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Deuterostomes comprise three phyla with radically different body plans.
Phylogenetic bracketing of the living deuterostome clades suggests the latest
common ancestor of echinoderms, hemichordates and chordates was a
bilaterally symmetrical worm with pharyngeal openings, with these characters
lost in echinoderms. Early fossil echinoderms with pharyngeal openings have
been described, but their interpretation is highly controversial. Here, we criti-
cally evaluate the evidence for pharyngeal structures (gill bars) in the extinct
stylophoran echinoderms Lagynocystis pyramidalis and Jaekelocarpus oklahomen-
sis using virtual models based on high-resolution X-ray tomography scans of
three-dimensionally preserved fossil specimens. Multivariate analyses of the
size, spacing and arrangement of the internal bars in these fossils indicate
they are substantially more similar to gill bars in modern enteropneust hemi-
chordates and cephalochordates than to other internal bar-like structures in
fossil blastozoan echinoderms. The close similarity between the internal bars
of the stylophorans L. pyramidalis and J. oklahomensis and the gill bars of
extant chordates and hemichordates is strong evidence for their homology.
Differences between these internal bars and bar-like elements of the respiratory
systems in blastozoans suggest these structures might have arisen through
parallel evolution across deuterostomes, perhaps underpinned by a common
developmental genetic mechanism.
1. Background
Elucidating the early evolution of deuterostomes is crucial for understanding the
origins of the group to which we (vertebrates) belong, but has long proved chal-
lenging owing to the scarcity of unambiguous synapomorphies shared by all
members of this major animal superphylum. Pharyngeal openings, which are
outlets of the pharynx, are the only morphological character widely accepted
as a deuterostome synapomorphy (e.g. [1–5] but see also [6]). These ciliated per-
forations in the pharyngeal wall take the form of either simple pores or
dorsoventrally elongated slits (typically with specialized skeletal support)
[2,7]. Among extant deuterostomes, pharyngeal openings are present in chor-
dates and hemichordates, where they play an important role in feeding or
respiration [8,9], but not in echinoderms [10]. Genetic evidence strongly supports
the homology of deuterostome pharyngeal openings. Several transcription fac-
tors, including Pax1/9, Eya, FoxI, FoxC and FoxL1, are expressed during the
development of the pharynx and gill pouches in chordates and hemichordates
[11–14]. Hemichordates and chordates share the same pharyngeal gene cluster,
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including four genes encoding transcription factors; the same
cluster is conserved in the genomes of some echinoderms
including asteroids, echinoids and holothuroids [15,16]. The
latest common ancestor of deuterostomes is therefore hypoth-
esized to have possessed pharyngeal openings, which were
lost along the branch leading to extant echinoderms [1,10].

Putative pharyngeal openings have been described in var-
ious fossil deuterostomes (e.g. [4,17]), including some early
echinoderms [18–20]. These fossil forms have the potential
to inform on the sequence of acquisition of key deuterostome
characters, but their interpretation remains controversial.
Of particular significance are an extinct Palaeozoic group
called the stylophorans. This clade comprises two traditional
groupings, cornutes and mitrates, which are characterized by
a plated calcite skeleton, an asymmetrical body and a single
major appendage [18,19,21,22]. Although their phylogenetic
position was historically contentious, with the group inter-
preted as echinoderms [20–22] or chordates [18,19], the
presence of extensions of an echinoderm-type water vascular
system and associated ambulacral structures in the proximal
region of the appendage [23] unequivocally places stylophor-
ans within Echinodermata. Cornute stylophorans also possess
serially aligned body openings, but it is debated whether these
are pharyngeal gill slits [24] or sutural pores like those found
in other fossil echinoderms [22]. Two mitrate stylophorans, Jae-
kelocarpus oklahomensis and Lagynocystis pyramidalis, exhibit
internal structures that have been interpreted as gill bars
[18,19], comparable to those present in the pharynges of
extant cephalochordates and enteropneust hemichordates [8].
These internal bars have alternatively been suggested to
represent specialized respiratory and/or feeding structures
[21,25,26] with no close analogues among other deuteros-
tomes. These would be similar to the bar-like elements of the
respiratory systems of some extinct blastozoan echinoderms,
such as blastoids and rhombiferans [27–29], which are
generally not regarded as homologous [30].

Ontogenetic studies of modern deuterostomes reveal that
pharyngeal bars first appear as simple pores in early develop-
mental stages and are subsequently added posteriorly as
growth continues [31]. The pharyngeal bars extend downwards
from the dorsal side, with the associated pores elongated into
slits (figure 1j) [32]. Inblastoids, the bar-like structuresof the res-
piratory system (hydrospires folds) are also added during
ontogeny [33,34], with new folds added along the radiodeltoid
suture and the depth of individual folds varying usually with
the greatest depth at the newest folds (figure 1e) [33]. In rhombi-
ferans, the bar-like structures of the respiratory system (rhombs)
seem to also be added through ontogeny, with the oldest
rhombs being the largest in size [35]. The number of pores
increases during growth, however, the spacing between pores
remains constant [35]. Unfortunately, there is no information
available on the ontogeny of the internal bars in stylophorans,
meaning it is not possible to use developmental data to test
between alternative interpretations of these structures.

To evaluate the evidence for gill bars in stylophorans,weuse
X-ray tomography to measure and describe the morphology of
the internal bars in the stylophorans L. pyramidalis and J. oklaho-
mensis. For comparison, we also examine gill bars in extant
enteropneust hemichordates and a cephalochordate, as well as
morphologically similar bar-like elements of the respiratory sys-
tems in three fossil blastozoan echinoderms. We use linear
discriminant analysis (LDA), principal component analysis
(PCA) and pairwise analysis of variance (ANOVA) to quantify
the similarity between these structures. The results provide
new insights into stylophoran palaeobiology, with important
implications for the appearance, function and evolution of
internal bar-like structures in extinct echinoderms.
2. Methods
(a) Samples
Three specimens of the Middle Ordovician stylophoran L. pyra-
midalis (NHMUK E29453, NHMUK E16107 and NHMUK
E29043) were obtained on loan from the Natural History
Museum, London (NHMUK). In addition, the Pennsylvanian
stylophoran J. oklahomensis (UWBM 74305) was incorporated
into our analysis using existing data available on DigiMorph
(http://digimorph.org/specimens/Jaeckelocarpus_oklahomen-
sis/). Complete adult specimens of the extant enteropneust
hemichordates Balanoglossus sp. (low tide, Penrose Point State
Park, Washington, August 2013) and Schizocardium sp. (subtidal,
Corpus Christi Bay, Texas, March 2013) and the cephalochordate
Branchiostoma floridae (shallow subtidal, Tampa Bay, Florida, June
1997) were collected and preserved in 70% ethanol. These
samples were stained with phosphotungstic acid for 17 days.

Additionally, specimens of three Devonian blastozoan echi-
noderms, the fissiculate and spiraculate blastoids Cryptoschisma
sp. (MGM-3383D) and Hyperoblastus reimanni (CMC IP 37404)
and the Late Devonian rhombiferan Strobilocystites polleyi (CMC
IP 36209), were selected for inclusion in our study. Specimens
were obtained on loan from the Museo Geominero (MGM) and
the Cincinnati Museum Center (CMC).

The preservational characteristics of the fossil samples are
discussed in the electronic supplementary material, information.
(b) X-ray tomography
Specimens of L. pyramidalis, Balanoglossus sp., Schizocardium sp., B.
floridae and S. polleyi were imaged with X-ray micro-tomography
using the Nikon Metrology HMX ST 225 micro-CT scanner at
the Natural History Museum, London. Jaekelocarpus oklahomensis
was scanned at the University of Texas High-Resolution X-Ray
Computed Tomography Facility in 2001 (see [19] formethodologi-
cal details). Cryptoschisma sp. and H. reimanni were imaged with
synchrotron tomography using the TOMCAT beamline of the
Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland.
Details of scan settings are provided in electronic supplementary
material, table S1.
(c) Three-dimensional reconstructions
Tomographic datasets were used to digitally reconstruct the
anatomy of 10 specimens using the SPIERS software suite [36].
This involved creating three-dimensional virtual models of the
targeted internal structures for each specimen in SPIERSedit.
The dimensions of all these structures were then measured in
SPIERSview. See electronic supplementary material, information
and figure S1 for details. Measurements of length were standar-
dized against the total length of the pharynx or internal thecal
cavity for each model, whereas measurements of width, depth
and spacing were standardized against the diameter of the phar-
ynx or internal thecal cavity.
(d) Data analysis
Standardized measurements of the structures of interest were
analysed quantitatively using R v. 3.6.3 [37]: PCA and LDA.
The analyses were conducted using the stats (v. 3.6.3; [37]) and
MASS (v. 7.3.51.5; [38]) packages. LDA results were further
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interrogated via partition plots for every combination of two
variables using the klaR (v. 0.6.15; [39]) package. In addition,
the normalized data were analysed using MANOVA, ANOVA
at 95% confidence and post hoc testing (Holm–Bonferroni and
Tukey 95% confidence tests) using the stats (v. 3.6.3; [37]) pack-
age. Further methodological details and R scripts are provided
in electronic supplementary material, information.
3. Results
(a) Anatomical description
The thecal cavities of the stylophorans house a series of
repeating elongate bars, which are divided into three ellipti-
cal fields in L. pyramidalis (figure 1a–c and electronic
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supplementary material, figure S2a,b) and two bilaterally
symmetrical complexes in J. oklahomensis (electronic sup-
plementary material, figure S2c). The pharynx walls of the
hemichordates and cephalochordate are lined with pairs of
parallel bars differentiated into primary and secondary bars
that bifurcate ventrally (figure 1h–j and electronic sup-
plementary material, figure S2g–i). The blastoids contain
five pairs of hydrospires divided into a variable number of
hollow folds, which connect to the exterior via slits or pores
adjacent to the ambulacra (figure 1d,e and electronic sup-
plementary material, figure S2d,e). The thecal cavity of the
rhombiferan is connected to the exterior through rhomb-pore
openings distributed within three complexes (figure 1f,g and
electronic supplementary material, figure S2f). The major mor-
phological characteristics of these structures are summarized
in table 1. For detailed descriptions, refer to the anatomical
descriptions in the electronic supplementary material,
information and table S2.

(b) Statistical analysis
The LDA plot shows that some taxa can be differentiated
based on the dimensions of their internal bars or bar-like
structures: the blastoids, cephalochordate and rhombiferan
occupy distinct regions of the morphospace clearly separated
from each other and other taxa, whereas the enteropneusts
and stylophorans occupy a large region of the morphospace
with a strong overlap (figure 2a). These trends are consistent
with the PCA results (figure 2b). In LDA and PCA plots,
depth and length are the main drivers of the disparity
between groups (figure 2c,d and electronic supplementary
material, figure S3). Squared cosines of PCA indicate that
the importance of depth, width and spacing are high in the
first dimension, while the second dimension is largely
dominated by length (electronic supplementary material,
information and figure S3). Boxplot and LDA partition
plots further support these results for each grouping (elec-
tronic supplementary material, information and figures S4
and S5).

ANOVA indicates that there are no statistically significant
differences in the width or length of the bars among the
enteropneusts and stylophorans (electronic supplementary
material, table S3). Conversely, the length of the folds in the
blastoids and pores in the rhombiferan are significantly differ-
ent from the length of the internal bars in all other groups
(electronic supplementary material, table S3). The depth of
bars in all the groupings shows statistically significant differ-
ences (electronic supplementary material, table S3). The
spacing between bars in the stylophorans is not significantly
different from the spacing of gill bars in the cephalochordates
and enteropneusts (electronic supplementary material, table
S3). Specimens of the same species (i.e. L. pyramidalis) show
no statistically significant differences in any of the measure-
ments analysed (electronic supplementary material, table S3).
4. Discussion
The results of our analyses demonstrate that the internal
bars of the stylophorans L. pyramidalis and J. oklahomensis are
morphologically very similar to the gill bars of modern cepha-
lochordates and enteropneusts, supporting the hypothesis
that these structures are homologous [18–20]. Multivariate
analyses show a differentiated grouping in the morphospace
formed by the cephalochordate, enteropneusts and stylo-
phorans (figure 2). In particular, the internal bars in the
cephalochordate, enteropneusts and stylophorans are similar
in length, width and spacing (table 1 and electronic sup-
plementary material, table S2). There is a clear correlation
between the dimensions of the internal bars and the size of
the pharynx or theca in stylophorans, enteropneusts and
the cephalochordate (electronic supplementary material,
information, figure S4 and table S2). By contrast, this trend is
not observed in the blastoids and rhombiferan (electronic sup-
plementary material, information and figure S4).

There are some notable differences between the internal bars
of the stylophorans and the gill bars of extant deuterostomes.
For instance, the secondary gill bars of cephalochordates and
enteropneusts are not present in L. pyramidalis or J. oklahomensis
(figure 1b and electronic supplementary material, figure S2a–c).
There are also many fewer internal bars in the stylophorans
(approx. 25 in L. pyramidalis and 8 in J. oklahomensis) than in
the cephalochordate (approx. 250) and enteropneusts (approx.
130 in Schizocardium sp. and approx. 154 in Balanoglossus sp.).
These differences may be the product of heterochrony because
in the stylophorans the number of bars in adult animals remains
much lower and the secondary bars do not appear to develop at
any ontogenetic stage. In early developmental stages of enterop-
neusts the gills begin as a single pair of pores, with subsequent
pairs added posteriorly during growth [31]. In cephalochor-
dates the early ontogeny of gill slits is more complicated, with
the earliest pores asymmetrical and arranged randomly; how-
ever, the number of pores still increases during ontogeny [32].
These pores are then extended into slits by the downward
extension of the primary gill bars, resulting in structures that
closely replicate the internal bars seen in the fossil stylophorans.
In enteropneusts and cephalochordates, trunk coelomic diverti-
cula (peripharyngeal coelomic diverticula) extend into the
secondary gill bars, which are added as down growths between
the primary gill bars [31]. Stylophorans lack secondary bars,
which could also be due to a change in the relative timing of
development of these structures, i.e. heterochrony or secondary
loss [40]. The most significant difference between the bars of
L. pyramidalis and J. oklahomensis versus those of hemichordates
and cephalochordates is the composition. Stylophoran internal
bars are thought to have originally composed of extracellular
calcite [25,26]. In other stylophorans, the calcitic plates forming
the skeleton develop the stereomic structure present in modern
echinoderms [41], but there is no evidence for this in L. pyrami-
dalis or J. oklahomensis. Pharyngeal bars in cephalochordates and
enteropneusts are made from extracellular collagen [3,8,42];
however, there is no indication of soft tissues preserved in the
fossils of L. pyramidalis and J. oklahomensis, subsequently if the
internal bars had different composition (e.g. collagen) they
would have not been preserved. Invertebrate collagen is not
known to precede the development of mineralized tissue [43],
but in vertebrate development, collagen precedes the mineraliz-
ation of bone and in fish, the evolution of collagen gill arches
precedes mineralized gill arches [44].

Multivariate analyses indicate that the gill bars and gill
bar-like structures in the cephalochordate, enteropneusts
and stylophorans show statistically significant differences
from the bar-like elements of the respiratory systems in the
blastoids and rhombiferan (figure 2 and electronic sup-
plementary material, table S3). LDA and PCA cluster the
blastoids and rhombiferan in separate groups (figure 2a,b).
In addition, the blastoids show almost no overlap in the



Ta
bl
e
1.
An
at
om
ica
ld
es
cri
pt
ion

of
in
te
rn
al
ba
rs
an
d
th
e
ba
r-l
ike

str
uc
tu
re
s
in
m
od
er
n
an
d
fo
ss
il
de
ut
er
os
to
m
es
.

ta
xo
n

no
.b
ar
s

di
st
rib
ut
io
n

po
sit
io
ni
ng

m
ea
n
le
ng
th

(m
m
)

m
ea
n
w
id
th

(m
m
)

m
ea
n
de
pt
h

(m
m
)

m
ea
n
sp
ac
in
g

(m
m
)

St
ylo
ph
or
a

La
gy
no
cy
sti
s

py
ra
m
ida
lis

≥
25

di
vid
ed

in
to
th
re
e
ell
ip
tic
al
fi
eld
s;
fi
ve
ba
rs
in

th
e
ce
nt
ra
lfi
eld

an
d
at
lea
st
10

ba
rs
in
ea
ch

lat
er
al

fi
eld
s
at
ta
ch
to
th
e
in
ne
rs
ur
fac
e
of
di
ffe
re
nt
th
ec
al

pl
at
es

0.
71
1

0.
12
1

0.
14
4

0.
08
6

Ja
ek
elo
ca
rp
us

ok
lah
om
en
sis

8
di
vid
ed

in
to
tw
o
bi
lat
er
all
y
sy
m
m
et
ric
al

co
m
pl
ex
es
of
ba
rs,

ea
ch
w
ith

fo
ur
ba
rs

pr
oj
ec
tin
g
fro
m
th
e
in
te
rn
al
wa
ll
of
ad
jac
en
tt
he
ca
l

pl
at
es
to
wa
rd
th
e
in
te
rio
ro
ft
he

th
ec
a

0.
56
4

0.
09
9

0.
30
3

0.
10
4

He
m
ich
or
da
ta

Ba
lan
og
los
su
s
sp
.

≥
15
4

ex
te
nd

fro
m
in
m
ed
iat
ly
po
ste
rio
ro
ft
he

co
lla
rt
o

1/
3
of
th
e
tru
nk

w
ra
pp
in
g
bo
th
sid
es
of
th
e
ph
ar
yn
ge
al
wa
ll.

Ar
ra
ng
ed

in
pa
irs

2.
45
8

0.
06
8

0.
09
3

0.
09
3

Sc
hi
zo
ca
rd
iu
m
sp
.

≥
13
0

ex
te
nd

fro
m
in
m
ed
iat
ly
po
ste
rio
ro
ft
he

co
lla
rt
o

3/
4
of
th
e
tru
nk

w
ra
pp
in
g
bo
th
sid
es
of
th
e
ph
ar
yn
ge
al
wa
ll.

Ar
ra
ng
ed

in
pa
irs

w
ith

sh
or
te
rp
rim

ar
y
ba
rs
an
d

lo
ng
er
se
co
nd
ar
y
ba
rs
th
at
bi
fu
rca
te
ve
nt
ra
lly

1.
65
6

0.
05
3

0.
11
2

0.
08
4

Ce
ph
alo
ch
or
da
ta

Br
an
ch
ios
to
m
a

fl
or
ida
e

≥
25
0

ex
te
nd

fro
m
in
m
ed
iat
ly
po
ste
rio
rt
o
th
e
m
ou
th

to
1/
2
of
th
e
bo
dy

w
ra
pp
in
g
bo
th
sid
es
of
th
e
ph
ar
yn
ge
al
wa
ll.

Ar
ra
ng
ed

in
pa
irs

w
ith

sh
or
te
rp
rim

ar
y
ba
rs
an
d

lo
ng
er
se
co
nd
ar
y
ba
rs
th
at
bi
fu
rca
te
ve
nt
ra
lly

2.
51
5

0.
04
1

0.
02
1

0.
04
4

Bl
as
to
id
ea

Cr
yp
to
sc
hi
sm
a
sp
.

≥
42

di
str
ib
ut
ed

in
eig
ht
hy
dr
os
pi
re
gr
ou
ps
,u
su
all
y

ar
ra
ng
ed

in
gr
ou
ps
of
se
ve
n.
Ex
te
nd

alm
os
t

th
e
en
tir
e
len
gt
h
of
th
e
th
ec
al
ca
vit
y

ell
ip
so
id
al,

m
ul
ti-
pl
at
ed

at
ta
ch
ed

fo
ld
s
co
nn
ec
te
d
to

th
e
ex
te
rio
rt
hr
ou
gh

elo
ng
at
ed

sli
ts
ad
jac
en
tt
o

th
e
am
bu
lac
ra

1.
67
3

0.
09
6

0.
97
8

0.
09
4

Hy
pe
ro
bla
stu
s

re
im
an
ni

≥
18

di
str
ib
ut
ed

in
10

hy
dr
os
pi
re
gr
ou
ps
,a
rra
ng
ed

in

gr
ou
ps
of
fi
ve
.E
xt
en
d
alm

os
tt
he

en
tir
e

len
gt
h
of
th
e
th
ec
al
ca
vit
y

ell
ip
so
id
al,

m
ul
ti-
pl
at
ed

at
ta
ch
ed

fo
ld
s
co
nn
ec
te
d
to

th
e
ex
te
rio
rv
ia
su
tu
ra
lp
or
es
an
d
elo
ng
at
ed

sli
ts

ad
jac
en
tt
o
th
e
am
bu
lac
ra

2.
00
4

0.
20
0

0.
53
8

0.
28
1

Rh
om
bi
fe
ra

St
ro
bil
oc
ys
tit
es

po
lle
yi

≥
12
0

di
str
ib
ut
ed

am
on
g
th
re
e
rh
om
b-
po
re
be
ar
in
g

co
m
pl
ex
es

39
to
57

ov
al-
sh
ap
ed

po
re
s
in
ea
ch
co
m
pl
ex
.

Co
nn
ec
tt
he

in
te
rio
rt
o
th
e
ex
te
rio
r,
lac
k
ev
id
en
t

co
nn
ec
tio
n
to
th
e
m
ou
th

0.
53
1

0.
16
7

2.
64
5

0.
14
8

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20220258

5



4

(a) (c)

(b)

(d)

width
spacing

length

Rhombifera (n = 1)

Stylophora (n = 3)

(NHMUK E29453)

(NHMUK E16107)

Lagynocystis pyramidalis 1

Lagynocystis pyramidalis 2

Jaekelocarpus oklahomensis

cos2

0.95

0.90

Hemichordata (n = 2)
Branchiostoma floridae

Balanoglossus sp.
Schizocardium sp.

Strobilocystites polleyi

Cryptoschisma sp.
Hyperoblastus reimanni

Cephalochordata (n = 1)

depth

2

0

–2

L
D

2 
- 

8.
79

%

–4

–6

3

2

1

0

–1

–10 –5

–2 –1 0 1 2 3

length

depth

width
spacing

PC1 - 72.90%

PC
2 

- 
18

.3
0%

0 5
LD1 - 89.29%

Blastoidea (n = 2)
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bars and bar-like structures in modern and fossil deuterostomes. (a) LDA plot of the resultant morphospace. (b) PCA plot of the resultant morphospace. (c,d) Biplot
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morphospace (figure 2), particularly in the unconstrained
PCA (figure 2b). This is most likely a result of the complex
hydrospire morphology that is well documented as highly
variable across taxa [28,29]. The average depth of the bar-
like structures in the blastoids and rhombiferan is much
larger than the enteropneusts, cephalochordate and stylo-
phorans (table 1 and electronic supplementary material,
table S2). The number of bar-like structures present in
blastoids is closer to that of the stylophorans than to the
enteropneusts and cephalochordate (table 1). However, the
bar-like elements of the respiratory system in blastoids are
closely connected to the ambulacra and are arranged in
groups with variable numbers of folds (figure 1d,e and elec-
tronic supplementary material, figure S2d,e), which differs
from the arrangement of the internal bars in the stylophorans,
enteropneusts and cephalochordate (figure 1a–c,h–j and



Vertebrata Urochordata Cephalochordata Pterobranchia Enteropneusta Stylophora Blastozoa
crown

Echinodermata

Deuterostomia

Chordata Ambularcraria

primary and secondary bars. Slits. Many paired atria. Paired ectodermal pores.
Synteny of pharynx and gill pore patterning genes.

loss of primary and secondary bars. Single pair of atria. Single atrial and
buccal siphons.
loss of primary and secondary gil bars in aminote vertebrates.

metapleural folds. Single pair of atria. One atrial pore.
loss of primary and secondary bars. Single paired pores
(Cephalodiscus).
loss of secondary bars. Single atrium. Not recognizable exit pore.
total loss of primary and secondary bars. Slits, atria and pores.

Figure 3. A generalized phylogenetic tree of the deuterostomes showing the evolution of key characters linked to the pharyngeal openings.
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electronic supplementary material, figure S2a–c,g,h). There is
little information available on the ontogeny of the internal
bars in stylophorans, making direct comparisons with other
echinoderms unfeasible; however, the structures preserved
in adults greatly differ from blastozoans in their relative posi-
tioning, the nature of any associated external openings and
overall morphology.

The function of the internal bars in the stylophorans
is unclear. The gill bars of extant enteropneusts and
cephalochordates are used in filter feeding [2,8,31,45]. In ver-
tebrates, the tissues surrounding the gill bars are involved in
ion exchange, respiration and excretion [46,47], with the first
pairs of gill bars modified for talking, chewing and hearing
[48]; they are also used for filter feeding in larval lampreys,
herring and their relatives [8]. Thus, the function of gill
bars varies across deuterostomes and is not constrained by
their homology. Moreover, superficially similar parallel cylin-
ders lined with rows of cilia, which are assumed to have
arisen independently through parallel evolution, are also
found in non-deuterostome metazoans and they can perform
a range of different functions. The function of the bar-like
structures of the blastozoans was primarily for respiration
[29,49,50]. It was proposed that the internal bars of J. oklaho-
mensis were lined with cilia, similar to gills in many modern
animals, and they are close to large gaps in the theca that
were interpreted as atrial openings [19,20], consistent with a
role in filter feeding. However, the internal bars of L. pyrami-
dalis are apparently not closely associated with any thecal
openings (figure 1a and electronic supplementary material,
figure S2a,b), suggesting a different function to filter feeding.
The placement of the internal bars within the theca adjacent
to the main appendage, which is assumed to have housed
extensions of a water vascular system in life [22,23,25],
points toward a possible role in feeding. Food particles cap-
tured by the appendage would have been conveyed into
the thecal cavity through a mouth (inferred to have been situ-
ated at the base of the appendage), and the internal bars,
which may have been covered in cilia [18,19], could have
been involved in selecting particles and concentrating them
into the gut (e.g. [21,22]).

The morphological characters shared by the Ordovician
L. pyramidalis and Carboniferous J. oklahomensis are inferred
to be derived within Stylophora. Earlier stylophorans, such
as the Cambrian Ceratocystis, lack evidence of internal bars
[51], and similar structures are not reported in any other
groups of putative stem echinoderms [20,52], whereas fossils
of L. pyramidalis and J. oklahomensis specimens are recurrently
found with internal bars preserved. This may be because the
internal bars were composed of collagen in all other stylo-
phorans (similar to the gill bars of extant deuterostomes),
and hence would have had a much lower preservation poten-
tial than the calcitic bars of L. pyramidalis and J. oklahomensis.
Collagenous gill bars are more decay resistant than other
internal structures in extant hemichordates [53,54] and have
been reported in some fossil forms [55–57], but these fossil
specimens are known exclusively from Cambrian Burgess
Shale-type Lagerstätten, from which stylophorans are entirely
absent. Alternatively, the absence of internal bars in other sty-
lophorans could reflect the secondary loss of these structures
along the branches leading to most taxa. We suggest that
differences between the internal gill bars in stylophorans
and living deuterostomes, such as the number and mor-
phology of the bars, could be the product of heterochronic
evolution (figure 3). By contrast, we infer that bar-like
elements of the respiratory systems in blastozoans, which
are superficially similar to the internal bars of stylophorans
and some extant deuterostomes, but statistically dissimilar
in terms of their size and shape, could have evolved indepen-
dently, perhaps by parallel evolution. Support for this parallel
evolution, or deep-homology hypothesis comes from the con-
servation of pharyngeal gene clusters across deuterostomes,
including several echinoderm groups [15,16]. The presence
of pharyngeal development transcription factor gene synteny
in living echinoderms that lack equivalent pharyngeal
openings and gill bars strongly suggests that this gene
arrangement was present in the common ancestor of deuter-
ostomes, and raises the possibility that it could have been
expressed in other echinoderm taxa. Thus, this highly con-
served gene regulatory network might have been co-opted
independently for the development of pharyngeal gill
bar-like structures in blastozoan echinoderms.

These results bring us a step closer to resolving deep evol-
utionary traits within the deuterostome tree. Pharyngeal
openings were present in the common ancestor of deuteros-
tomes and secondarily lost in all echinoderms sometime
after the Carboniferous. This has important implications for
the sequence of acquisition of the fundamental echinoderm
characters, with pharyngeal openings lost after the acqui-
sition of a functional echinoderm-type water vascular system.
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