channel [59].

The involvement of the UPS 

in AD pathogenesis

Growing evidence suggest that alterations in the
UPS function may be involved in AD pathogenesis.
This view is supported by evidence showing that in
AD brains ubiquitin accumulates in both plaques and
tangles (Fig. 1) [60–64]. It has also been shown that
these structures contain ubiquitin-B mutant protein
(UBB+1), a mutant ubiquitin carrying a 19-amino acid
C-terminal extension generated by a transcriptional
dinucleotide deletion [65]. Notably, UBB+1 has been
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Fig. 1 Early evidence of proteasomal dysfunction in AD demonstrated the presence of ubiquitin-positive structures in
AD brains. Representative microphotographs showing that ubiquitinated proteins are associated with amyloid plaques
(A) and neurofibrillary tangles (B) in AD brains.
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shown to block ubiquitin-dependent proteolysis in
neuronal cells [66], to cause neuritic beading of mito-
chondria in associating with neuronal differentiation
[67] and it has been suggested to be a mediator of
A�-induced neurotoxicity [68].

The AD brain is also characterized by the accumu-
lation of oxidized proteins [69, 70], which may further
exacerbate the decrease in proteasome activity [71].
Particularly intriguing is the finding that the ubiquitin
carboxy-terminal hydrolase L1 (UCH-L1), an enzyme
that hydrolyses ubiquitin from poly ubiquitinated pro-
teins to liberate ubiquitin monomers, is oxidized in
AD and is down-regulated in the specific brain
regions of early AD cases [72, 73]. Finally, changes
in proteasome subunit composition have been
reported in the AD brain [74]. Taken together, these
data strongly argue that dysfunctional UPS function
maybe involved in AD pathogenesis. This view is fur-
ther strengthened by recent genetic evidence showing
positive association between AD and several single-
nucleotide polymorphisms in UBQLN1, which encodes
for an ubiquitin-like protein called ubiquilin [75].

Direct evidence of altered proteasome activity in
AD brains has been reported [76, 77]. In particular,
Keller and colleagues, demonstrated a selective
decrease in proteasome activity in specific brain
regions of AD cases. Very intriguing was the finding
that proteasome activity was decreased in brain
regions, such as the hippocampus, that are more
susceptible to the AD pathology, whereas other less
susceptible brain regions, such as the cerebellum,
exhibited no changes in proteasome activity between
AD and controls [77].

The interaction between 

A� and the proteasome

Growing evidence supports an interaction between A�
and the proteasome system. In particular, early in vitro
work using biochemical and scanning transmission
electron microscopy experiments showed that A�40
directly binds to the inside of the proteasome along
the peptide channel and selectively inhibits the chy-
motrypsin-like activity of the 20S proteasome [78, 79].
More recent evidence shows that A�42 also impairs
proteasome activity [80, 81]. In particular it has been
shown that A�42 can inhibit proteasome function at
the same extent as a known proteasome inhibitor [81],
raising the possibility that A� may be an endogenous

inhibitor of the proteasome. These studies provide
strong in vitro evidence that A� impairs proteasome
function. One important question was if different
assembly states of A� interacted differentially with the
proteasome (e.g. monomers versus oligomers).This is
pivotal as in the last few years there has been a grow-
ing appreciation of the toxic capacities of A� oligomers
[25–27]. For example, it has been shown that A�
oligomers, but not monomers or fibrils, inhibit long-
term potentiation in vivo [27]. To determine how differ-
ent assembly states of A� affect proteasome activity,
we used a cell-free proteasome activity assay and
found that A�40 and A�42 oligomers significantly
decrease the tripsin-like activity, the chymotrypsin-like
activity and the peptidylglutamyl-like activity of the 
proteasome in a dose-dependent manner [82].
Particularly interesting is the finding that A� toxicity
can be mediated by its interaction with the protea-
some. Analysis of gene expression profile of rat pri-
mary cortical neurons incubated with aggregated A�
further supported a link between A� and the UPS [68].
In this work, the authors identify an ubiquitin-conjugat-
ing enzyme, E2-25K/Hip2 as a mediator of A� neuro-
toxicity [68]. Along these lines, it has been shown that
the A�-induced synaptic dysfunction can be rescued
by increasing expression of UCH-L1 [83].

Work in transgenic animal models of AD also sup-
ports a relationship between A� accumulation and
UPS function. Towards this end, Oh and colleagues
showed an inverse relationship between A� accumu-
lation and proteasome function in the brains of mice
overexpressing APP, suggesting the possibility that
A�42 accumulation may be responsible for an age-
dependent decrease in proteasome function detect-
ed in the brains of these mice [81]. Similarly, there
was ~50% reduction in proteasome activity in pri-
mary neurons isolated from APP transgenic mice
compared to neurons isolated from wild-type mice
[84]. Moreover, a near complete normalization in pro-
teasome activity to wild-type levels was obtained
when APP mutant neurons were treated with a �-
secretase inhibitor [84], strongly suggesting a direct
involvement of A� in the reduction of proteasome
function. Using a transgenic animal model (3�Tg-
AD) that develops both plaques and tangles in an
age-dependent manner [85], we showed that protea-
some activity was significantly decreased in the
brains of 6- and 9-month old 3�Tg-AD mice but not
in the brains of 12-month old mice [82]. These age-
dependent changes in proteasome activity in the
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3�Tg-AD mice correlate with the levels of intraneuronal
A�, which are higher in 6- and 9-month old mice
compared to 12-month old mice [86, 87]. The protea-
some deficits were rescued by A� immunotherapy
[82], thus confirming the hypothesis that A� accumu-
lation impairs proteasome function in vivo. Further
studies will be needed to confirm this hypothesis; in
particular it will be important to determine if protea-
some function increases in APP KO mice or in wild-
type mice after blocking A� production.

The accumulation of A� is dependent of the balance
between A� production and degradation. It is well
established that different proteases are involved in A�
degradation [88–91]. There is also evidence suggest-
ing that A� is degraded by the proteasome. Lopez
Salon and colleagues showed that upon inhibition of
the 26S proteasome via lactacystin, there was a 40%
and 50% decrease in radio-labelled A�42 in astro-
cytes and neurons, respectively [80]. Consistent with
these results, it has been shown that in a cell-free
assay, the 20S proteasome degrades both A�40 and
A�42 [82]. Moreover, we showed a striking increase
in intracellular A�40 and A�42 in N2A cells treated
with a proteasome inhibitor [82]. To determine if A� is
degraded by the proteasome in vivo, we injected a
proteasome inhibitor into the cerebral ventricle of 4-
month old 3�Tg-AD mice and measured A� levels
72 hrs later. Consistent with the in vitro data, these
experiments showed that proteasome inhibition
resulted in a significant increase in intraneuronal A�
levels [82]. Taken together these data suggest that in
addition to being degraded by specific proteases
(e.g. IDE, NEP and ECE), A� is also degraded by the
proteasome. Considering the well established
decrease in proteasome function during aging [92,
93], and the data reported above, it is tempting to
speculate that the age-dependent proteasome dys-
function may participate to the accumulation of A� in
AD brains. Further supporting this idea, it has been
shown that both PS1 and PS2 are degraded by the
proteasome [94], thus a decrease in proteasome
activity would likely increase �-secretase activity and 
A� production.

A major unresolved question is how A� physically
interacts with the proteasome. Proteasomes are
found in the plasma and nucleus but are also associ-
ated with plasma and internal membranes [95]. In
addition, a study using immuno-EM showed that the
20S subunit of the proteasome was also present in
the outer membranes and inner vesicle of the multi-

vesicular bodies [84]. Considering that A� is pro-
duced in the membranes [9] where the presence of
the proteasome has been reported, it is possible that
A�-proteasome interaction may occur there and not
in the cytoplasm. At this point, this is just a possibili-
ty and further studies are necessary to clarify where
A� and the proteasome interact.

The interaction between the 

UPS and tau

The degradation systems responsible for tau catabo-
lism, a ‘natively unfolded’ protein, are not completely
clear. It has been reported that tau can be cleaved by
several proteases including calpains, caspases,
cathepsins and thrombin. There is also growing evi-
dence suggesting an involvement of the UPS in tau
turnover. Towards this end, Keck et al. showed that
the 20S proteasome co-precipitated with tau aggre-
gates. Most notably, they showed that the amount of
tau aggregates pulled down with an antibody to the
20S proteasome was higher in samples with low pro-
teasome activity, suggesting an inhibitory interaction
between tau aggregates and proteasome activity
[76]. To further support this view, they showed, 
in vitro, that tau aggregates isolated from human AD
brains can inhibit the proteasome, whereas non-
aggregated tau isolated from AD brains or normal tau
isolated from control brains was not able to do so [76].
These data show that different aggregation states of
tau can dictate tau turnover via the proteasome.

There is also evidence that tau can be degraded
by the proteasome. It has been shown that protea-
some inhibition in cell culture inhibits tau degradation
[82, 96]. Similar results were obtained by another
group showing that inhibitors against the trypsin-like
and glutamyl-like activities almost completely blocked
tau degradation [97]. More directly, these authors
also showed that tau was degraded after incubation
with the 20S proteasome in vitro [97]. Taken together
these studies provide strong experimental evidence
for the involvement of the UPS in tau turnover.

Particularly interesting are the findings highlight-
ing the role of ubiquitination in tau turnover, especial-
ly in light of the data showing that alteration in the
ubiquitin-dependent proteasomal degradation may
be involved in neurodegeneration [98]. To this end, it
has been shown that tau co-immunoprecipitates with the
carboxy terminus of heat shock protein70-interacting
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protein (CHIP), an E3 ubiquitin ligase that ubiquiti-
nates tau for degradation by the proteasome [99,
100]. These data were strongly supported by a
recent work published by Dickey and colleagues

showing that soluble phosphorylated tau accumulate
in the brains of CHIP knockout mice [101]. Taken
together, these data clearly indicate how proteasome
activity is necessary for tau turnover but aggregated
tau inhibits the proteasome. Normally a substrate to
be bound by an E3 ligase, must undergo post-trans-
lational modification such as phosphorylation or oxi-
dation. It remains to be established which post-trans-
lational modification have to occur in tau for it to be
bound by CHIP. One hypothesis is that during tau
pathogenesis, the CHIP-binding site on tau is
unavailable, thus tau cannot be targeted to the pro-
teasome. This hypothesis is consistent with data indi-
cating that ‘normal’ tau and soluble tau that have not
undergone major structural changes are degraded
by the proteasome, whereas hyperphosphorylated
and aggregated tau is resistant to proteasome
degradation [76].

The UPS as a link between A�

and tau interaction 

Evidence from human genetic and transgenic animal
models strongly supports a primary role of A� in AD
pathogenesis. Particularly, the amyloid cascade
hypothesis stipulates that A� is the upstream trigger
of all cases of AD [102]. A major implication for this
hypothesis is that A� accumulation is upstream of
tau. Recent works in transgenic animals have sup-
ported such hierarchical interaction [43, 87,
103–107]; however, the molecular mechanisms
underlying this link are just starting to get unveiled.
To better understand the mechanism by which A�
and tau are linked, we injected anti-A� antibodies
into the brains of 3�Tg-AD mice and show that a
week after the injection, there was a marked
decrease in the A� deposits [103]. Most notably, we
showed that A� clearance led to a significant reduc-
tion in early tau pathology but not late aggregated tau
deposits. The mechanism underlying the tau clear-
ance via an anti-A� antibody is mediated by the pro-
teasome as concomitant injection of an anti-A� anti-
body with a proteasome inhibitor led to a reduction of
A� deposits but no changes in tau pathology were
detected [103]. These data indicate that the accumu-
lation of A� may impair proteasome function thus
facilitating tau accumulation. However, once A� is
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Fig. 2 Schematic representation of a possible scenario
by which A� can mediate tau accumulation via the pro-
teasome. During normal conditions, ubiquitinated tau is
targeted to the proteasome for turnover (A). A� deposit
can inhibit the proteasome impairing its normal function.
As a consequence, tau cannot be degraded by the pro-
teasome and accumulates into NFT (B).
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cleared, normal proteasome function is reestab-
lished and early tau deposits can be removed. In
contrast, even if proteasome function is restored after
removal of A�, aggregated tau cannot be removed by
the proteasome [103]. This view is consistent with
data showing that aggregated tau is not degraded by
the proteasome and actually inhibits it [76].

Further supporting a role for the proteasome in the
A� and tau interaction is the data showing an impair-
ment of proteasome activity in the 3�Tg-AD mice
that correlates with an increase in A� oligomers [82].
Remarkably, accumulation of A� and tau was found
after direct inhibition of proteasome activity in the
3�Tg-AD mice [82]. Taken together, these data
strongly suggest that the proteasome is a molecular
link between A� and tau pathology (Fig. 2). Further
studies will need to elucidate how A�-dependent pro-
teasome inhibition can lead to tau accumulation.
Considering the clear role of CHIP in tau removal, it is
tempting to speculate that A� accumulation may alter
CHIP function thus leading to the accumulation of tau.

Conclusions 

The data reviewed here provide evidence that pro-
teasome dysfunction may be involved in AD patho-
genesis. It is tempting to speculate that the age-
dependent decrease in proteasome activity may lead
to the accumulation of both A� and tau. Additionally,
once A� and tau aggregate, they can further
decrease proteasome activity creating a vicious cir-
cle leading to more A� and tau accumulation. While
the age-dependent decrease in proteasome activity
seems to be a normal aging process, only a propor-
tion of people accumulate A� and tau, thus other
unknown mechanism may be involved in this vicious
circle. A better understanding of these mechanisms
may facilitate the identification of new pathways that
may decrease and/or prevent the age-dependent
proteasome dysfunction thus breaking the above-
mentioned vicious circle.
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