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Allogeneic hematopoietic cell transplantation (allo-HCT) and chimeric antigen receptor T
cell (CAR T) therapy are the main modalities of adoptive cellular immunotherapy that have
widely permeated the clinical space. The advent of both technologies revolutionized
treatment of many hematologic malignancies, both offering the chance at sustained
remissions for patients who would otherwise invariably succumb to their diseases. The
understanding and exploitation of the nonspecific alloreactivity of allo-HCT and the graft-
versus-tumor effect is contrasted by the genetically engineered precision of CAR T
therapy. Historically, those with relapsed and refractory hematologic malignancies have
often been considered for allo-HCT, although outcomes vary dramatically and are
associated with potential acute and chronic toxicities. Such patients, mainly with B-
lymphoid malignancies, may now be offered CAR T therapy. Yet, a lack of prospective
data to guide decisions thereafter requires individualized approaches on whether to
proceed to allo-HCT or observe. The continued innovations to make CAR T therapy more
effective and accessible will continue to alter such approaches, but similar innovations in
allo-HCT will likely result in similarly improved clinical outcomes. In this review, we describe
the history of the two platforms, dissect the clinical indications emphasizing their
intertwining and competitive roles described in trials and practice guidelines, and
highlight innovations in which they complement or inform one another.

Keywords: allogeneic stem cell transplantation, chimeric antigen receptor T cell therapy, cytokine release
syndrome, hematologic malignancies, Allo-CAR T
INTRODUCTION

The expanding field of immuno-oncology has unlocked the possibility of treating and potentially
curing patients with the most life-threatening relapsed and refractory hematologic malignancies. The
clinical benefit of allogeneic hematopoeitic cell transplantation (allo-HCT) is mediated by a graft-
versus-tumor effect which results from alloreactivity of donor T cells to host major and minor
histocompatibility antigens (1–3). Over the past fifty years, we have better understood and refined the
process of allo-HCT, improving its success and limiting its complications (4–6). Nevertheless, disease
persistence and transplant-related toxicity have driven the necessity for continued innovation.

Now, at the leading edge of immune-oncology, genetically engineered chimeric antigen receptor
T (CAR T) therapies promise to advance the treatment of refractory malignancies by combining
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B-cell-like target recognition with T-cell machinery and memory
(7, 8). Notable responses, even among patients who had
progressed after allo-HCT, led to the FDA approval of
commercial CAR T therapies in young patients with acute
lymphoblastic leukemia (ALL), and later in adults with
relapsed refractory large cell B cell lymphomas (9). Similar to
allo-HCT, disease recurrence after CAR T and treatment-related
toxicities require ongoing innovation in product development
and toxicity mitigation strategies.

As the novelty and success of CAR T therapies continue to
escalate, many now wonder whether CAR T and allo-HCT will
continue to coexist and complement one another, or whether
some selective pressure, be it cost, convenience, efficacy, or
toxicity, will favor only one to persist or to dominate the
clinical landscape. At this point, the answer varies depending
on the specific disease, practitioner perspective, and even
geographic area of practice. Many still view CAR T therapy as
a bridge to allo-HCT in patients with ALL, although that stance
is not ubiquitous (10). Compare that to multiple myeloma
(MM), in which the promise of CAR T efficacy from clinical
trials has all but removed allo-HCT from the late-stage MM
algorithm, although some centers continue this practice (11, 12).

While at this point it may be impossible to predict whether
CAR T or allo-HCT will outlast the other, it is clear that they
have been both competitive and complementary. Additionally,
lessons have been translated from one platform to the other, such
as the management of cytokine release syndrome (CRS),
improved efficacy with lymphodepletion, and the potential for
“off-the-shelf” allogeneic universal CAR T cells (UCAR T).

In this review, we will provide a historical overview of the two
therapies, drawing attention to similarities and differences. We
will then analyze the clinical trial data on the interplay between
allo-HCT and CAR T therapy and the lessons that have been
learned from each. We will describe the knowledge gaps that still
exist regarding the sequencing or substitution of one platform
with the other, and the ongoing preclinical and clinical work
aiming to resolve them. Lastly, we will examine the future
directions in which both strategies are heading, emphasizing
the indications in which they will be complementary and in
which one could out-compete the other.
CELLULAR THERAPIES: THE PARALLEL
AND INTERTWINING HISTORIES OF
ALLO-HCT AND CAR T

Hematopoeitic Cell Transplantation
and the Birth of Adoptive Immunotherapy
In the middle of the 20th century, preclinical work by Jacobsen,
Lorenz, and colleagues gave credence to the concept of the
transplantation of bone marrow following lethal irradiation
(13, 14). Over the next twenty-five years, numerous physician-
scientists sought to translate this to a clinical therapy, initially for
radiation-induced aplasia, but subsequently for congenital
immunodeficiencies, aplastic anemia, and eventually for acute
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leukemias (4). Much of the initial clinical work was limited by
frustrations and failures. While early reports described the
feasibility of allogeneic bone marrow collection, storage, and
intravenous infusion into a recipient, little progress was made
regarding the impact of histocompatibility differences between
donor and host; those with insufficient preparation rejected the
graft and those with complete myeloablation often developed
profound graft-versus-host disease (GVHD) (15). The development
of canine and murine models by Thomas et al. led to a rudimentary
understanding of histocompatibility, which they then translated to
clinical application. Specifically in hematologic neoplasia, they
initially studied syngeneic bone marrow transplantation in a
small number of patients who had identical twins. While they
observed normal recovery of hematopoiesis, most would relapse (1,
2). Under the hypothesis that the syngeneic immune cells lacked the
ability to immunologically target the leukemic cells, they designed a
regimen in which the transplant recipients would receive repeated
infusions of syngeneic donor lymphocytes along with subcutaneous
injections of autologous, lethally-irradiated leukemia cells in order
to provide continual antigenic stimulation. This first “immunotherapy”
was modestly successful at delaying leukemia relapse, and provided
the initial evidence of a graft-versus-leukemia (GVL) effect.

As most patients do not have identical twins, investigators
focused on HLA-identical sibling transplantation. As transplant
physicians gained experience, refinements in conditioning
regimens, improvements in supportive care, and the addition
of post-transplant immunosuppression lessened transplant-
related mortality and improved survival. One observation was
that patients who developed both acute and chronic GVHD were
noted to have decreased incidence of relapse, which in some
cases translated to improved survival (16). Nevertheless, severe
GVHD was often fatal and limited the prospects of allo-HCT,
therefore investigators sought to find improved methods of
GVHD prevention. T-cell depleted grafts were assessed
preclinically and clinically, and while they were associated with
reduced GVHD, relapse and graft failure rates were significantly
higher negating any beneficial effects (17). This was especially
notable in myeloid malignancies , less so in acute
lymphoblastic leukemia.

These initial observations stressed the importance of the T-
cell mediated GVL effect. With a deeper understanding of the
adoptive immunotherapy aspect of allo-HCT, new modifications
and therapies were possible. Donor lymphocyte infusions were
administered to patients with mixed donor chimerism or early
relapse, with durable remissions achieved especially in myeloid
malignancies (18–20). Additionally, reduced-intensity
conditioning regimens were designed that allowed for older
and frailer patients to undergo allo-HCT, with a heavier
reliance on the GVL effect (21).
The Advent of CAR T Therapy
At the same time that nonspecific adoptive cellular therapies
(e.g., donor lymphocyte infusions, tumor-infi ltrating
lymphocytes) were being clinically deployed, novel gene-
transfer techniques were allowing for the preclinical ex vivo
engineering of T-cells harboring CARs. Initially, gene
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transduction occurred via retroviral vectors, but methods
involving lentiviral, adenoviral, and non-viral methods would
be developed thereafter (7, 22). The initial CAR constructs
included an extracellular antigen-specific binding moiety,
usually a single chain variable fragment (scFV) of a monoclonal
antibody, fused to a transmembrane segment, and an intracellular
domain consisting of the CD3z signaling domain of the T-cell
receptor (TCR) (23, 24). While these first-generation CARs could
redirect the specificity of T-cells to target antigens in an HLA-
independent fashion, the intracellular signaling of CD3z alone
lacked the strength to induce proliferation and prolonged
antineoplastic activity, resulting in rapid CAR T-cell exhaustion
and only modest reduction in tumor growth in vivo (25).

In order to achieve the goal of a “living drug”, in which the
CAR T cells could continue to proliferate and display persistent
antineoplastic activity following the in vivo administration,
investigators examined methods in which to augment
intracellular signaling. Chimeric costimulatory receptors
(CCRs) were first developed and introduced into human
primary T-cells. Engagement of the CCRs (specifically that
with a CD28 intracellular signaling domain) led to increased
IL-2 production which allowed for persistence of the T-cells in
TCR-activation situations which would otherwise promote
apoptosis (26). CD28 and other costimulatory domains, such
as 4-1BB (CD137), were then fused with CD3z. These “second
generation” CAR T cells utilizing one of several potential
costimulatory endodomains demonstrated increased
persistence, proliferation, and antitumor activity, preclinically
(27, 28). In a proof-of-concept clinical pilot, Savoldo et al. treated
6 patients with relapsed non-Hodgkin’s lymphoma who were
simultaneously infused with a “first generation” CAR T product
harboring only a CD3z endodomain and a “second generation”
CAR T product harboring both CD3z and CD28 endodomains
(29). Both had the same CD19-specific scFv exodomain.
Peripheral blood examination demonstrated that the second-
generation CAR T-cells expanded in vivo significantly more in the
first two weeks after infusion and persisted longer. Additionally,
ex vivo engagement of their native TCR could promote their
restimulation. In contrast, the first generation CAR T-cells did not
expand, could not be restimulated, and did not persist in the
infused patients. With expansion and persistence demonstrated in
humans, along with efficacy signals in targeting CD19+ B cell
malignancies, these second-generation CAR T cells were primed
for widespread clinical investigation.
CLINICAL APPLICATIONS OF CAR T-CELL
THERAPY AND THE ROLE OF ALLO-HCT

Current treatment algorithms now incorporate CAR T therapy
for specific hematologic malignancies. The initial target for CAR
T-cell therapy was CD19, chosen for its broad and high
expression on B-cell leukemias and lymphomas, as well as for
restriction of its expression to the B-cell lineage which would
predict limited off-target effects (30). Theoretically, targeting B-
cells would also limit humorally-mediated rejection of the CAR T
cells. As such, the CD19 CAR T products would be the first to
Frontiers in Oncology | www.frontiersin.org 3
obtain regulatory approval for B-cell acute lymphoblastic
leukemia (B-ALL) in patients up to age 25 and in certain B-cell
non-Hodgkin’s lymphomas (NHL). Following a similar path, the
CAR-targeting of a lymphoid/plasma cell-restricted surface
antigen, B-cell maturation antigen (BCMA), has multiple
myeloma on the precipice of at least one approved CAR
T product.

How the role of allo-HCT has been impacted by these CAR T
therapies is dependent on numerous disease, patient, and therapy
factors (Table 1). While there is a lack of prospective data
addressing the specific intertwining roles of CAR T and allo-
HCT, the decisions often require individualized consideration as
well as reliance on subgroup data from within existing trials and
expert opinion. Hereafter, we dissect such information as it exists
for these three disease groups in which CAR T therapy is part of
the current treatment paradigm.

Acute Lymphoblastic Leukemia
Treatment of B-ALL has evolved tremendously over the past
decade. Prolonged, intensive combination chemotherapy
regimens have been very successful at curing a majority of
pediatric patients with ALL (50). These pediatric-inspired
regimens have been translated to young adult populations,
improving relapse-free and overall survival relative to historical
comparators, albeit to a lesser extent than that seen in pediatric
populations (51). Even some middle-aged and older adults may
be cured with front-line chemotherapy, without the need to
proceed to allo-HCT.

Concurrently with the advances in therapy, there has been an
evolution in the understanding of the clinical and biological
heterogeneity of B-ALL. This has allowed for more precise risk
stratification based on clinical factors (e.g., age, blast count at
diagnosis), cytogenetic/molecular factors (e.g., BCR-ABL
translocation, Philadelphia chromosome-like ALL, TP53
alterations with hypodiploidy), and treatment response (e.g.,
minimal residual disease [MRD] post-induction) (52). Patients
with high-risk features are conventionally recommended to
proceed with allo-HCT in first clinical remission (CR1) (31,
32, 53). This recommendation is based on observational data
suggesting a very high risk of relapse with conventional
chemotherapy, and “genetically randomized” prospective trials
repeatedly demonstrating a survival benefit in high-risk subsets
for those who received HLA-matched sibling allo-HCT.

In both pediatric and adult patients with B-ALL, relapsed and
refractory disease carries a dismal prognosis (35). Immediately
prior to CAR T therapy, two immunotherapies, inotuzumab
ozogamicin and blinatumomab were able to significantly prolong
event-free survival and overall survival compared to salvage
chemotherapy (54, 55). However, the vast majority of patients
in both trials still relapsed and died within 24 months, and long-
term survival was achieved only in the minority who proceeded
to allo-HCT. Blinatumomab did subsequently establish a niche
in converting MRD positive to MRD negative status in patients
in CR1 or greater, the majority of whom are bridged to allo-HCT
once MRD is no longer detected (56).

The recent advent of CD19-targeting CAR T cells (CART19)
provided yet another therapy to the arsenal directed against
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relapsed/refractory B-ALL. In phase I and II trials, the second-
generation CART19 had unprecedented success in achieving
remissions in heavily-pretreated patients with B-ALL (Tables 2
and 3). With this success, new questions emerged, namely the
sequencing of CART19 and allo-HCT, whether CART19 should
be used as a bridge to allo-HCT or could be a “destination” in
and of itself, and if there were any differences in safety or efficacy
in patients who had already undergone allo-HCT prior to
CART19. There is yet to be a prospective trial in which patients
have been randomly assigned to allo-HCT or observation
following CART19, therefore the existing data is limited to an
extent by selection of patients fit to undergo allo-HCT post-
CART19 and those with a suitable donor. Additionally, there is
heterogeneity regarding the length of follow-up and reporting of
outcomes following allo-HCT.
TABLE 1 | Comparisons of indications and outcomes of allogeneic
hematopoeitic transplantation and CAR T-cell therapy.

Allogeneic HCT CAR-T

B-ALL
Indications High-risk CR1, ≥CR2, Post CAR-

T (especially early loss of B-cell
aplasia, no prior alloHCT),
controversial in active disease

Refractory or 2nd or greater
relapse in ≤25 years-old
(tisagenlecleucel)
Efficacy seen in post alloHCT
In clinical development for adult
patients: dual-targeting CAR,
relapse post CD19 CAR, “off-
the-shelf” allogeneic CAR T

CR N/A 60%–80% (adults)
70%–90% (pediatrics)

OS 30%–60% at 3 years (adults)
60%–75% at 3 years (pediatrics)
20% at 3 years (alloHCT with
active disease)

40%–70% at 2 years

Toxicity aGVHD, cGVHD, graft failure and
prolonged cytopenias, infections

CRS, ICANS, prolonged
cytopenias, infection

References (31–34) See Tables 2 and 3
AML
Indications Intermediate or unfavorable risk

in CR1, ≥CR2, active disease
(usually on a clinical trial)

Currently in clinical development
for rel/ref active disease
CAR Targets: NKG2D, CD123,
CLL-1, and CD33

CR/CRi N/A 50% (early phase I data)
OS 25%–60% at 3 years (adults)

30%–70% at 3 years (pediatrics)
10%–20% at 3 years (active
disease)

N/A

Toxicity aGVHD, cGVHD, graft failure and
prolonged cytopenias, infections

CRS, ICANS, marrow ablation
(theoretical)

References (33, 35) (36–38)
DLBCL
Indications Relapse after ASCT – best in

patients with >12 mo remission
after ASCT, chemosensitive
disease, lower NRM with RIC

Rel/ref after two lines of therapy
(FDA indications for
tisagenlecleucel and axi-cel)
Allogeneic CAR T, dual-targeting
CAR T, relapse post-CD19 CAR
T in clinical development

CR N/A 40%–60%
PFS 40% at 3 years Axi-cel: 75% at 2 years in

responders, 22% at 2 years in
patients with SD
Tisagenlecleucel: 83% at 1 year
in responders

OS 54% at 3 years Axi-cel: 50% at 2 years (ITT)
Tisagenlecleucel: 40% at 1 year
(ITT)

NRM 25%–30% 4% (axi-cel), 0%
(tisagenlecleucel)

References (39) See Table 4
FL
Indications Rel/ref FL – better outcomes with

chemosensitive disease and RIC
Rel/ref FL (axi-cel, in clinical
development)

CR N/A 80%
PFS 50% at 5 years 50% at 2 years
OS 60% at 5 years 90% at 2 year
NRM 20% 3%
References (40, 41) (42, 43)
MCL
Indications Rel/ref MCL – better outcomes

with chemosensitive disease,
Rel/ref MCL having received at
least 2 lines of therapy

(Continued)
TABLE 1 | Continued

Allogeneic HCT CAR-T

RIC, earlier in disease course
although controversial

(brexucabtagene autoleucel,
approved indication)

CR N/A 67%
PFS 40%–50% at 3 years 61% at 1 year
OS 40%–60% at 3 years 83% at 1 year
NRM 15%–25% 3%
References (44) (45)
MM
Indications Rarely indicated – usually in a

younger patient or high-risk
disease as part of a clinical trial

In clinical development for triple-
class refractory disease and
suboptimal response to ASCT

CR N/A 30%–90%
PFS 30%–40% at 3 years 40%–50% at 1 year
OS 50% at 3 years 75%–90% at 1 year
NRM 20%–25% 2%–5%
References (12, 46) (47–49)
December 20
Allo-HCT, allogeneic hematopoietic cell transplantation; aGVHD, acute graft-vs-host
disease; AML, acute myeloid leukemia; B-ALL, B-cell acute lymphoblastic leukemia;
CR, complete response; CRS, cytokine release syndrome; DLBCL, diffuse large B-cell
lymphoma; FL, follicular lymphoma; MCL, mantle cell lymphoma; N/A, not available; NRM,
non-relapse mortality; OS, overall survival; PFS, progression-free survival; PR, partial
response; rel/ref, relapsed/refractory.
TABLE 2 | Response and relapse outcomes in trials assessing CD19 CAR-T
therapy with CD28/CD3z co-stimulatory domains in B-cell acute lymphoblastic
leukemia with potential bridging to allogeneic hematopoietic cell transplantation.

Lee et al.
(57)

Park et al.
(58)

Curran et al. (59)

Patients, n 51 53 25
Age Category Pediatric

and YA
Adult Pediatric and YA

Median follow-up, mo 22.5 29 7.7 (28.6 in
responders)

Prior allo-HCT, % 35 36 20
CR(MRD-), % 61(55) 83(60) 75 (67)
Allo-HCT post-CR,% 75 39 83
Relapse after CR: overall/after
allo-HCT %

29/9.5 56/35 33/27
2
0 | Volume 1
Allo-HCT, allogeneic hematopoietic cell transplantation; CR, complete remissions; MRD,
minimal residual disease; YA, young adults.
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There is a lack of consensus regarding which B-ALL patients
should proceed to allo-HCT after CART19, and among the
clinical trials of CART19 such decisions were usually informed
by patient age, institutional practice, and the expected
persistence of the CAR T cell product (67, 68). A key
determinant of persistence appears to be whether the co-
stimulatory domain employed is CD28 or 4-1BB, with the
CD28 constructs demonstrating relatively short persistence. In
a phase I/II NIH study of a CD28 CART19 in children and young
adults, initially 12 patients achieved a MRD negative CR, of
whom 10 proceeded to allo-HCT with durable remission,
whereas the two transplant-ineligible patients relapsed (69).
The study expanded to 53 patients, 51 with B-ALL, and in the
long-term follow-up (median 22.5 months), 60.8% achieved CR,
90% of which were MRD negative (57). Twenty-one of the 28
patients with MRD negative CR proceeded to allo-HCT, after
which 2/21 (9.5%) relapsed, compared to 6/7 (85.7%) of those in
MRD negative CR who did not proceed to transplant. This
difference translated to significant improvement in leukemia-
free survival (HR 16.9, 95% confidence interval [CI] 3.4-85.1,
p=0.0006). In a large adult trial, 53 patients received a CD28
CART19 with 83% CR and 67%MRD negative CRs (58). Median
event-free survival (EFS) was 6.1 months and median OS was
12.9 months. Of those who were MRD negative (n=32), half
proceeded to allo-HCT and the other half did not. Allo-HCT was
not associated with improved EFS or OS, although survival was
poor regardless of transplant.

In the initial phase I/II trial of the 4-1BB CART19,
tisagenlecleucel/CTL019, out of University of Pennsylvania and
Children’s Hospital of Philadelphia, Maude et al. (60) reported
that only three of 30 pediatric and young adult patients
underwent subsequent allo-HCT while in MRD- remission
(60). Nevertheless this remission persisted 7 to 12 months after
tisagenlecleucel infusion. A similarly low rate of allo-HCT after
tisagenlecleucel was reported in the phase II ELIANA trial of this
product in a similar population, in which only eight of 75
patients proceeded to allo-HCT while in remission (63). Two
of the eight had MRD positivity and two others had lost B-cell
aplasia within 6 months of the infusion. Of those eight patients,
four were known to remain in remission at follow-up while the
other 4 had an unknown disease status. An updated analysis of
ELIANA demonstrated persistence of tisagenlecleucel with
Frontiers in Oncology | www.frontiersin.org 5
ongoing B-cell aplasia in some patients with follow-up for
multiple years, which correlated with ongoing remission (70).
Survival was unprecedented and irrespective of subsequent allo-
HCT. Based on these results, some argue that the unique biology
of pediatric B-ALL and persistence of tisagenlecleucel provide
the potential for durable remission without the need to proceed
to allo-HCT in this population (71).

Not all 4-1BB CART19 constructs have been associated with
persistence and prolonged B-cell aplasia in children. In a phase I/
II study of 45 children and young adults, Gardner et al. (62)
produced 4-1BB CART19 at a defined 1:1 of CD4+:CD8+ cells,
achieving 93% (40 of 43) MRD negative CRs among those who
received the product (62). Median duration of B-cell aplasia,
however, was relatively short, only 3 months. Loss of B-cell
aplasia correlated with occurrence of relapse. Eleven patients
underwent consolidative allo-HCT, two of whom were MRD+ by
next-generation sequencing pre-transplant and recurred
following transplant. Summers et al. (72) provided an updated
analysis of this trial in which there was a suggested benefit in
leukemia-free survival from consolidative allo-HCT in
transplant-naïve patients after CART19 as well as among
patients who lose B-cell aplasia in ≤63 days, even those with a
prior allo-HCT (72).

In a phase II study out of Hebei Yanda Lu Daopei Hospital,
Pan et al. treated 51 children and adults with a 4-1BB CART19
which led to 85%MRD- CR/CRi in those who entered with active
disease and 100% conversion of MRD+ patients to MRD- (61).
Sixty-percent (27/45) of these patients proceeded to allo-HCT,
the majority of which were from haploidentical donors.
Following allo-HCT, two died from complications of the
transplant and two patients relapsed. Comparatively, nine of
the 18 patients who did not proceed to allo-HCT relapsed at a
median time of 64 days, although the reasons for foregoing
transplant were unclear. Late relapse (90+ days after CART19)
was also significantly better among allo-HCT recipients
(p=0.023). A more recent Chinese study corroborated such
findings in a similarly heterogeneous population (65). Jiang
et al. prospectively compared outcomes of 47 4-1BB CART19
recipients who achieved MRD- CR. 21 transplant-naïve patients
proceeded to allo-HCT at a median 44 days after CAR-T.
Twenty-six patients did not proceed to transplant as three had
previous allo-HCT, five were contraindicated, three lacked
TABLE 3 | Response and relapse outcomes in trials assessing CD19 CAR-T therapy with 4-1BB/CD3z co-stimulatory domains in B-cell acute lymphoblastic leukemia
with potential bridging to allogeneic hematopoietic cell transplantation.

Maude et al. (60) Pan et al. (61) Gardner
et al. (62)

Maude et al. (63) Hay et al.
(64)

Jiang et al.
(65)

Frey et al. (66)

Patients, n 30 51 45 75 53 58 35
Age Category Pediatric and YA

(25), Adult (5)
Pediatric, YA,
and Adult

Pediatric
and YA

Pediatric and YA Adult Pediatric, YA,
and Adult

Adult

Median follow-up, mo 7 NA 9.6 13.1 30.9 7.7 13
Prior allo-HCT, % 60 0 62 61 43 5 37
CR/CRi(MRD-), % 90 (77) 86(81) 89 (89) 81(81) 85 (85) 88 (81) 69 (57)
Allo-HCT post-CR,% 11 60 28 13 40 45 38
Relapse after CR:
overall/after allo-HCT %

26/0 24/7 45/18 32/NA (50% relapse-free, 50%
unknown after allo-HCT)

49/17 38/9 NA (Landmark analysis
for EFS p=0.03)
Decem
ber 2020 | Volu
Allo-HCT, allogeneic hematopoietic cell transplantation; CR, complete remissions; MRD, minimal residual disease; NA, not available; YA, young adults.
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donor, and the rest chose to forego it for personal reasons. Two
patients died of complications from the transplant (chronic
GVHD, infection), and two experienced CD19-negative
relapse. Overall, consolidative allo-HCT was associated with
improved EFS and RFS (p<0.05) although there was no
significant difference in OS. Importantly, no patient was
precluded from allo-HCT due to CAR T-related toxicities.
Although these studies did not differentiate the outcomes
based on patient age, they support transplanting all transplant-
naïve patients who achieve MRD-negativity with 4-1BB CART19
on the basis of protection from relapse, although survival benefits
are unclear.

Among United States trials of 4-1BB CART19 for B-ALL in
adults, there is a suggestion that bridging to allo-HCT provides
better outcomes than CAR T therapy in isolation. In a pilot study
out of University of Pennsylvania, tisagenlecleucel was
administered to five patients at a high dose in a fractionated
schedule (HDF), all of whom achieved a CR. In the follow-up
study, single infusion of a high dose 4-1BB CART19 was
complicated by a high incidence of CRS-related death, and a
low dose lacked efficacy, therefore the protocol underwent two
amendments ultimately settling on HDF for the remaining
participants (66). The MRD- CR rate among HDF recipients
(n=20) was 90%, with 2-year EFS and OS of 49.5% and 73%,
respectively. Efficacy and safety outcomes were notably better in
the HDF schedule than either single-infusion schema. Nine of 24
patients who had achieved CR were consolidated with allo-HCT
at a median of 2.6 months after CART19. Landmark analysis by
allo-HCT demonstrated a significant improvement in EFS
(p=0.029) and nonsignificant improvement in OS (p=0.09).
Work out of the Fred Hutchinson Cancer Research Center
produced similar findings in a trial of 53 adults with B-ALL
who received a 4-1BB CART19 (64, 73). 45 patients achieved
MRD-negative CRs, of whom eighteen (40%) proceeded to allo-
HCT. In univariate analysis, allo-HCT was associated with
longer EFS compared to no allo-HCT (HR 0.31, p=0.014), as
well as after adjusting for other factors associated with
improved EFS.

In summary, until randomized controlled trials address the
specific question of allo-HCT after CART19 for B-ALL, the
decision to proceed to transplant must be individualized based
on key patient, disease, and product factors. Most would argue
that recipients of a CD28-based CART19 should proceed to allo-
HCT due to lack of persistence (71). Young patients who receive
tisagenlecleucel, which to date is the only FDA approved
commercial product, may be able to forego allo-HCT, as
sustained remissions have been seen in such patients. Prior
allo-HCT or extensive prior treatment may also favor avoiding
subsequent allo-HCT after CART19. Loss of B-cell aplasia,
especially within 6 months of CAR T infusion in patients with
B-ALL, likely warrants consideration of allo-HCT among those
who initially forego it (74). Some argue that predicting
persistence of 4-1BB CART19 is difficult and that relapse could
occur due to lack of persistence or secondary to the loss of CD19
on leukemia cells; therefore it is reasonable to offer and prepare
for allo-HCT in all patients following CART19 (75). The decision
Frontiers in Oncology | www.frontiersin.org 6
to pursue allo-HCT is only likely to become more obfuscated as
CAR T therapies with new and/or multiple targets, improved
persistence, and universal allogeneic off-the-shelf CAR T
(UCART) are developed and deployed.

Non-Hodgkin’s Lymphoma
The role of CAR T therapy is actively evolving in the treatment
strategy of Non-Hodgkin’s lymphoma (NHL), and varies based
on NHL subtype. Likewise, the role of allo-HCT is also in flux for
NHL, in large part due to the introduction and dissemination of
CAR T therapy. Hereafter, we address the trial data for CAR T
therapy based on NHL subtype as well as the dynamic status of
allo-HCT in these diseases.

Diffuse Large B-Cell Lymphoma
The treatment paradigm for early relapsed or refractory diffuse
large B-cell lymphoma (DLBCL) involves salvage chemotherapy
followed by autologous stem cell transplantation (ASCT) for
those that respond to the salvage regimen, in transplant-eligible
patients (76, 77). Historically, allo-HCT consolidation after an
initial salvage regimen was associated with decreased incidence
of relapse compared to ASCT, but was more toxic resulting in
comparable relapse-free and overall survival (78). Studies did
posit an immunotherapeutic graft-versus-lymphoma effect that
could be exploited in the event of relapse after ASCT or failure to
mobilize sufficient stem cells, therefore allo-HCT was relegated
to such scenarios (79). A CIBMTR analysis examining allo-HCT
in the era immediately prior to the development of novel agents
and CAR T therapy highlighted the limited options for and poor
prognosis of patients necessitating allo-HCT for advanced
DLBCL. Relapse rate was inversely correlated with conditioning
intensity, although myeloablative regimens yielded non-relapse
mortality of 56%, translating to similarly poor 5-year survival of
around 20% (80).

While direct comparisons to allo-HCT are lacking and
follow-up is still limited, data from the major trials of CD19
CAR T therapy for relapsed/refractory DLBCL and real-world
registries suggest durable CR rates of 30 to 40% with treatment-
related toxicities that are more benign and relegated to the acute
setting (Table 4). In the pivotal ZUMA-1 trial, axicabtagene
ciloleucel (axi-cel), a CD19-targeting CAR T cell with a CD28 co-
stimulatory domain, yielded an objective response rate of 82%
and CR rate of 54% (86). In an updated analysis with a median
follow-up of 27.1 months, a significant number of patients had
converted from SD or PR at one month to CR by 6 months (84).
The estimated 24-month overall survival was 50.5%, and durable
remissions were highlighted by an estimated 24-month PFS of
75.0% and 72.0% among those with a CR and PR, respectively.
No patient had undergone an allo-HCT prior to axi-cel, and only
two patients underwent allo-HCT while responding to axi-cel.
Unlike the experience with B-ALL, loss of B-cell aplasia was not a
predictor of disease recurrence, and durable responses did not
appear to require prolonged persistence of functional CAR T
cells. Grade 3 or worse cytokine release syndrome (CRS) and
immune effector cell-associated neurotoxicity syndrome
(ICANS) occurred in 11% and 32% of patients, respectively,
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but no deaths were attributed to axi-cel, and most treatment-
related toxicities were confined to the peri-treatment period.

Tisagenlecleucel was examined in the pivotal single-armed,
phase II JULIET trial in DLBCL and transformed follicular
lymphoma (83). Patients with a prior allo-HCT were excluded.
A notably higher percentage of patients had relapsed after a prior
ASCT compared to the ZUMA-1 trial. The best ORR was 52%,
40% with CR and 12% with PR, with 43% conversion rate from
PR/SD to CR at a median of 2 months post-infusion, but as late
as 17 months. The estimated 12-month PFS was 83% among
those with a CR or PR, and 12-month OS was 50% for all who
received an infusion. Grade 3 or higher CRS or ICANS occurred
in 22% and 12% of patients, respectively, although were mainly
confined to the 8-week period after infusion. No deaths were
attributed to the CAR T product. Similar to axi-cel, many
patients had loss of B-cell aplasia although this was not
associated with disease recurrence. Five non-responders
proceeded to allo-HCT, although none of the patients
proceeded to allo-HCT while experiencing a response to CAR T.

These two pivotal trials led to the commercial approval of axi-
cel and tisagenlecleucel for DLBCL relapsed after or refractory to
at least two lines of therapy. They demonstrated notable efficacy
in a population of patients with historically poor outcomes, even
in those with chemorefractory disease or high-risk features. In
comparison, chemosensitivity is usually a prerequisite for
proceeding to allo-HCT as chemorefractoriness portends a
high risk of relapse in this setting. Such findings were
corroborated by real-world reports of CD19 CAR T for
DLBCL, with comparable efficacy and an improved safety
profile, in part due to the learned management of acute
toxicities (87, 88). With comparable or improved efficacy
relative to allo-HCT and toxicities that appear generally more
tolerable and limited in duration, CAR T therapy has likely
supplanted allo-HCT for the treatment of multiply
relapsed DLBCL.

Mantle Cell Lymphoma
Mantle cell lymphoma, although rare, is uniquely challenging in
that it invariably relapses following initial therapy with induction
and ASCT consolidation, its clinical course is often aggressive,
and it frequently becomes refractory to chemotherapy and novel
agents. Although novel therapies such as Bruton’s tyrosine kinase
(BTK) inhibitors have prolonged survival, progression is often
inevitable and associated with poor survival (89). Allo-HCT has
been offered as a potentially curative option with the advantages
of providing an uncontaminated graft with theoretical GVL
effect, although the advent of numerous targeted agents has
been providing longer responses, and patients are more heavily
treated at the point of allo-HCT consideration. Reduced-
intensity conditioning (RIC) regimens have been favored due
to the usual advanced age and comorbidities of MCL patients. In
a retrospective registry study by the European Bone Marrow
Transplant Lymphoma Working Party, MCL patients
undergoing allo-HCT with RIC experienced 1-year NRM of
24%, with long-term disease-free survival of 30% at 4 years (90).

Brexacabtagene autoleucel (KTE-X19) recently garnered
accelerated regulatory approval for the treatment of relapsed/
T
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refractory MCL. KTE-X19 is the same construct as axi-cel, with a
CD28 co-stimulatory domain, although it undergoes a
manufacturing process that selectively removes circulating
CD19-expressing malignant cells to prevent premature CAR T
activation (45). In the ZUMA-2 trial, 74 patients who had
relapsed after chemotherapy (anthracycline or bendamustine),
an anti-CD20 monoclonal antibody, and BTK inhibitor were
treated in a single arm, multicenter phase II trial of KTE-X19,
with dosing based on the established dose of axi-cel. The ORR
was 85% with a CR rate of 59%, with responses comparable
across high risk subgroups. Among those with an initial PR or
SD, 57% improved to CR. The 12-month estimated PFS was 61%
and OS was 83%. Grade 3 or higher CRS occurred in 15% and
ICANS in 31%. One patient had grade 4 cerebral edema. Two
deaths occurred relating to the conditioning chemotherapy. One
patient proceeded to allo-HCT while in a PR. There are no data
comparing allo-HCT with CAR-T in these patients and we
currently lack long term follow-up after CAR-T to assess true
long term PFS. If CAR-T results in 30% or higher long term
disease free survival, in light of lower NRM, it will likely be
considered superior to allo-HCT in these patients.

Follicular Lymphoma
Follicular lymphoma (FL) is the second-most common NHL and
the most common indolent lymphoma. Patients have a variable
course, but generally the disease is considered incurable and
many patients receive multiple lines of therapy during the course
of their disease (91). While not all patients require upfront
therapy, those with early treatment failure (disease progression
within 24 months of chemoimmunotherapy or 12 months of
rituximab monotherapy) have worse outcomes with standard
therapy, and warrant more aggressive treatment (92). In
the absence of transformed disease and in those who are
eligible for transplantation, many will undergo salvage
chemoimmunotherapy with the intent to undergo high-dose
chemotherapy with ASCT if a CR is achieved. In retrospective
studies, ASCT has been associated with prolonged survival
compared to salvage chemo-immunotherapy alone (93).
Matched-sibling donor allo-HCT provides comparable long-
term survival to ASCT, with a significantly lower-risk of
relapse but higher upfront NRM (94). Of those patients that
survive beyond 24 months, survival was shown to be superior in
those who received allo-HCT. In general, nonmyeloablative and
RIC regimens are used, some incorporating immunotherapy or
radioimmunotherapy (40, 95). Long term PFS may be as high as
70-80% in highly-selected patients. Anecdotally, however, the
increased arsenal of novel and investigational therapies for FL,
including CAR T cells, is decreasing the use and utility of
allo-HCT.

Small prospective trials of CD19 CAR T cells demonstrate the
promise of CAR T therapy among patients with relapsed/
refractory FL, prompting ongoing larger clinical trials. Among
patients treated in the initial prospective case series study of
CTL019/tisagenlecleucel out of the University of Pennsylvania,
14 patients who received treatment had advanced FL, 8 of whom
had double-refractory disease, three who had undergone prior
ASCT and one with a prior allo-HCT (81). 10 of 14 (71%) of
Frontiers in Oncology | www.frontiersin.org 8
patients had a CR at 6 months and remained in remission at a
median of 29.3 months. 70% were progression-free at 28.6
month, and 89% who responded maintained the response by
the median follow-up period. Severe CRS occurred in five
patients (18%) and severe ICANS occurred in three (11%), one
case being fatal.

Hirayama and colleagues from the Fred Hutchison Cancer
Institute included 8 patients with multiply-relapsed FL (3 with a
prior ASCT and 1 with a prior allo-HCT) in their phase I/II study
of CD4:CD8 ratio-defined CD19 CAR T (96). Seven (88%)
achieved a CR, all of whom remained in remission and one of
whom proceeded to allo-HCT. The eighth patient had SD and
subsequently underwent radiation therapy with no progression
at 36 months. A notable criticism was the high dose of
cyclophosphamide that patients received as part of
lymphodepletion (97). Importantly, while CRS and ICANS
occurred in 50% of patients, no severe adverse events were
reported. Axi-cel and tisagenlecleucel are actively being studied
in multicenter phase II trials in FL in the ZUMA-5 and ELARA
studies, respectively (42). Results from the interim analysis of
ZUMA-5 reported an ORR of 95% and CR rate of 80% among 80
patients with FL. With a median follow-up of 11.5 months, 68%
of patients had ongoing responses. CRS and ICANS occurred in
11% and 19% of patients (43). While the high response rates and
manageable toxicities are promising in multiply recurrent FL, the
length of follow-up in these trials is limited. It is therefore
unknown whether CAR T therapy will compare favorably or
unfavorably with allo-HCT with RIC. Although the novelty of
CAR T therapy may lead physicians to lean toward it, this is an
area that deserves long term analysis as CAR T should provide
durable PFS of 70% or better in order to be a competitive
substitute for alloHCT.

CAR T Therapy and the Waning Role of Allo-HCT
in NHL
As the clinical trial data for CAR T therapy in NHL mount, the
role of allo-HCT becomes more questionable. In large part, the
toxicities related to CD19 CAR T therapies are acute, limited in
severity, and manageable, which makes them more appealing
compared to the potentially long-lasting infectious and GVHD
complications seen in allo-HCT.

Unlike B-ALL, current evidence does not support
consolidative allo-HCT for NHL patients responding to CAR T
(98). Additionally, as responses may be delayed and evolve over a
prolonged duration, active observation is generally
recommended even in patients with a PR or SD post-CAR T.
Patients with SD, however, are less likely to achieve a subsequent
remission. Therefore, individualized consideration may be given
to allo-HCT prior to progression based on the extent of disease,
donor availability, and other patient-specific factors. While loss
of B-cell aplasia may trigger pursuit of allo-HCT in B-ALL, it has
not been associated with disease recurrence in DLBCL, and
therefore should not be considered a decision point for
transplant (68).

Whether allo-HCT has a role following NHL progression
after CAR T therapy is also a point of controversy. While
theoretically it would be the principal option that could lead to
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a durable remission, in practicality it is difficult to achieve a
remission pre-transplant in such patients that would justify
pursuit of allo-HCT. Additionally, allogeneic transplantation
likely eradicates the CAR T cells, which could otherwise
potentially be stimulated through a variety of investigational
methods in order to attempt to attain a response. Lenalidomide,
PD-1 inhibitors, and the bispecific CD3-CD20 monoclonal
antibody mosunetuzumab have all demonstrated the potential
to recapture a response in patients who progressed after CAR T
therapy (99–103). Therefore, pursuit of a clinical trial or off-label
use of such agents may be preferred over or should be considered
before proceeding with allo-HCT based on the respective risk-to-
benefit ratios in such heavily pre-treated patients. As it pertains
specifically to bispecific antibodies in NHL, their ease of use and
promise of efficacy positions them competitively with CAR T
therapy, highlighting evolving dilemmas of patient selection and
sequencing of novel immunotherapies.

There is limited experience with CAR T after allo-HCT in
NHL as such patients were excluded from larger clinical trials.
However, a number of small reports demonstrate that it is safe
and feasible to construct donor-derived CAR Ts or pseudo-
donor-derived CAR Ts (104–107). In such studies, severe and
active graft-versus-host disease (GVHD) was a key exclusion
criterion and, while GVHD developed or worsened in a few
patients, the severity was mild. Further study is needed in larger
homogenous populations to determine if the safety and efficacy
of donor-derived CAR T therapy is comparable.

In summary, whereas CD19 CAR T arguably has a
complementary role in bridging to allo-HCT in the B-ALL
algorithm, it may supplant allo-HCT in most patients with
relapsed NHL based on favorable toxicity and at least
comparable efficacy. Longer follow-up is needed in most of the
NHL CAR T trials in order to confirm this implication.

Multiple Myeloma
While therapy for multiple myeloma (MM) has dramatically
improved over the past two decades, it is generally considered
incurable and most patients will die of their disease (108). During
the 1990s and early 2000s, during which time novel therapies
(i.e., proteasome inhibitors, immunomodulatory drugs,
monoclonal antibodies) were in clinical development, allo-
HCT was studied in the treatment of MM in several fashions
(12). Several studies evaluated ASCT followed by RIC allo-HCT
compared to tandem ASCT (109–112). Two meta-analyses of
such studies yielded no differences in OS but a significantly
higher risk of NRM (113, 114). Allo-HCT as a salvage therapy
after relapse has been shown to provide a PFS benefit without OS
benefit for a small percentage of patients, as reported in a
number of retrospective series and registry studies, and
outcomes have been comparable or worse than salvage ASCT
in selected patients (12, 115, 116). Therefore, consensus
guidelines recommend the use of allo-HCT in these settings
only in the context of well-designed clinical trials (117, 118).
Interestingly, there are a number of clinical trials ongoing
combining allo-HCT with novel therapies as consolidation and
maintenance, which may shift the paradigm at a later date.
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However, they are contending with the ongoing development
of CAR T therapy for MM.

B-cell maturation antigen (BCMA) is a cell-surface antigen
found on some mature B-cells and normal plasma cells,
malignant plasma cells, and importantly not expressed on
hematopoeitic stem cells, non B and plasma cell hematopoietic
lineages or non-hematopoietic tissue. The first-in-human trial of
a BCMA CAR T therapy with a CD28 costimulatory domain
demonstrated promising anti-myeloma efficacy (119). The two
patients receiving the highest dose level of 9 × 106 CAR T cells/kg
body weight had at least a very good partial response, although
both had severe CRS and prolonged cytopenias.

In a single-center, phase I, dose-finding clinical trial of a 4-
1BB BCMA CAR T therapy, the overall response rate was 12
(48%) of 25 heavily pre-treated MM patients (120). Median
duration of response was 124.5 days and 3 patients had durable
responses at the time of reporting. Eight (32%) had grade 3+
CRS, one who died of candidemia following prolonged therapy
for CRS, and three (12%) had grade 3+ ICANS.

The safety and preliminary efficacy of the BCMA CAR T
using 4-1BB costimulatory endodomain, bb2121/idecabtagene
vicleucel (ide-cel), was studied in a multicenter phase I trial
(121). The ORR among 33 patients was 85%, with a 45% CR/sCR
rate and a median PFS of 11.8 months. The follow-up pivotal
phase II KarMMa trial of ide-cel yielded a 73% ORR and 31%
CR/sCR rate with a median PFS and duration of response of 8.6
and 10.6 months, respectively, and low rate of grade 3+ CRS (5%)
and ICANS (3%) (122). Based on these data, regulatory approval
for ide-cel in refractory MM patients who have failed at least
three independent lines of therapy is actively being pursued.

The LCAR-B38M and JNJ-4528 CAR T therapies are
identical constructs comprised of a 4-1BB costimulatory
endodomain and two BCMA-targeting single-domain
antibodies targeting distinct BCMA epitopes. In the Chinese
phase I LEGEND-2 study of LCAR-B38M, 57 patients were
infused with 3 split infusions (123). Seven percent had grade 3
CRS, only one patient had ICANS. The ORR was 88%, with a
74% CR rate. Of those with CR, 39/42 were MRD-negative. The
18-month OS was 68%, with a median duration of response of 22
months, 27 months in those with CR. Another smaller trial of the
LCAR-B38M products examined 17 patients with high risk
features (i.e., extramedullary disease, poor cytogenetics, triple-
class refractoriness). While initial responses were promising
(88% ORR), factors such as extramedullary disease and the
development of anti-CAR T antibodies were associated with
relapse, and the 12-month PFS was only 53% (124). The phase
Ib/II CARTITUDE-1 study in the United States of JNJ-4528 is
ongoing with a 100% ORR and 76% sCR in the first 29 patients
and similarly tolerable safety profile, albeit one delayed death
from sequelae of grade 4 CRS (47, 48).

The BCMA CAR T platforms are the best positioned to break
into clinical practice in the near future. Other CAR targets such
as CS-1, immunoglobulin kappa light chain, and CD138 are
being explored (11, 125, 126). Additionally, ongoing clinical
trials are focused on the appropriate sequencing of BCMA
CAR T, specifically addressing whether it should be deployed
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earlier in patients who experience a suboptimal response from
induction therapy and ASCT or frontline for those with high-risk
features. Follow-up for BCMA CAR T-treated patients within
these trials is still maturing, so it remains unclear whether a
durable remission, as seen in some B-ALL and NHL patients, can
be expected. The historically inconsistent survival and NRM
outcomes in allo-HCT, combined with the substantial treatment
burden experienced by the typical MM patient, suggest that this
practice will likely be replaced by CAR T therapy, should it deliver
on its promise of high responses and some durable remissions. It
is unlikely that CAR T will be used as a bridge to allo-HCT, and
none of the trials have reported such a practice in any participant.
THE EXPANDING FRONTIER OF CAR T
AND ALLO-HCT

CAR T and Allo-HCT in Myeloid
Malignancies: An Inseparable Fate
The most common indications for allo-HCT in adults are acute
myeloid leukemia (AML) and myelodysplastic syndrome (MDS)
(127). Despite the toxicities associated with the transplant itself,
relapse remains the most significant cause of treatment failure
and death after allo-HCT, highlighting the need for further
disease-modifying innovation without added toxicity (128–
130). Unlike B-cell malignancies, to date most CAR target
antigens for myeloid malignancies have significant overlap
with normal myeloid cells and hematopoietic stem/progenitor
cells (HSPCs), the eradication of which would likely be poorly
tolerated (131). Some of these antigens have been targeted in
early clinical trials of CAR T cells with variable toxicity and
success thus far, reviewed in detail in Mardiana and Gill (36).

CD123 is one such antigen already being targeted by other
investigational immunotherapies (132). Preclinical work suggests
that it is a viable CAR target for AML, although it could lead to
myeloablation requiring allo-HCT rescue. It is also expressed on
vascular endothelium, heightening the risk for toxicity such as
capillary leak syndrome (133–135). One risk mitigation strategy
has been the production of transient CAR T cells infused serially,
a concept that was safe and feasible in a pilot study, but which
was discontinued during phase I (136). An ongoing study at the
City of Hope Medical Center incorporates a truncated epidermal
growth factor receptor (EGFRt) into second-generation CAR T
cells, allowing for inactivation with EGFRmonoclonal antibodies
(37). Early clinical activity has been reported, allowing two of six
AML patients to proceed to a second allo-HCT after achieving
CRs. Unexpectedly, myeloablation by the CD123 CAR T was not
observed as hypothesized, although the intent was to bridge to
allo-HCT. A “compound” CAR T cell, with two complete CAR
constructs targeting those two antigens connected by a cleavable
linker, was generated by Liu et al. and demonstrated promising
efficacy in a phase I dose-escalation, with seven of nine
participants achieving MRD-negative CR (38). Notably, given
the overlap of these targets with normal hematopoietic stem cells,
all experienced Grade IV pancytopenia, and six of seven
responders went on to alloHCT.
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As antigen overlap remains a significant challenge and the
immediately perceived role of AML CAR T therapy is as a bridge
to allo-HCT, one novel concept is that of genetically engineering
an allograft to remove the target antigen from the normal
hematopoietic system, and transplanting this allograft in
sequence with donor-derived CAR T cells against the specific
antigen (131). Kim et al. pioneered the preclinical work in
murine and non-human primate models in which they first
demonstrated that knock-out of CD33 in the donor
hematopoietic stem and progenitor cell population resulted in
normal hematopoiesis and myeloid function and normal
multilineage engraftment (38). Subsequent administration of
CART33 targeting CD33 was able to effectively eliminate
CD33+ leukemia without notable off-target effects .
Immunotherapeutic targeting of CD33 is already an approved
AML therapy (gemtuzumab ozogamicin) with toxicity relating
predominantly to the chemotherapy payload (137). The question
remains as to how post-transplant immunosuppression will
impact the persistence and efficacy of the donor-derived CAR
T cells in this platform. Although it has yet to be clinically
developed, it is hoped that the concept of combining CAR T
therapy with genetically engineered allo-HCT will lead to a
synergistic effect on AML with limited added toxicities.

Other approaches to improve the specificity of T-cell
therapies for AML are in preclinical and clinical development,
including dual-targeting CAR T cells that identify surface
antigen combinations that are unique to leukemic blasts as well
as T-cell receptor engineered (TCR) T cells that allow for the
recognition of intracellular proteins specific to AML blasts (138–
140). The existing perspective, however, is that the clinical
advances to come from AML cellular therapy will likely need
to be combined with allo-HCT in order to achieve the best
outcomes. As more is learned about these complementary
platforms, lessons from each are likely to benefit one another.

Allogeneic “Off-the-Shelf” CAR T Therapy
Numerous challenges to the widespread implementation of
autologous CAR T therapy have been described (141). The
products are generated from a patient’s autologous T cells,
which requires extensive and costly collection and
manufacturing efforts. This process is time-intensive, and
during the intervening period some patients have difficulty
with disease control or complications from bridging
chemotherapy. Additionally, the extensive pretreatment brings
into question the potency and exhaustion of the cellular therapy.

Due to these limitations, numerous institutions and
companies are actively developing “universal off-the-shelf”
CAR T products derived from allogeneic sources (UCART),
which overcome some of these hurdles although introduce new
ones. Principally, alloreactivity can lead to rejection of the
UCART mediated by the recipient T and NK cells, and
alloreactivity from the UCART can lead to GVHD (142).
Numerous studies of graft rejection and GVHD in the context
of UCART have demonstrated the role of the T cell receptor
(TCR) in recognizing non-self major histocompatibility complex
(MHC) molecules and/or MHC molecules complexed with
peptides, conferring alloreactivity (143–145). As such, the
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fundamental understanding of both of these concepts, and
methods to mitigate them, are derived from decades of study
and observation in allo-HCT.

A unique clinical development in allo-HCT that has
translated to preclinical work in the UCART space involves the
isolation and therapeutic exploitation of virus-specific T cells
that have a limited TCR repertoire. Initially, such allogeneic
virus-specific T cells were used in allo-HCT recipients to treat
and prevent severe viral infections (146–148). Despite HLA
mismatches between the cellular therapy and patients, de novo
GVHD did not occur with any significant frequency. Therefore,
such virus-specific T-cells are currently being bioengineered to
harbor CARs for CD19 and other targets (149, 150).

With knowledge of the TCR as the main mediator of both
rejection and GVHD, disruption of the TCR through one of a
number of gene editing techniques has become the predominate
means of preventing GVHD by UCART. In the initial preclinical
work, Torikai et al. (151) demonstrated the feasibility of
knocking out the gene for the T cell receptor constant a chain
(TRAC) using zinc finger technology in CD19 CAR T cells,
without impairment of their antitumor activity (151).
Subsequent methods have employed transcription activator-
like effector nuclease (TALEN) technology to develop UCART
products, knocking out not only the TCR but also CD52 in the
products, allowing for alemtuzumab-based extended
lymphodepletion in order to enhance UCART engraftment
and persistence and to mitigate UCART rejection without
impacting the anti-tumor efficacy of the UCART product itself.
Clinical trials of UCART are ongoing in multiple hematologic
malignancies (142). The advent of CRISPR/Cas9 technology has
allowed for both precision knockout of TRAC as well as T cell-
specific antigens (e.g., CD7), allowing for possible deployment in
T cell ALL without the risk of fratricide (152). Another novel
approach that allows for efficient production of UCART
products involves adeno-associated virus (AAV)-mediated
transduction of the CAR transgene into the TRAC locus. This
process exploits a site-specific endonuclease and homology-
directed repair to simultaneously knock out the native TCR
and allows for the CAR to be expressed under the usual
transcriptional control of TRAC (153, 154). Many of these
UCART technologies are in clinical development and, if
successful, are poised to make CAR T therapy more accessible
and affordable. How they will impact the landscape of CAR T
and allo-HCT remains to be seen.
DISCUSSION AND CONCLUSIONS

Allogeneic hematopoietic cell transplantation and chimeric
antigen receptor T cell therapy are the two principal cellular
therapies that have widely permeated the clinical space outside of
clinical trials, and remain the focus of many ongoing
investigations. They span the spectrum of target specificity
which, in part, predicts their efficacy and toxicity. Whether the
two modalities complement or compete with one another
depends substantially on the disease and the patient and
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requires a nuanced and individualized approach. For many
histologic subtypes of NHL and for relapsed refractory MM,
CAR T therapy appears to provide comparable or improved
outcomes to allo-HCT with potentially less long-term
complications and a chance of durable remissions as a
destination therapy. However, allo-HCT already had very
niched indications within these diseases secondary to
substantial improvements in novel therapies, so likely there
will continue to be a role for allo-HCT in select patients, albeit
diminished. In B-ALL much of the evidence supports CAR T
therapy as a complement serving as a bridge to allo-HCT,
especially in adults. However, some patients, especially
pediatric patients, may enjoy sustainable remissions with CAR
T alone, with active observation for loss of CAR T persistence
replacing the immediate need to proceed to transplant while in
remission. Should CAR T therapy become a viable treatment
option for myeloid malignancies, based on current research there
is a high probability that it will be used in conjunction with allo-
HCT due to the antigen overlap between malignant myeloid cells
and non-malignant hematopoietic stem and progenitor cells.
Technologies used to build newer CAR T may be able to
simultaneously modify the allografts to limit off-target effects.

The pace of innovation in the adoptive immunotherapy space
is accelerating, sparked by the success of both platforms; allo-
HCT and CAR T. The ongoing research in both fields is routinely
translated to one another and to other forms of investigational
cellular therapies, providing strategies to manage complications,
such as CRS, and increase accessibility with the prospect of
UCART therapy. As the technologies evolve and new therapies
emerge, the challenge will continue to be in synthesizing the data
in reference to the specific disease and performance status of
each patient in order to provide better and more tailored
treatment for each individual.
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130. Mrózek K, Marcucci G, Nicolet D, Maharry KS, Becker H, Whitman SP, et al.
Prognostic significance of the European LeukemiaNet standardized system
for reporting cytogenetic and molecular alterations in adults with acute
myeloid leukemia. J Clin Oncol (2012) 30:4515–23. doi: 10.1200/
JCO.2012.43.4738

131. Cummins KD, Gill S. Chimeric antigen receptor T-cell therapy for acute
myeloid leukemia: how close to reality? Haematologica (2019) 104:1302–8.
doi: 10.3324/haematol.2018.208751

132. Al-Hussaini M, Rettig MP, Ritchey JK, Karpova D, Uy GL, Eissenberg LG,
et al. Targeting CD123 in acute myeloid leukemia using a T-cell-directed
dual-affinity retargeting platform. Blood (2016) 127:122–31. doi: 10.1182/
blood-2014-05-575704

133. Testa U, Pelosi E, Frankel A. CD 123 is a membrane biomarker and a
therapeutic target in hematologic malignancies. Biomark Res (2014) 2:4.
doi: 10.1186/2050-7771-2-4

134. Gill S, Tasian SK, Ruella M, Shestova O, Li Y, Porter DL, et al. Preclinical
targeting of human acute myeloid leukemia and myeloablation using
chimeric antigen receptor-modified T cells. Blood (2014) 123:2343–54.
doi: 10.1182/blood-2013-09-529537

135. Baroni ML, Sanchez Martinez D, Gutierrez Aguera F, Roca Ho H, Castella M,
Zanetti S, et al. 41BB-based and CD28-based CD123-redirected T-cells ablate
human normal hematopoiesis in vivo. J Immunother Cancer (2020) 8:
e000845. doi: 10.1136/jitc-2020-000845

136. Cummins KD, Frey N, Nelson AM, Schmidt A, Luger S, Isaacs RE, et al.
Treating Relapsed/Refractory (RR) AML with Biodegradable Anti-CD123
CAR Modified T Cells. Blood (2017) 130:1359. doi: 10.1182/
blood.V130.Suppl_1.1359.1359
December 2020 | Volume 10 | Article 608916

https://doi.org/10.1200/JCO.2015.64.5929
https://doi.org/10.1200/JCO.2015.64.5929
https://doi.org/10.1172/JCI86721
https://doi.org/10.1182/blood-2013-06-506741
https://doi.org/10.1038/s41375-019-0476-y
https://doi.org/10.1038/s41375-019-0476-y
https://doi.org/10.1038/leu.2017.329
https://doi.org/10.1182/blood-2005-09-3869
https://doi.org/10.1182/blood-2008-02-141598
https://doi.org/10.1182/blood-2012-11-469452
https://doi.org/10.1182/blood-2012-11-469452
https://doi.org/10.1016/S1470-2045(11)70243-1
https://doi.org/10.1186/1756-8722-6-2
https://doi.org/10.1038/bmt.2012.173
https://doi.org/10.1016/j.bbmt.2011.07.026
https://doi.org/10.1038/bmt.2013.187
https://doi.org/10.1016/j.bbmt.2015.03.002
https://doi.org/10.1016/j.bbmt.2015.03.002
https://doi.org/10.1200/JCO.2010.29.7929
https://doi.org/10.1182/blood-2016-04-711903
https://doi.org/10.1182/blood-2016-04-711903
https://doi.org/10.1172/JCI126397
https://doi.org/10.1056/NEJMoa1817226
https://doi.org/10.1200/JCO.2020.38.15_suppl.8503
https://doi.org/10.1186/s13045-018-0681-6
https://doi.org/10.1073/pnas.1819745116
https://doi.org/10.1073/pnas.1819745116
https://doi.org/10.1016/j.clml.2019.09.278
https://doi.org/10.1038/s41467-020-16160-5
https://doi.org/10.1038/s41467-020-16160-5
https://doi.org/10.1016/j.bbmt.2020.03.002
https://doi.org/10.1046/j.1365-2141.2001.02756.x
https://doi.org/10.1111/bjh.12425
https://doi.org/10.1200/JCO.2012.43.4738
https://doi.org/10.1200/JCO.2012.43.4738
https://doi.org/10.3324/haematol.2018.208751
https://doi.org/10.1182/blood-2014-05-575704
https://doi.org/10.1182/blood-2014-05-575704
https://doi.org/10.1186/2050-7771-2-4
https://doi.org/10.1182/blood-2013-09-529537
https://doi.org/10.1136/jitc-2020-000845
https://doi.org/10.1182/blood.V130.Suppl_1.1359.1359
https://doi.org/10.1182/blood.V130.Suppl_1.1359.1359
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Goldsmith et al. HCT and CAR-T: Complements or Competitors?
137. Godwin CD, McDonald GB, Walter RB. Sinusoidal obstruction syndrome
following CD33-targeted therapy in acute myeloid leukemia. Blood (2017)
129:2330–2. doi: 10.1182/blood-2017-01-762419

138. Daver N. A bispecific approach to improving CAR T cells in AML. Blood
(2020) 135:703–4. doi: 10.1182/blood.2020004791

139. He X, Feng Z, Ma J, Ling S, Cao Y, Gurung B, et al. Bispecific and split CAR T
cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood
(2020) 135:713–23. doi: 10.1182/blood.2019002779

140. Chapuis AG, Egan DN, BarM, Schmitt TM,McAfeeMS, Paulson KG, et al. T cell
receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse
post-transplant. Nat Med (2019) 25:1064–72. doi: 10.1038/s41591-019-0472-9

141. Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ. Clinical
development of CAR T cells-challenges and opportunities in translating
innovative treatment concepts. EMBO Mol Med (2017) 9:1183–97.
doi: 10.15252/emmm.201607485

142. Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. ‘Off-the-shelf’ allogeneic
CAR T cells: development and challenges. Nat Rev Drug Discovery (2020)
19:185–99. doi: 10.1038/s41573-019-0051-2

143. Schroeder MA, DiPersio JF. Mouse models of graft-versus-host disease:
advances and limitations. Dis Model Mech (2011) 4:318–33. doi: 10.1242/
dmm.006668

144. Felix NJ, Allen PM. Specificity of T-cell alloreactivity. Nat Rev Immunol
(2007) 7:942–53. doi: 10.1038/nri2200

145. Zeiser R, Blazar BR. Acute Graft-versus-Host Disease - Biologic Process,
Prevention, and Therapy. N Engl J Med (2017) 377:2167–79. doi: 10.1056/
NEJMra1609337

146. Leen AM, Bollard CM, Mendizabal AM, Shpall EJ, Szabolcs P, Antin JH,
et al. Multicenter study of banked third-party virus-specific T cells to treat
severe viral infections after hematopoietic stem cell transplantation. Blood
(2013) 121:5113–23. doi: 10.1182/blood-2013-02-486324

147. Gerdemann U, Katari UL, Papadopoulou A, Keirnan JM, Craddock JA, Liu H,
et al. Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as
treatment for adenovirus, EBV, and CMV infections after allogeneic
hematopoietic stem cell transplant. Mol Ther (2013) 21:2113–21. doi: 10.1038/
mt.2013.151

148. Melenhorst JJ, Leen AM, Bollard CM, Quigley MF, Price DA, Rooney CM,
et al. Allogeneic virus-specific T cells with HLA alloreactivity do not produce
GVHD in human subjects. Blood (2010) 116:4700–2. doi: 10.1182/blood-
2010-06-289991
Frontiers in Oncology | www.frontiersin.org 16
149. Shen RR, Pham CD, Wu M, Munson DJ, Aftab BT. CD19 chimeric antigen
receptor (CAR) engineered epstein-barr virus (EBV) specific T cells – an off-
the-shelf, allogeneic CAR T-cell immunotherapy platform. Cytotherapy
(2019) 21:S11. doi: 10.1016/j.jcyt.2019.03.569

150. Curran KJ, Kernan NA, Wang X, Taylor C, Doubrovina E, Bartido S, et al.
CD19 Targeted Allogeneic EBV-Specific T Cells for the Treatment of
Relapsed ALL in Pediatric Patients Post HSCT. Blood (2012) 120:353–3.
doi: 10.1182/blood.V120.21.353.353

151. Torikai H, Reik A, Liu P-Q, Zhou Y, Zhang L, Maiti S, et al. A foundation for
universal T-cell based immunotherapy: T cells engineered to express a CD19-
specific chimeric-antigen-receptor and eliminate expression of endogenous
TCR. Blood (2012) 119:5697–705. doi: 10.1182/blood-2012-01-405365

152. Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, et al. An
“off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell
hematologic malignancies. Leukemia (2018) 32:1970–83. doi: 10.1038/
s41375-018-0065-5

153. MacLeod DT, Antony J, Martin AJ, Moser RJ, Hekele A, Wetzel KJ, et al.
Integration of a CD19 CAR into the TCR Alpha Chain Locus Streamlines
Production of Allogeneic Gene-Edited CAR T Cells. Mol Ther (2017)
25:949–61. doi: 10.1016/j.ymthe.2017.02.005

154. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJC, Hamieh M,
Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9
enhances tumour rejection. Nature (2017) 543:113–7. doi: 10.1038/
nature21405

Conflict of Interest: JD: Honorarium Incyte; Board of Directors, Rivervest;
research support Macrogenics, Equity/Ownership Magenta Therapeutics and
WUGEN. AG: Consulting or advisory role and honoraria with Kite, a Gilead
Company, and consulting and advisory role with Amgen, Atara, Wugen, and
Celgene/BMS. SG: Consulting, Wugen.

The handling editor declared a past co-authorship with one of the authors JD.

Copyright © 2020 Goldsmith, Ghobadi and DiPersio. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
December 2020 | Volume 10 | Article 608916

https://doi.org/10.1182/blood-2017-01-762419
https://doi.org/10.1182/blood.2020004791
https://doi.org/10.1182/blood.2019002779
https://doi.org/10.1038/s41591-019-0472-9
https://doi.org/10.15252/emmm.201607485
https://doi.org/10.1038/s41573-019-0051-2
https://doi.org/10.1242/dmm.006668
https://doi.org/10.1242/dmm.006668
https://doi.org/10.1038/nri2200
https://doi.org/10.1056/NEJMra1609337
https://doi.org/10.1056/NEJMra1609337
https://doi.org/10.1182/blood-2013-02-486324
https://doi.org/10.1038/mt.2013.151
https://doi.org/10.1038/mt.2013.151
https://doi.org/10.1182/blood-2010-06-289991
https://doi.org/10.1182/blood-2010-06-289991
https://doi.org/10.1016/j.jcyt.2019.03.569
https://doi.org/10.1182/blood.V120.21.353.353
https://doi.org/10.1182/blood-2012-01-405365
https://doi.org/10.1038/s41375-018-0065-5
https://doi.org/10.1038/s41375-018-0065-5
https://doi.org/10.1016/j.ymthe.2017.02.005
https://doi.org/10.1038/nature21405
https://doi.org/10.1038/nature21405
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Hematopoeitic Cell Transplantation and CAR T-Cell Therapy: Complements or Competitors?
	Introduction
	Cellular Therapies: The Parallel and Intertwining Histories of Allo-HCT and CAR T
	Hematopoeitic Cell Transplantation and the Birth of Adoptive Immunotherapy
	The Advent of CAR T Therapy

	Clinical Applications of CAR T-Cell Therapy and the Role of Allo-HCT
	Acute Lymphoblastic Leukemia
	Non-Hodgkin’s Lymphoma
	Diffuse Large B-Cell Lymphoma
	Mantle Cell Lymphoma
	Follicular Lymphoma
	CAR T Therapy and the Waning Role of Allo-HCT in NHL

	Multiple Myeloma

	The Expanding Frontier of CAR T and Allo-HCT
	CAR T and Allo-HCT in Myeloid Malignancies: An Inseparable Fate
	Allogeneic “Off-the-Shelf” CAR T Therapy

	Discussion and Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


