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Abstract

Background: Rigorous study of mitochondrial functions and cell biology in the budding yeast, Saccharomyces
cerevisiae has advanced our understanding of mitochondrial genetics. This yeast is now a powerful model for
population genetics, owing to large genetic diversity and highly structured populations among wild isolates.
Comparative mitochondrial genomic analyses between yeast species have revealed broad evolutionary changes in
genome organization and architecture. A fine-scale view of recent evolutionary changes within S. cerevisiae has not
been possible due to low numbers of complete mitochondrial sequences.

Results: To address challenges of sequencing AT-rich and repetitive mitochondrial DNAs (mtDNAs), we sequenced
two divergent S. cerevisiae mtDNAs using a single-molecule sequencing platform (PacBio RS). Using de novo assemblies,
we generated highly accurate complete mtDNA sequences. These mtDNA sequences were compared with 98
additional mtDNA sequences gathered from various published collections. Phylogenies based on mitochondrial

before reported in S. cerevisiae.

Intron, Mobile elements, Single-molecule sequencing

coding sequences and intron profiles revealed that intraspecific diversity in mitochondrial genomes generally
recapitulated the population structure of nuclear genomes. Analysis of intergenic sequence indicated a recent
expansion of mobile elements in certain populations. Additionally, our analyses revealed that certain populations
lacked introns previously believed conserved throughout the species, as well as the presence of introns never

Conclusions: Our results revealed that the extensive variation in S. cerevisiae mtDNAs is often population specific,
thus offering a window into the recent evolutionary processes shaping these genomes. In addition, we offer an
effective strategy for sequencing these challenging AT-rich mitochondrial genomes for small scale projects.

Keywords: Saccharomyces cerevisiae mitochondrial genome, mtDNA, Fungal genetics, Mitochondrial genetics,

Background

Saccharomyces cerevisiae has long been at the center of
mitochondrial genetics, owing to a facultative anaerobic
lifestyle and powerful genetic tools. Most mitochondrial
research has focused on a limited number of laboratory
strains, allowing for exacting functional studies of mito-
chondrial processes. Recently, this budding yeast has
blossomed into a model for evolutionary biology [1-3].
Genome resequencing projects have revealed genetic di-
versity and natural population structures of S. cerevisiae
[4-8]. The diversity in mitochondrial genomes has not
been so thoroughly assessed.
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Evolution of S. cerevisiae mitochondrial DNAs (mtDNAs)
differs from nuclear genome evolution in multiple ways.
Despite strong purifying selection on mtDNAs, intraspecific
mitochondrial variation in S. cerevisiae is extensive, owing
mainly to differences in intergenic sequences and mobile el-
ements (reviewed in [9] and described below). Replication
of mtDNA is not tied to the cell cycle [10], contributing to
higher mutation rates in mtDNAs than in nuclear genomes
[11]. In yeast, inheritance of mtDNAs is usually biparental
[12], although the distribution of parental mitochon-
drial alleles in progeny is difficult to predict. This is due,
in part, to different admixtures of parental mtDNAs in
zygotes, mitochondrial recombination, and subsequent
loss of heteroplasmy [13]. Additionally, mobile elements
in mtDNA may move laterally within populations [14].
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Together, these factors may cause mitochondrial sequences
to diverge from nuclear population structure.

The mtDNAs of S. cerevisiae contain three subunits of
the ATP synthase complex (atp6, atp8 and atp9), apocy-
tochrome b (cob), three subunits of the cytochrome ¢
oxidase (coxI, cox2, and cox3), and one ribosomal protein
(rps3/VARI). The mitochondrial genome also encodes
large and small rRNAs (rn/ and rus), an RNA component
of the mitochondrial RNAse P (rnpB) and 24 tRNAs [15].
In S. cerevisiae, these genes are separated by long AT-rich
intergenic sequences and numerous introns. Repetitive
GC-rich regions, known as GC clusters, intersperse the
otherwise AT-rich mtDNAs [16, 17]. These clusters typic-
ally fall within non-coding sequences, but are also inserted
into rps3/VARI and ribosomal RNA genes, where they
alter the size of the resulting gene products [18—20]. Their
palindromic nature likely influences mtDNA structure,
which may explain associations with mtDNA instability
[21] and mitochondrial recombination [22]. It has been
proposed, but never formally tested, that GC cluster-
induced structural changes may affect gene regulation [23].

Optional group I and group II introns (differentiated by
characteristic RNA secondary structures) also contribute
to intraspecific mtDNA variation. Self-encoded homing
endonucleases and reverse transcriptases facilitate intron
mobility [24] and acquired maturase activities aid in their
preservation [25]. In S. cerevisiae, mitochondrial introns
are found within coxI (group 1: al3«, al3y, alda, al4f,
al5a, al5p, al5y; group IL: all, al2, and al5y), cob (group L:
bI2, bI3, bl4, bI5; group II: bI1p) and rnl (group I: Q) [15].
Additional introns observed in other Saccharomyces spe-
cies include the group I introns aI3f in cox! and blla in
cob [26]. Incompatibilities between nuclear-encoded
splicing factors and non-native introns provide credible
support to theories that mitochondrial-nuclear coevolu-
tion have contributed to speciation of Saccharomyces
yeasts through Dobzhansky-Muller-type incompatibilities
[26-30]. However, some incompatibilities are strain-specific
[26, 27] and highlight the importance of investigating mito-
chondrial diversity within, in addition to between, species.

The low number of available mtDNA sequences for S.
cerevisiae yeasts has limited population genetic analyses.
The mitochondrial genome of the reference strain was
fully sequenced in 1998 [15], and until recently, very few
additional mtDNAs were solved [31-33]. The lack of mito-
chondrial genomes produced by most high-throughput se-
quencing projects is most likely based on biases against the
AT-rich and repetitive DNA during library preparation, se-
quencing and alignment [34, 35] and discussed in [27], but
complete mtDNA sequence reconstruction is possible [32].
A particularly robust resequencing project recently released
mtDNA sequences for 93 strains [6], thus providing sub-
stantial new resources for mtDNA population genetics.
Despite these methodological advances in large-scale
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projects, sequencing these AT-rich and complex mtDNAs
remains challenging, especially for smaller scale studies.

In this study, we sequenced two mitochondrial genomes
using PacBio-RS. This single-molecule sequencing plat-
form was successfully used for both chloroplast and mi-
crobial genomes [36, 37], suggesting it may be useful for
solving Saccharomyces genomes for a small number of
strains. We then compared these two newly generated
sequences with 98 additional mtDNA sequences to pro-
vide a comprehensive picture of intraspecific mtDNA
sequence variation in S. cerevisiae. Our analyses revealed
population-specific genic and intergenic sequence struc-
ture including novel intron variation.

Results

De Novo assembly of S. cerevisiae mtDNAs

To assess the feasibility of resolving AT-rich yeast mito-
chondrial genomes utilizing single-molecule real time
sequencing (SMRT), we first generated a complete mito-
chondrial genome for S. cerevisiae strain NCYC3594 [38],
a haploid derivative of YJM975 [39]. The nuclear genome
of this wine/European isolate has been sequenced numer-
ous times using Illumina sequencing [4, 6, 8, 40]. Only
recently was a complete mitochondrial sequence for
YJM975 solved [6]. We sequenced an 800 bp library
created from a sample enriched for mtDNA. The long
read lengths (average = 606 bp) facilitated a de novo as-
sembly that produced a single contig with length and
GC content consistent with the S288C mitochondrial
genome. In addition to the mitochondrial contig, the
sequencing reaction produced numerous reads that as-
sembled into shorter (<5 kb) contigs with GC contents
more representative of the nuclear genome (>30 %).
Following assembly quality improvements, the resulting
mtDNA sequence for NCYC3594 was 78,917 bp with a
GC content of 16.1 %.

We also sequenced an additional mtDNA from strain
NCYC3585 [38], a haploid derivative of 273614N [4]. To
reduce nuclear DNA contamination in the sequencing
sample, intact mitochondria were treated with DNase
prior to isolation of mtDNA. This increased the
mtDNA:nDNA ratio in the DNA samples from 0.3:1
(for NCYC3594) to 776:1 (for NCYC3585). We used a
longer insert size (6 kbp) in the sequencing reaction to
obtain average read lengths of 2055 bp. Following de
novo assembly and quality refinements, the mtDNA se-
quence for NCYC3585 was 76,596 bp with a GC content
of 15.1 %.

To assess the quality of these assemblies, we aligned
these sequences with mitochondrial sequences from the
respective parental strains [6]. The differences between
the mtDNA sequences for NCYC3594 and YJM975
were limited to 7 small indel polymorphisms, ranging
from 1 to 25 bp (summing to 41 bp in total, <0.0006 %
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disagreement). The differences between NCYC3585
and YJM1450 (alias 273614N) were 3 indels, including
2 singletons and a 7 bp indel (<0.0002 % disagreement,
Additional file 1: Table S1). All indels occurred within
AT-rich intergenic regions. It is not known whether
these small differences were due to strain specific poly-
morphisms or sequencing/assembly errors, but overall,
the mtDNAs were nearly identical. Thus, single-molecule
sequencing approaches generated highly accurate se-
quences of Saccharomyces AT-rich mtDNA.

Intraspecific diversity of mitochondrial protein coding
sequences

To explore intraspecific mitochondrial evolution in S.
cerevisiae, we first investigated phylogenetic relation-
ships among protein coding sequences from 99 unique
strains. We compared coding sequences from complete
mtDNA sequences including the newly obtained se-
quences presented here, with those from the reference
strain S288C [15], industrial isolate NCIM3107 [32],
sake strain Kyokai No. 7 [33], clinical isolate YJM789
[31], and 93 additional strains from a recently released
dataset [6]. In sum, these strains include those from
distinct ancestral populations, as previously described
[4] including wine/European (n =30), North American
(n=2), West African (n=4), Malaysian (n=1), and
Sake (n=5) lineages, as well as a large number of
strains with admixed genetic backgrounds (n=57). A
complete strain list and accession numbers provided in
Additional file 2: Table S2.

A phylogenetic tree was built based on alignment of
the concatenated coding sequences of coxI-atp8-atp6-
cob-atp9-rps3-cox2-cox3, using sequences from S. para-
doxus [27] as an outgroup (Fig. 1). Based on a total of
457 polymorphic positions across 6762 total aligned
base pairs, mitochondrial sequences grouped into three
broad clades. Mitochondrial genes from Asian strains
(sake and Malaysian) and North American strains
formed one large clade. Within this clade, sequences
from the North American strains formed a distinct
lineage from the Asian strains. A second distinct clade
consisted mainly of wine/European strains. Sequences
from three West African strains formed a third distinct
clade. A single West African isolate grouped nearest to
the sake lineage.

The strains with admixed (mosaic) ancestries had
mtDNA sequences that mainly grouped within the larger
Asian/North American clade, or within the European
strains. We subdivided these mosaic strains into mosaic-
A (Asian/North American), and mosaic-B (European)
populations. Outliers in these groupings included two
mosaic strains more closely related to the West African
strains, and a single mosaic strain, YJM1399. Mitochon-
drial sequences from YJM1399 clustered more closely to
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S. paradoxus than to other S. cerevisiae strains. The
nuclear background of this mosaic strain was also signifi-
cantly diverged (particularly in the number of insertions
and deletions) [6], and thus, was treated independently
for subsequent analyses. Overall, the phylogenetic ana-
lysis of mitochondrial sequences largely recapitulated
the population structures obtained by previous analysis
of their nuclear genomes; wine/European, West African,
sake/Asian, and North American strains were phylogenet-
ically distinct from each other and from most strains with
mosaic ancestry.

We assessed polymorphisms within the species in each
gene separately (Additional file 3: Table S3). The genes
atp8 and atp9 each contained no nonsynonymous muta-
tions and only one synonymous site, and the lowest nu-
cleotide diversities of all coding sequences (i =0.0033
and 0.0017, respectively). Nonsynonymous variation
was observed in all other genes, with the highest non-
synonymous/synonymous polymorphism ratio in atp6
(pN/pS =0.172). Consistent with the known intraspecific
size variations in rps3/VARI [19], most of the coding
sequence polymorphism occurred in this gene (161
polymorphic sites). We obtained similar phylogenetic
groupings using alignments of concatenated coding se-
quences omitting rps3 or of individual genes (not shown).
Despite the different degrees of variation between the cod-
ing sequences, the phylogeny was not overly sensitive to
variation within any one gene.

Divergent strains contain extensive indel variation across
their mtDNAs

To assess whether patterns of mitochondrial variation
are consistent between divergent populations, nine
mtDNAs were chosen to reflect mitochondrial diversity
across the species. These included the mtDNAs from
NCYC3594 and YJM1078 (European), YJM1273 (North
American), YJM1388 (sake), YJM1439 (West African),
NCYC3585 and YJM789 (mosaic-A), YJM1401 (mosaic-
B), and the reference strain, S288C. We performed a
multiple genome alignment followed by extensive man-
ual curation to properly align intron/exon boundaries
and correct misalignments of large, repetitive intergenic
sequences. A fully annotated and interactive alignment
file is provided in Additional file 4: File S1.

Consistent with known size variation, extensive indel
polymorphism was observed across the genomes, par-
ticularly in intergenic and intronic regions (Fig. 2).
These mtDNAs ranged from 76,596 bp (NCYC3585) to
86,214 bp (YJM789), with size differences due to intron
content, many small indels (<100 bp), and a small number
of large indels that generally corresponded to known
variable hypothetical ORFs. Coding sequences, repre-
senting less than 8.6 % of mitochondrial genome, were
conserved and syntenous. Nucleotide diversity of intergenic
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Fig. 1 Phylogenetic relationship of mitochondrial coding sequences. A rooted phylogenetic tree of concatenated mitochondrial protein coding
sequences from 99 S. cerevisiae isolates, including S. paradoxus strain CBS432 as an outgroup. Population designations are indicated.

regions (m =0.1782) was significantly higher than for
exons (m =0.0138), mainly due to indel variation. Ex-
cluding indels, nucleotide diversity of intergenic regions
was significantly reduced (m=0.0147) but was still
twice that of exons (i1 =0.007). Within the coding se-
quences, indels occurred in the hypervariable rps3/
VARI gene [19], and one instance of an in-frame 3 bp

insertion in cob.

Mobile GC clusters exhibit population specific patterns of
variation

Mobile GC-clusters are a known source of indel varation
in Saccharomyces mtDNAs [21]. These clusters range be-
tween 30-80 bp and have been characterized into distinct
classes based on consensus sequences [16, 17]. Most GC
clusters fall into the M1 and M2 classes (following the
classifications defined in [17]) in both S. cerevisiae and S.
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Fig. 2 Consensus genome map of S. cerevisiae mtDNA. A consensus
genome map based on the alignment of nine divergent mtDNAs
illustrates the extensive polymorphisms across S. cerevisiae mtDNAs.
The consensus sequence (~109 kbp) is substantially longer than the
longest mtDNA in this alignment (~86 kbp) due to indel variation.
Genes (red arrows), introns (green), and tRNAs (blue) are indicated.
The light blue bar indicates a sole tRNA encoded on the light
strand. The orange bars indicate the number of polymorphic sites
within 100 bp windows, where the inner and outer edges of the
circle represent 0 and 100, respectively. The grey line represents the
genome-wide average of 51 polymorphic sites per window.
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paradoxus [21, 27, 41]. Subclasses of M1 and M2 clusters
(M1, M2, and M2”) are similar to their parent classes but
contain specific insertions or deletions. M3 and M4 classes
are found within tandem arrays of GC cluster repeats. The
G and V classes are optionally found in ori sequences and
the rps3 gene, respectively.

We first determined the number and classes of GC
clusters in all 99 complete mitochondrial genomes
(Additional file 5: Table S4). On average, each strain
had 120 + 22 classifiable GC-rich motifs. The majority
of these GC clusters appeared as single elements, with
an average of 21 +7 tandem arrays of 2 or more clus-
ters per strain. Consistent with previous descriptions
[15-17], the numbers of M1 (43 + 10) and M2 (26 + 6) clus-
ters were highest. On average, M3 and M2’ clusters were
equally represented (15 +4) and observed more frequently
than the remaining classes (mean<7). We also scanned
each genome for GC-rich regions that did not fit a consen-
sus sequence, identifying an average of 42 + 5 additional po-
sitions per strain. These unclassified GC-rich regions were
often associated with tandem arrays of GC clusters and are
likely degenerate variants of the main classes.

The variation in GC clusters demonstrated population
specific patterns (Fig. 3 and Table 1). While the number
of clusters varied between populations for each class
(individual ANOVAs, P<1.0 x 1072), the M4 clusters
demonstrated the largest population specific effect
(P<1.0 x 107%%). West African strains contained sig-
nificantly more M4 clusters (18 +6) than any other
population (2 £ 1).

To determine if GC clusters ever occurred in con-
served positions, we examined the nine mtDNA multiple

80 . I I I I I
Subgroup
‘ mosaicA ‘ sake ‘ mosaicB
g 60 - - North American - wine/European - West African
1]
2 ! E Malaysian °l,
O ° 0 ©
0] I -iHo
%S 40 - *
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204 _ - * | *! $+*
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M1 M2 M3 M4 M1’ M2’ M2” G V  unclassified

Classification
Fig. 3 GC clusters by class and population. Box plots illustrate the distribution of each class of GC clusters within and between phylogenetic
populations. Whiskers extend to the furthest value within 1.5 times the inter-quartile range from the 1st and 3rd quartiles. Outliers are plotted as
empty circles. The number of strains analyzed for each population is provided in Table 1.




Table 1 Mitochondrial GC clusters in S. cerevisiae

Population n M1 M2 M3 M4 M1 M2’ m2" G vV total U T

All strains 98 433+95 26464 152£35 31+£35 47+2.1 154+40 6.1+£24 3016 32+08 1203 £22.1 41.7£5.1 207 £66
mosaic-A 33 380+78 252+6.1 144+3.0 22+10 35+16 146+ 4.0 78+20 24+19 33+07 1114+202 41.5+54 192+44
N. American 2 250 17.0 11.0 1.0 30 10.0 70 0.0 20 76.0 41.0 120
Malaysian 1 17.0 15.0 9.0 20 20 10.0 80 70 1.0 710 35.0 120

sake 5 432+30 338+3.1 182+43 18+0.5 26+09 19.8+28 52+18 48+05 32+05 1326+8.1 414+48 246+30
wine/Euro 30 472+45 237 %27 153+20 27+09 62+19 139+16 45+13 35+09 30+06 1199+83 396+33 190+26
mosaic-B 23 487+93 312+62 158+32 29421 53+17 175+44 62+25 28+12 35+09 13394208 442+48 229+65
West African 4 495+33 313+34 205+44 180+58 275+ .96 203+30 55+10 33+05 23+05 1533+118 438+35 400+93
S.paradoxus YJM1399 1 14.0 1.0 6.0 0 1.0 0 1.0 0 40 27.0 37.0 40

The number of GC cluster for each classification is provided for all strains, and for each population. The number of strains within each population is given (n). Values are means + 1 standard deviation. GC cluster
counts were identical for North American strains. U indicates unclassified GC-rich regions. T indicates the number of tandem arrays.

LSP91 (SLOT) S2/wouan DG [ 12 SISIOM

€1 Jo 9 abed
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alignment. These mtDNAs contained a total of 1087 classi-
fiable GC clusters that populated 282 unique positions. GC
clusters were conserved at only 13 positions. These repre-
sented most classes (7 M1, 2 M2, and 1 each in M2”, M3,
M4, and V classes) and were evenly distributed across the
genome.

We more closely examined the apparent expansion of
M4 clusters in the West African lineage by examining the
West African representative in the multiple alignment. All
22 of the M4 clusters in YJM1439 (West Africa) were
found in short tandem arrays containing the M4 cluster
and an M1 cluster, including 2 of the 7 conserved M1
clusters. In nearly all identified cases (21/22), the M4 clus-
ter was located upstream of its associated M1 cluster, sug-
gesting that the M4 cluster may target the upstream TAG
motif in conjunction with the 5’ region of the M1 cluster.

Additional repetitive characters across the genomes were
identified in three mtDNAs using a k-mer counting method
[42]. Highly repetitive short AT-rich sequences were
observed only when using 15-mer scans (Additional file 6:
File S2). These consisted of di- to penta-nucleotide repeats
consistent with slippage during replication. Highly repeti-
tive GC-rich sequences were only observed at k-mer scans
under 50 bp.

Novel mosaicism in intron patterns
Fifteen distinct introns have been described in S. cerevi-
siae mitochondrial genomes [15, 31]. We compared the
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mitochondrial intron profiles for 104 unique strains, in-
cluding data from a deep sequencing project that did
not provide complete mitochondrial genomes [40] but
did provide read coverage for most coding sequences.
The intron profiles generated were similar for strains
appearing both in partial sequences from Bergstom et al.
[40] and complete sequences from Strope et al. [6], thus
providing a measure of confidence for deducing intron
content from the partially sequenced mtDNAs.
Mitochondrial introns are remarkable variable, resulting
in mosaic presence/absence patterns between individual
strains. Seven of the nine introns in cox! are known as op-
tional [15, 31]. In this analysis, the presence of these vari-
able introns ranged from 25-91 % in the 104 mtDNAs
analyzed (Table 2). We also observed variation in the
cox1-ai5p and coxI-ai5y intron. We could not find reports
documenting absence of these introns within S. cerevisiae.
However, inter- and intra-specific variation in other Sac-
charomyces species has been observed [26]; cox1-ai5p was
prevalent throughout the genus but absent in S.
kudriavzevii and the coxI-ai5y was variable between S.
paradoxus isolates. Five introns interrupt the cob gene
in S. cerevisiae and “long” (containing all five introns)
and “short” (containing just the last two introns) forms
of this gene have been reported [15]. Consistent with
these observations, the final two introns (cob-bi4 and
-bi5) were invariably present in all S. cerevisiae strains.
We also found strains lacking just cob-bilp or both

Table 2 Intron content within and between Saccharomyces mtDNAs

Intron coxl cob ml
ail a2 ai3a  ai3B a3y aida  ai4f  aidy aiba a5 aiSy  bila bilB  bi2 b3 b4 b5 Q
n 12 3a 13 By Ma 4B 50 I5p 15a Mo N2 13 14 15
Group (ny i Il I [** I [ I P [* I [** I [ | * [* I
all cerevisiae 103 59 51 91 0 40 59 38 0 25 80 74 5 86 89 96 100 100 39
Mosaic-A 32 66 47 97 0 34 81 59 0 38 94 72 0 81 81 91 100 100 63
N. American 3 0 00 0 0 0 0 0 0 100 100 100 O 100 100 100 100 100 O
Malaysian 1 - + - - + - + - - + - - - - + + + -
sake 5 100 8 100 O 40 40 0 0 20 100 100 O 20 20 80 100 100 O
wine/Euro 34 38 59 94 0 41 21 12 0 9 76 84 0 100 100 100 100 100 9
Mosaic-B 23 74 43 9% 0 52 91 65 0 13 74 70 22 100 100 100 100 100 74
West African 5 100 20 80 0 20 100 0 0 80 0 0 0 40 100 100 100 100 O
Unknown 1 + - + + - - - - + + - - - - - - - -
paradoxus 3 0 33 0 100 67 0 0 0 67 100 33 67 67 67 67 0 0 ?
mikatae 1 + - + + - - - + + + + + + + + + ?
kudriavzevii 1 - - + + - - - + - + + + + + - - ?
cariocanus 1 - - - + - - - - - + + + + + - - - ?
bayanus 1 - - - + + - - + + + + - + + + - + ?
Insertion site 169 205 243 386 709 720 900 927 972 1107 1132 393 415 429 506 756 807 2716

The percentage of strains containing specific introns is provided for S. cerevisiae strains and related Saccharomyces species. The number of strains within each
population is provided (n). When n =1, intron presence/absence is indicated as +/—. Introns not known as variable (*) or observed (**) in S. cerevisiae are indicated
next to their respective group heading. Insertion sites indicate the base pair in the CDS that precedes the intron insertion site.
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cob-bilP and cob-bi2 introns, indicating that additional
intron mosaics exist in natural populations.

Though mitochondrial intron content is known to vary
in a strain-dependent manner, comparative studies have
revealed that the occurrence of certain introns follows
species divisions [26, 43]. The coxI-ai3p intron has never
been found in S. cerevisiae species, and our findings
were true to this classification. Similarly, we did not find
evidence of a rare coxI intron (ai4y) that has only been
observed in S. bayanus. We did, however, find evidence
of the cob-blla intron in a small number of strains
(5 %). To our knowledge, this intron has not previously
been reported in S. cerevisiae but has been observed in
much of the Saccharomyces genus [26]. Interestingly,
strains with this intron also contained the five common
S. cerevisiae introns, and showed no evidence of intro-
gression of cob exon sequences.

One exception to the species-specific intron structure
was the mosaic strain, YJM1399. This strain contained the
cox1-ai3p intron (inserted at the same location as in other
species), and lacked the otherwise conserved cob-bi4 and —
bi5 introns. The sequence of the coxI-ai3p intron most
closely matched a sequence from the distantly related yeast
Lachancea meyersii (Genbank: HE983614.1, 53 % coverage,
92 % identity) and shared little, if any, homology with the
cox1-ai3p intron from S. paradoxus. Other portions of
the mitochondrial genome were highly homologous to
those of other S. cerevisiae strains.

To determine if intron profiles were related to popula-
tion structure, we compared intron content between
each population (Table 2). The highly prevalent cob-bilf
and cob-bi2 introns were nearly absent in the sake
population and Malaysian strain. No West African
strain contained the coxI-ai5p or -ai5y intron (previously
thought to be conserved). The nearly identical mtDNA
sequences of the three North American isolates lacked
the frequently observed coxI-ai3a intron. A phylogenetic
tree based on character states of intron presence/absence
(Additional file 7: Figure S3) was highly concordant with
the phylogeny built from coding sequences (Figure 1);
West African, sake/Malaysian, and North American strains
were organized into distinct groups (with one exception
within the sake strains). Intron patterns of wine/European
and mosaic strains were more variable. Individual intron
profiles for each strain are reported in Additional file 8:
Table S5.

Discussion and conclusions

Comparisons of mtDNAs between Saccharomyces species
and other Hemiascomycetes yeasts have revealed broad
evolutionary changes in mtDNA evolution, particularly in
regards to genome organization [12, 44, 45]. Few popula-
tion genetic investigations on intraspecific mtDNAs in
yeasts exist [45—47], and none for Saccharomyces species.
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To provide a window onto recent evolutionary changes
in the mtDNA, we compared the intraspecific genetic
variation in mitochondrial genomes from 100 strains of
S. cerevisiae.

Through phylogenetic analysis of coding sequences,
we found that these mtDNAs were organized into three
broad clades that shared remarkable resemblance to
clades constructed using the thousands of SNPs across
nuclear sequences [4, 6], albeit at lower resolution. Pop-
ulations according to nuclear divergences organize
strains into 5 non-mosaic populations (wine/European,
West African, sake, Malaysian, and North American).
From mitochondrial coding sequences alone, discrete
populations for West African and wine/European ances-
try were observed. Resolution of North American and
Asian mtDNAs clades were more obscured, although
each maintained distinct lineages within a broader clade.
Strains with known mosaic ancestry grouped predomin-
antly as two subclades peripheral to the wine/European
or Asian/North American clades. Many of these mosaics
are strains domesticated for human activities (or perhaps
the result of admixing between wild and domesticated
strains [48]). High prevalence of mitochondrial mosaic
strains were intermixed among the wine/European and
Asian strains suggests that mitochondrial genomes, like
their nuclear counterparts, also contain mixed ancestry.
This implies that mitochondrial recombination occurs
frequently during admixture.

Mobile elements, including introns, also had popula-
tion specific profiles. Intron pattern were not fixed
within each population (wine/Euro, West African, etc.),
but substantial trends between populations emerged.
One example is in the optional coxI-ail intron, which
was omnipresent in all sake and West African strains
but only found in 38 % of wine/European strains and
none of the North American isolates. Newly discovered
variation in introns previously thought fixed in S. cerevi-
siae was also related to population structure; the cob-
bilp intron was only missing in sake and West African
strains while being highly prevalent in all other popula-
tions. Similarly, the cob-bila intron, never previously re-
ported within S. cerevisize mtDNAs, was observed only
in a small number of mosaic strains whose mtDNAs
were most closely related to those of the wine/European
strains (our “mosaic-B” group). While the ancestry of
these mosaic strains are a subject of speculation, intron
flanking sequences in their cob exons were more similar
to the cob genes in S. cerevisiae than S. paradoxus, sug-
gesting that this intron is not the result of introgression
of a non-native cob allele. Intron analysis also revealed
an interesting mitochondrial ancestry for mosaic strain,
YJM1399. This strain contained an intron at the (non-
cerevisiae) coxIl-al3f insertion site that most closely re-
sembled a sequence from Lachancea, and contained an
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intron-less cob despite complete conservation of several
cob introns throughout the rest of the S. cerevisiae strains.
Several fixed substitutions in the coding sequences of this
mosaic relative to S. cerevisiae and S. paradoxus suggested
this was a non-cerevisize mtDNA. Other regions of the
mtDNA, however, were homologous to S. cerevisiae
mtDNA. This mosaic strain likely provides an example of
mitochondrial introgression and not replacement.

Genetic diversity in S. cerevisiae extends past what has
been measured here [7], and it is likely that as larger gen-
etic space is sampled, additional mitochondrial mosaics
and intron variants will be revealed. Analysis of allelic
variation within intron sequences may provide deeper
insight into mitochondrial evolution, however, we found
that a simple binary presence/absence analysis was suffi-
cient to reconstruct the populations described here. Inser-
tion mechanisms that occur during intron homing are
mutagenic to residues in flanking sequences [49, 50].
Thus, the phylogenies created by coding sequences are
likely influenced by population-specific intron profiles and
the accompanying co-conversion of exon sequences.

Patterns of GC clusters also demonstrated population
structure. The total numbers of clusters ranged from an
average of ~76 in North American strains to ~153 clusters
in West African strains. Each population had significantly
different patterns in the numbers and types of GC
clusters, however the West African strains appear to
have undergone a recent expansion of the rare M4
cluster. While M4 clusters can be at the first position
of a tandem GC cluster array [17], the M4 clusters in
the West African strains were almost exclusively found
following an M1 cluster. M2 clusters generally paired
with M3 clusters in tandem arrays.

Phenotypic variation in wild yeasts is believed to follow
population history [51]. The population specific genetic
structure in mtDNAs may play a role in phenetic group-
ings. In S. cerevisiae, strains with a common nuclear back-
ground but harboring different mtDNAs had slightly
different growth rates [52], demonstrating that naturally
variation in mtDNAs can affect phenotype. It is easy to
imagine how allelic differences in oxidative phosphoryl-
ation genes (and corresponding gene networks) could
contribute to different efficiencies in mitochondrial res-
piration. Intergenic mtDNA sequences may also con-
tribute to phenotypic differences, directly or indirectly.
Mobile GC clusters affecting recombination [22] may
influence mtDNA replication and inheritance or inter-
fere with mitochondrial translation (as in the case of
translational bypass elements that are believed to have
evolved from GC clusters [53]). GC clusters are also
correlated with petite frequency in Saccharomyces
yeasts [21]. Possibly, the elevated petite frequency ob-
served in the West African-related laboratory strain,
SK1 [54], is due to an elevated number of GC clusters
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predicted in this phylogenetically distinct group. While
S. cerevisiae introns are not essential for mitochondrial
respiration [55], they may offer an underappreciated
regulatory role [56-58]. Absence of introns in certain
populations may relax selection on the nuclear encoded
splicing factors, thus contributing to the creation of
cytonuclear incompatibilities that play a role in post-
zygotic speciation in these lower eukaryotes [26-30].

The whole-genome duplication preceding the evolution
of the Saccharomyces genus is thought to have relaxed se-
lection on mitochondrial functions, as evidenced by in-
creased nonsynonymous mutations and relaxed codon
bias in mitochondrially-targeted nuclear genes involved in
respiration [59]. We observed more frequent nonsynon-
ymous polymorphisms in atp6, consistent with relaxed
purifying selection on this gene. The nonsynonymous to
synonymous ratio of intraspecific polymorphisms for atp6
(pN/pS = 0.172) was actually higher than that for the rps3/
VARI excluding indel variations (pN/pS =0.142), a mito-
chondrial gene known for intraspecific diversity [19].
Interestingly, this mirrors intraspecific polymorphisms ob-
served for the atp6 gene in L. kiuyveri [47], a yeast that
evolved before the whole genome duplication. This gene
has also been implicated in tests of positive selection in
other organisms [60—62]. There were almost no nonsy-
nonymous substitutions between S. cerevisiae and S. para-
doxus, precluding formal tests of selection. Even if a
distinct evolutionary pattern for atp6 exists, it is likely that
these closely related species are under very similar selec-
tion patterns.

In Saccharomyces, mitochondrial population genetics
studies have been limited by low numbers of available
mtDNA sequences. High coverage sequencing projects
routinely produce only partial mitochondrial sequences
[8, 40]. The recovery of complete mtDNAs proves that
robust methodologies can be used to reconstruct these
challenging genomes from Illumina-based datasets [6, 47].
Here, we have shown that high quality mtDNA sequences
can be produced from single molecule sequencing data.
While Illumina sequencing proves to be useful for large-
scale mitochondrial genome sequencing, the PacBio RS
platform offers a cost-efficient method when only a small
number of mitochondrial genomes are required.

Methods

Isolation of mtDNA

Prior to DNA isolation, crudely purified mitochondria
were prepared as previously described [63]. Strain
NCYC3594 (a haploid derivative of YJM975 [38]) was
grown overnight at 30 °C in 1.5 L YPD media (1 % yeast
extract, 2 % peptone, 2 % dextrose). Late-log phase cells
were harvested, washed, and incubated for 10 min at
30 °C in approximately 30 ml of 100 mM Tris-SO,
pH 9.4 containing 10 mM DTT. Cells were resuspended
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in 1.2 M sorbitol, 20 mM KH,PO, pH 7.4 (7 ml/g wet
weight cells) containing 0.5 mg/ml Zymolase 20T
(Nacalai Tesque Inc.) and incubated while rocking at
30 °C until spheroplasts occurred (~45 min., deter-
mined by optical clearing of 50 pl cell suspension
added to 0.5 ml H,0), followed by physical shearing of
cells using a 40 ml tissue grinder. Mitochondria were
separated from unbroken cells and cell debris through
alternating rounds of centrifugation of 5 min at
5000 rpm and 12 min 12000 rpm in a Sorvall F21S-
8x50Y rotor.

Mitochondrial fractions for strain NCYC3585 (a haploid
derivative of 273614N [38] were collected as described
above, except that cells were grown in YPEG media (1 %
yeast extract, 2 % peptone, 3 % ethanol, 3 % glycerol).
These mitochondrial enrichments were also subjected
to a DNase treatment [64] by incubating in 1 ml 0.3 M
sucrose, 5 mM MgCl,, 50 mM Tris—HCI pH 8.0, 10 mM
CaCl, containing 100 units of DNase (New England
BioLabs) for 30 min. at 37 °C. DNases were inactivated
by the addition of 0.5 M EDTA (pH 8.0) to a final concen-
tration of 0.2 M. The mitochondria were washed to remove
DNases through 3 repeated cycles of centrifugation
(15000 rpm at 4 °C, 10 min) and resuspended in sucrose
buffer.

The resulting mitochondria-enriched cell fractions
were lysed in ~500 pl of 1 % Sarkosyl, 100 mM NaCl,
10 mM EDTA pH 8.0, Tris pH 8.0, and incubated at
room temperature until optical clearing occurred
(~30 min). DNA was isolated using phenol-chloroform
extraction and ethanol precipitation. Purity of mtDNA
(O.D. 260/280=1.8-2.0) was determined using a
NanoDrop-1000 spectrophotometer.

Real Time PCR

Real-time PCR was used to determine the relative abun-
dance of nuclear and mitochondrial DNA. Primer se-
quences for ACTI (5" GTATGTGTAAAGCCGGTTTTG
and 5'CATGATACCTTGGTGTCTTGG) and coxI (5 C

TACAGATACAGCATTTCCAAGA and 5" GTGCCTGA
ATAGATGATAATGGT) were obtained from Taylor, et. al.
[65]. Each gene was amplified from dilutions of the purified
mtDNAs using SYBR Green master mix (ABi Research) on
an ABi 7300 Real Time PCR System. The ratio of mtDNA
to nuclear DNA was determined as the logarithm of the
difference in the cycle threshold values (log, ACT), after
correcting for genome size.

Sequencing

Approximately 2 pg of purified mtDNAs were sequenced
using the PacBio RS at the Yale Center for Genomic
Analysis following circular consensus sequencing protocols.
A library created from ~800 bp fragments of the mtDNA
from NCYC3594 was sequenced using Cl chemistry,
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producing 38,681 reads. A library created from ~6 kbp
fragments of fractionated mtDNA from NCYC3585 was
sequenced using C2 chemistry, producing 7,360 reads.
A single SMRT Cell was used for each library. Reads
less than 50 bp were removed.

Mitochondrial genome assembly and annotation

Circular consensus reads were assembled using MIRA
v3.4.1 (NCYC3594) and MIRA 3.9.17 (NCYC3585) with
parameters: denovo, genome, accurate [66]. The assembly
for NCYC3585 produced two major contigs that over-
lapped (identified using MUMmer 3.0 [67]) by ~3000 bp
and were manually joined to form a single scaffold.
Consensus sequences and assembly qualities of the final
scaffolds were improved by employing the Quiver consen-
sus algorithm to map reads back to contigs and correct se-
quencing errors [37].

The average read quality for NCYC3594 was Q16.24,
which improved to an average assembly quality of
Q17.85 after Quiver. The average quality for the 273614N
reads was Q15.95, which improved to Q45.83 after Quiver.
Hand curation of each genome revealed a large duplicated
sequence in an AT-rich intergenic region of NCYC359%4
and was manually removed. Sequences were annotated
using MFANNOT [24]. The annotations were verified
with BLAST searches of features in the reference sequence
[15]. Annotations included only tRNA sequences that
were triply identified by MFANNOT, BLAST, and
tRNAscan-SE [68]. Annotations were manually curated to
ensure correct intron/exon boundaries.

The mitochondrial genome from S. cerevisiae is orga-
nized as a collection of linear concatemers that map to
a circular genome [69, 70]. Consistent with circularity,
we found reads that aligned to both ends of each linear
scaffold (=360 bp on both ends with >80 % identity).
The linear scaffolds were reorganized to match the
S288C reference genome start position.

Alignments and phylogenetics

Mitochondrial protein coding sequences were extracted
from 99 strains. Strain names and accession numbers
are provided in Additional file 2: Table S2. A 6765 bp
alignment of the concatenated CDS was generated util-
izing Clustal Omega [71]. A neighbor-joining [72] tree
was constructed utilizing MEGA6 [73]. The S. para-
doxus strain CBS432 was used as an outgroup. The
proportion of synonymous to non-synonymous poly-
morphisms within S. cerevisiae (pN/pS) was calculated
using PAML (74, 75].

An initial multiple alignment was constructed using
the LAGAN [76] algorithm in the mVISTA suite of pro-
grams [77] using the mtDNA sequences from S288C,
YJM789, NCYC3594, and NCYC3585. Sequences from
YJM1078, YJM1273, YJM1388, YJM1401, and YJM1439
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were added to the multiple alignment utilizing MAFTT
[78]. Alignments were manually curated to fix exon/in-
tron boundaries and indels. Nucleotide diversity was
calculated to allow for multiple minor alleles using the
per site summation method. Genome polymorphism
was assessed by counting individual polymorphic sites
in sliding windows of 100 bp in 50 bp steps across the
multiple alignment.

Additional analyses

GC clusters classifications were defined according to Weiller
et al. [17], using consensus sequences (Additional file 9:
Table S6). The GC clusters were identified using
BLAST. GC-rich areas (>60 % GC) not matching con-
sensus sequences were identified through 30 bp sliding
window scans. Tandem GC cluster assays were defined
as GC-rich regions that overlapped with at least two
classified clusters. One-way ANOVAs were performed
within each classification (count ~ population) and sig-
nificance determined following a Bonferonni correc-
tion. Conserved GC clusters were identified as sites in
the multiple alignment with overlapping GC-rich re-
gions, followed by manual verification. Genome wide
scans for repetitive elements in the mtDNAs from
S$288C, NCYC3594 and YJM789 were performed util-
izing Jellyfish [79] with k-mer values of 15, 30, 50, and
100.

Intronic sequences were identified using BLAST with
query sequences from S288C (coxI-alla, al2, al3a, al5a,
al5p, al5y, runl-11), YJM789 (coxI-al3y, al4f) and S. para-
doxus CBS432 (cox1-al3p). Introns were classified as 0
or 1 based on clear presence of a homologous intron at
that specific site and agreement with prior annotations
(with the exception of aI3f in YJM1399, which shares
the insertion site but no homology with S. paradoxus).
Additional intron information was obtained from un-
assembled contigs from http://www.moseslab.csb.utor-
onto.ca/sgrp/ [40], based on identification of coding
sequences in contigs and the presence of intervening
sequence between exons. A distance matrix was calculated
utilizing presence of an intron at the specific insertion
sites as binary character trait, and a neighbor-joining tree
was constructed with the ape package in R [80]. The
strain NCIM3107 was omitted due to the presence of
intervening sequences between exons atypical of the
pattern observed in all other strains.

Availability of supporting data

The annotated mtDNA sequences are available as Gen-
bank accession numbers KR260476 (strain NCYC3594)
and KR260477 (NCYC3585). Phylogenetic data has
been deposited at TreeBase (http://purl.org/phylo/tree-
base/phylows/study/TB2:5S17639). All scripts are avail-
able upon request.
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Additional files

Additional file 1: Table S1. Concordence of sequence data. Polymorphic
sites between PacBio and the lllumina-generated datasets from [6].

Additional file 2: Table S2. Strain list. Strain names and accession
numbers are provided.

Additional file 3: Table S3. Nucleotide diversities. Polymorphic
assessment, including nucleotide diversity (1), for each mitochondrial
gene in S. cerevisiae (excluding YJM1399). Percent difference was
calculated as (m*100). pN/pS indicates the ratio of nonsynonymous to
synonymous polymorphism.

Additional file 4: File S1. An interactive multiple alignment of the nine
complete mtDNAs from S. cerevisiae. To move to a particular feature,
select the feature name from the searchable list on the left. Nucleotide
positions for each strain represent the ungapped genomes, while
positions in the consensus sequence represent the position in the
gapped multiple alignment.

Additional file 5: Table S4. GC clusters. For each strain, the total
counts of GC clusters in all classes are provided.

Additional file 6: File S2. Repetitive elements. A k-mer analysis of
repetitive sequences in strains $2883 and NCYC3594. Each square
represents a single, potentially overlapping, k-mer.

Additional file 7: Figure S3. Intron phylogenetics. A phylogenetic tree
built from intron profiling, treated as binary character states. Any strain
with a questionable intron profile was excluded.

Additional file 8: Table S5. Mitochondrial introns. Individual intron
profiles for each strain are provided, where 1 indicates the presence of
the intron and a blank cell, the absence.

Additional file 9: Table S6. GC cluster consensus sequences. Slightly
modified from [17] to remove 5' TAG motif.
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