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Abstract: α-Synuclein (α-Syn) is a small cytosolic protein associated with a range of cellular com-
partments, including synaptic vesicles, the nucleus, mitochondria, endoplasmic reticulum, Golgi
apparatus, and lysosomes. In addition to its physiological role in regulating presynaptic function,
the protein plays a central role in both sporadic and familial Parkinson’s disease (PD) via a gain-of-
function mechanism. Because of this, several recent strategies propose to decrease α-Syn levels in PD
patients. While these therapies may offer breakthroughs in PD management, the normal functions of
α-Syn and potential side effects of its depletion require careful evaluation. Here, we review recent
evidence on physiological and pathological roles of α-Syn in regulating activity-dependent signal
transduction and gene expression pathways that play fundamental role in synaptic plasticity.

Keywords: Parkinson’s disease; α-Synuclein; gene expression; signal transduction; epigenetics;
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1. Molecular Organization of α-Syn and Its Role in Pathology

α-Syn is a 140 amino acid protein (~15 kDa) encoded by the SNCA gene on chromo-
some 4 (Chr4q22.1). In its monomeric state, the protein is soluble and intrinsically unfolded,
but has also been identified as a helically folded tetramer under physiological conditions [1].
The protein can furthermore form multimeric structures, including oligomers, fibrils and
more complex aggregates under pathological conditions.

The sequence of α-Syn is typically divided into three main regions: N-terminus,
C-terminus, and the central non-amyloid-β component (NAC) region. The lysine-rich
N-terminus can acquire an amphipathic α-helical structure formed by four repeats of the
KTKEGV consensus sequence [2] that are also required for the tetramerization of α-Syn [3].
The α-helices provide for reversible binding of α-Syn to phospholipid membranes, particu-
larly those with high curvature [4], which play critical roles in the control of presynaptic
fusion machinery [5–7]. Pathological nucleation and aggregation of α-Syn depends on
both the N-terminus and the hydrophobic NAC region that can form β sheets [8]. All of
the known SNCA familial PD mutations to date—A30P, E46K, H50Q, G51D, A53E and
A53T—are found in the N-terminus domain [9,10].

The C-terminus is comprised of an EF-hand-like sequence that is negatively charged
and is typically unstructured [11]. It is capable of binding Ca2+ and oxidized dopamine (DA)
that affect both normal and pathological properties of the protein. The binding of oxidized
DA to α-Syn is non-covalent, reversible, and occurs at the Y125EMPS129 pentapeptide of
the C-terminal region with an additional long-range electrostatic interaction with E83 in
the NAC region [12,13]. DA-modified α-Syn is less likely to fibrilize and instead forms
soluble oligomers that are cytotoxic [14,15]. Ca2+ binding increases the ability of α-Syn to
bind synaptic vesicle membranes [16], at the same time affecting protein ligand binding
and oligomerization [17]. Interestingly, overexpression of truncated α-Syn that lacks the C-
terminus is sufficient to elicit a PD-like phenotype in mice [18], suggesting that it modulates
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rather than drives α-Syn-mediated toxicity. Finally, C-terminus harbors a phosphorylation
site at serine 129 (pS129). While the physiological role of this post-translational modification
is currently unknown, its accumulation under pathological conditions suggests that it may
play a role in α-Syn oligomerization or toxicity [19].

1.1. Synucleinopathies

All “synucleinopathies” are characterized by the accumulation of insoluble aggregates
mainly comprised of amyloid fibrils of phosphorylated α-Syn. In Parkinson’s disease
(PD), PD with dementia, dementia with Lewy bodies, and pure autonomic failure, the
inclusions (termed Lewy bodies and Lewy neurites) are found in peripheral and central
neurons [20,21], whereas in multiple system atrophy, the argyrophilic glial cytoplasmic
inclusions (also known as Papp-Lantos bodies) are detected inside oligodendrocytes [22].

PD is the most prevalent synucleinopathy, affecting ~1% of the population over the age
of 60 [23]. This progressive neurodegenerative disorder is characterized by four cardinal
symptoms—tremor, rigidity, bradykinesia, and postural instability—and a plethora of
secondary symptoms that affect both central and peripheral systems. Neuropathologically,
the feature that correlates with the cardinal PD symptoms is neuronal loss of pigmented DA
neurons of the substantia nigra pars compacta with concomitant dopaminergic denervation
of the striatum [24].

The α-Syn protein plays critical roles in both sporadic and familial PD as (1) mutations
or multiplications of the SNCA gene cause autosomal-dominant PD [25], (2) genome-wide
association studies show a correlation between single-nucleotide polymorphisms in the
SNCA locus and the risk of developing sporadic PD [26,27], (3) levels of phosphorylated α-
Syn are increased in post-mortem brains of PD patients and patient-derived dopaminergic
neurons [28], (4) DA neurons that lack α-Syn are protected in neurotoxin and genetic
models of PD [29–31]. Additionally, α-Syn has been shown to interact with several proteins
implicated in PD and other neurodegenerative disorders, including tau [32,33], LRKK2 [34],
Fyn [35], parkin [36], and DJ-1 [37].

α-Syn pathology, however, occurs throughout the nervous system in PD and Lewy
bodies disease patients, and in some cases does not correlate with cell death [38], suggesting
that the protein is necessary but not sufficient for neurodegeneration. Additionally, some
PD cases, in particular those associated with LRRK2 and parkin genes mutations, do not
exhibit Lewy body pathology [39,40].

1.2. Therapeutic Silencing of α-Syn

Due to the significance of α-Syn in PD pathology, recent advances in therapeutic
approaches intended to reduce patient α-Syn levels have gained momentum, including
the use of antibodies, vaccines, antisense-oligonucleotides, and small molecules [41,42].
Preclinical studies in cell cultures and animal models have demonstrated successful SNCA
gene silencing using antisense oligonucleotides (ASOs), ribozymes, siRNAs, or miRNA
without neurotoxic effects [43–50]. Furthermore, several small molecules aimed at prevent-
ing α-Syn aggregation (developed by UCB, Proclara and Sun pharmaceutical companies)
as well as passive and active immunotherapies that target monomeric or aggregated α-Syn
(Prothena, Biogen, AstraZeneca, Takeda, Affiris, Endobody) are currently in clinical trials
(clinicaltrials.gov).

With the possible exception of immunotherapies that target pathological oligomeric
and misfolded forms of α-Syn, such as cinpanemab [51], prasinezumab [52], and ABBV-0805
(currently in phase I clinical trial), these approaches are expected to deplete monomeric α-Syn.
As this protein is abundantly expressed in the brain and the periphery, changes in normal
function and potential side effects of decreased α-Syn levels need careful evaluation. For
example, multiple studies demonstrate roles for α-Syn in regulating dopamine neurotrans-
mission both ex vivo (reviewed in [6]) and in anesthetized animals in vivo [53,54], indicating
that α-Syn deficiency might lead to synaptic dysfunction. Although α-Syn knockout mice
(α-Syn−/−) are viable and fertile, these animals exhibit decreased behavioral responses to
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amphetamine [55] and reduced learning ability in tests requiring both working and spatial
memory [56]. Moreover, despite the evidence for neuroprotection in α-Syn−/− mice, acute
α-Syn knock-down in adult rats unexpectedly resulted in neuroinflammation and degenera-
tion of nigral dopaminergic neurons [57–59]. It may be that the developmental stage in which
α-Syn depletion occurs is important, or additional mechanisms govern protective or deleteri-
ous consequences of protein expression. In either case, these contrasting reports highlight the
importance of understanding the physiological role of the protein and the consequences of its
decreased expression, particularly in mature animals.

2. Role of α-Syn in Regulating Gene Expression

α-Syn is predominantly localized at presynaptic terminals where it is involved in
regulating synaptic vesicle exocytosis [54,60–64]. Additionally, α-Syn can be found in other
cellular compartments, including the nucleus [65–67], mitochondria [68,69], endoplasmic
reticulum [70–72], and Golgi apparatus/lysosomes [73–75]. Besides lipid membranes
and PD-related proteins mentioned above, molecular partners of α-Syn include 14-3-3
chaperon protein [76], Hsp70-interacting protein (CHIP) [77], synphilin-1 [78], tubulin [79],
calmodulin [80,81], and others [82,83].

Such promiscuity of α-Syn localization and interactions makes it difficult to isolate
a single mechanism of action. While cellular organelles and pathways involved in α-Syn
physiological function are highlighted in several recent reviews [6,83], here we focus on an
aspect of α-Syn normal function that has been relatively ignored—the role of the protein in
transcriptional control and immediate early genes induction in neurons. Several lines of
indirect evidence support the pathophysiological relevance of α-Syn in transcription. Mi-
croarray analysis of gene expression in neuroblastoma cell lines transfected with WT α-Syn
revealed 15 genes that were upregulated and 30 that were downregulated [84]. Similarly,
RNA-seq analysis of induced pluripotent stem cells (iPSC)- derived dopaminergic neurons
from PD patients carrying a triplication of the SNCA locus identified 131 upregulated and
115 downregulated genes compared to neurons from healthy control [85]. While, unsur-
prisingly, some of these changes can be attributed to stress response and other processes
downstream of α-Syn-induced aggregation and toxicity, there is evidence supporting a role
for the protein in directly affecting gene expression as discussed below.

2.1. Interaction of α-Syn with DNA and Histones

α-Syn has been reported to directly interact with DNA, RNA-interacting proteins, and
histones. Since this topic has been recently thoroughly reviewed [86,87], we only provide a
brief overview updated with recent findings.

2.1.1. Direct DNA Binding

Unmodified [88] and glycated [89] α-Syn can bind to supercoiled DNA, leading to
changes in DNA conformation and stability that in turn can modulate α-Syn conformation
and function [90]. Binding of α-Syn to DNA with concomitant changes in gene expression
was recently confirmed with chromatin immunoprecipitation followed by next-generation
sequencing (ChIP-seq) technique in Lund human mesencephalic (LUHMES) cells and
transgenic mice expressing α-Syn [91]. Nuclear localization of α-Syn in these models
depended on its phosphorylation at serine 129 and provided neuroprotection compared
to the cytosolic protein, providing a potential link between the subcellular localization,
post-translational modification (PTM), and toxicity of α-Syn.

As an alternative, α-Syn may prevent DNA damage by colocalizing with DNA damage
response components [92]. α-Syn knock-out mice showed increased neuronal double strand
breaks that were rescued by re-expression of human α-Syn. The authors propose that
cytoplasmic aggregation of α-Syn decreases its nuclear translocation, in turn increasing
DNA damage, and this nuclear loss-of-function might trigger pro-apoptotic signaling.
Interestingly, α-Syn has been also predicted to bind its own mRNA in an autogenous way,
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which might be instrumental for the regulation of protein translation through a negative
feedback mechanism [93].

In contrast to direct binding to polynucleotides, α-Syn may affect gene expression
by altering DNA methylation. Post-translational modification of DNA and histones are
key mechanisms of epigenetic control of gene expression that in addition to playing a
role in synaptic plasticity and development are involved in multiple neurodegenerative
disorders [94,95]. Typically, methylation of CpG-rich promoter regions by DNA methyl
transferases (DNMT) represses gene transcription, which is countered by passive DNA
demethylation that restores promoter activity [96]. Association of α-Syn with DNMT1, an
enzyme that is normally located in the nuclei, causes its extrusion to the cytosol, resulting
in global DNA hypomethylation (Figure 1). In human and mouse brain, this was shown to
affect the expression of multiple genes including SNCA, SEPW1, and PRKAR2A [97].
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Figure 1. Role of α-Syn in post-translational modification of DNA and histones. α-Syn has been shown to alter PTM of
DNA and histones via multiple mechanisms, three of which are shown here. Left, α-Syn can promote the translocation of
DNMT1 from the nucleus to the cytosol leading to DNA hypomethylation and increased genes expression. Middle, α-Syn
may interact directly with histone 3 or inhibit HAT activity; in both scenarios reduced histone acetylation leads to decreased
gene expression, which can be rescued by HDAC inhibitors. Right, α-Syn may change histone methylation by activating
EHMT2 in a retinoic acid (RA)-dependent manner, thus decreasing the expression of genes regulated by REST complex.
Arrows next to PTM sites show the effect at higher levels of α-Syn.

2.1.2. Interaction with Histones

It has been reported that α-Syn binds to histones under physiological conditions and
this interaction increases in neurons exposed to toxic insults and promotes α-Syn aggre-
gation [98,99]. Although early reports suggested that nuclear localization and interaction
with histones could play a role in α-Syn physiology and toxicity, the molecular changes
that result from this interaction have been examined only recently.

The two most common histone PTMs—acetylation and methylation—play key roles in
many fundamental cellular processes including transcriptional regulation and chromatin
remodeling. Acetylation of histones results in a loose chromatin state that allows gene
transcription, whereas histone deacetylation results in a tight chromatin structure that
suppresses transcriptional activity. These reactions are catalyzed by families of enzymes
that possess histone acetyltransferase (HAT) or histone deacetylase (HDAC) activity. The
balance between the activities of HAT and HDAC is tightly controlled in healthy cells but
can be disrupted in diseases including PD [100–103].
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Several studies report that α-Syn can reduce histone acetylation, thus inhibiting gene
expression (Figure 1). Using α-Syn constructs targeted to specific cellular compartments,
it was demonstrated that protein with the nuclear localization sequence causes increased
neurotoxicity in SH-SY5Y cells and drosophila brain, whereas targeting α-Syn to the cytosol
provides neuroprotection. Nuclear α-Syn was found to directly interact with histone 3 (H3),
decreasing its acetylation, whereas HDAC inhibitors protected against α-Syn-mediated
neurotoxicity [104]. Protection against α-Syn-mediated toxicity by HDAC inhibition was
also shown in human neuroglioma cells and in a drosophila model of Parkinson’s disease
where genetic or pharmacological blockade of sirtuin 2, a member of Class-III HDAC family,
showed dose-dependent rescue from α-Syn-induced toxicity, supporting a role of α-Syn
in histone epigenetic control of gene expression [105]. Similarly, decreased H3 acetylation
and altered RNAseq gene expression profiles were found in LUHMES dopaminergic cells
overexpressing α-Syn; inhibition of HDAC with sodium butyrate prevented α-Syn-induced
DNA damage, apparently via upregulation of genes involved in DNA repair [106]. In a
recent study, Mazzocchi and collegues used gene co-expression analysis to demonstrate
that HDAC5 and HDAC9 are expressed in dopaminergic neurons in the human and mouse
substantia nigra where they act as negative regulators of the BMP-Smad pathway, thus
limiting the extent of neurite growth [107]. Genetic or pharmacological targeting of these
class-IIa HDACs promoted neurite growth in cells overexpressing α-Syn and protected cul-
tured rat DA neurons against a parkinsonian neurotoxin, MPP+. In contrast to these studies
however, selective inhibition of class III HDACs with nicotinamide dose-dependently ex-
acerbated degeneration of DA neurons in lactacystin-lesioned rats [108], highlighting the
importance of targeting specific HDACs in possible therapeutic applications. Although
pharmacological inhibition of HDAC activity is currently under investigation as disease
modifying PD therapy [100,109], some of their effects may be mediated by mechanisms
unrelated to histone acetylation, such as microtubule stabilization [110,111].

HAT activity may be directly affected by α-Syn. Cytosolic α-Syn decreases the levels
of p300, a neuronally expressed HAT both in vitro and in vivo [112]. Besides reduced
histone acetylation, diminished activity of p300 also leads to decreased acetylation of
p65 thereby blocking the nuclear factor-κB (NF-κB) binding to the protein kinase C delta
(PKCδ) promoter region. Thus, in this model, the presence of α-Syn confers protection
due to transcriptional suppression of PKCδ, inhibiting its proteolytic activation that would
otherwise activate caspase 3-mediated proapoptotic signaling in DA neurons.

Whereas histone acetylation is thought to always promote gene expression, histone
methylation regulates transcription depending on the context. For example, H3 methylation of
lysine at position 4 (H3K4 modification) activates the nearby DNA loci, whereas modifications
of the same histone at positions 9 or 27 (H3K9 and H3K27) inactivate gene expression.

A significant decrease in H3K36 double-methylation was reported in an α-Syn yeast
proteinopathy model, together with milder changes in other histone PTM [113]. In con-
trast, overexpression of α-Syn in transgenic drosophila and SH-SY5Y neuroblastoma cells
upregulated euchromatic histone lysine N-methyltransferase 2 (EHMT2) activity by a
retinoic acid (RA)-dependent mechanism [114]. Interaction of EHMT2 with the repressor
element-1 (RE1)-silencing transcription factor (REST) led to transcription inactivation via
EHMT2-mediated H3K9 mono- and di-methylation, silencing the expression of SNAP25
and L1CAM genes in cells overexpressing α-Syn (Figure 1).

2.2. α-Syn-Dependent Regulation of Nuclear Receptors

The capacity of higher organisms to learn from previous experience in order to adapt
their behavior depends on the ability of neurons to convert transient stimuli into long-
lasting alterations in structure and function. One such synaptic plasticity mechanism
involves activity-dependent upregulation of gene expression via nuclear translocation of
nuclear receptors and transcription factors. These proteins typically reside in the cytoplasm
where they undergo phosphorylation or dephosphorylation following G protein-coupled
receptors activation or activity-dependent opening of voltage-gated Ca2+ channels. Once
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activated, they are translocated into the nucleus where they bind to the promoter regions
and affect the transcription of a variety of genes responsible for proliferation, differentiation,
survival, long-term synaptic potentiation, neurogenesis, and neuronal plasticity.

Retinoic-acid receptor (RAR) and peroxisome proliferator-activated receptor-γ (PPARγ)
are members of the nuclear-receptor superfamily that bind to DNA as heterodimers with
retinoid-X receptors (RXRs). Using SH-SY5Y cells and primary neuronal cultures, a re-
cent study showed that α-Syn binds to retinoic acid, followed by nuclear translocation
of the complex via a calcium- and calreticulin-dependent process [115]. Once in the nu-
cleus, α-Syn/RA activates RAR/RXR- and PPARγ/RXR- dependent gene transcription
via binding to the corresponding response elements on the DNA (Figure 2). Nuclear
α-Syn translocation was shown to occur at physiological levels but also increased if the
protein was overexpressed or mutated, providing a possible link between a normal role
of α-Syn in the regulation of RA-mediated gene transcription and its toxicity in synucle-
inopathies [115,116]. Interestingly, another study from the same group reported that α-Syn
expression downregulates PPARγ levels and activity in a transgenic mouse model of PD
and a cell culture system. This in turn decreases catalase expression and compromises cell
survival: an effect rescued by pharmacological activation of PPARγ, PPARα, or RXR [117].
On the other hand, activation of these nuclear receptors enhanced the accumulation of
soluble α-Syn oligomers, pointing to a possible balance between the physiological and
pathological roles of α-Syn.
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Figure 2. Effects of α-Syn on transcription factors. Left, α-Syn is translocated to the nucleus in a complex with retinoic acid
(RA) where it interacts with and activates RAR and PPARγ nuclear receptors, followed by activation of their corresponding
response elements on gene promoter regions. Middle, overexpression of α-Syn also induces downregulation of the orphan
nuclear receptor Nurr1, decreasing expression of Death Receptor 5 dependent genes, including those involved in dopamine
biosynthesis (TH, AADC, GCH1). Right, α-Syn binds the promoter region of PPARγ co-activator (PGC-1α) gene when
overexpressed. This leads to the downregulation of PGC-1α transcription thus reducing cellular protection against oxidative
stress and bioenergetic burden. *—It is currently unknown if the interaction with PGC-1α is RA-dependent.

Analysis of genes regulated by nucleus-targeted α-Syn using RNAseq in primary
dopamine neuronal cultures revealed that Nurr1—another nuclear receptor that forms
heterodimers with RXR—is significantly downregulated [118]. Forced Nurr1 expression
or activation of Nurr1/RXR heterodimer with an RXR ligand in cells subjected to α-Syn
toxicity efficiently rescued the expression of hundreds of dysregulated genes, suggesting
that a substantial portion of α-Syn-mediated toxicity may be due to downregulation of
Nurr1 (Figure 2). A decrease in Nurr1 expression was also observed in neuroblastoma
cell lines transfected with wild-type α-Syn [84] and in human PD [119], implicating this
protein in the development and progression of synucleinopathies and prompting a search
for clinically applicable agonists of Nurr1/RXR heterodimer as a PD therapy [120,121].
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A functional partner of Nurr1 in the adaptive response to stress is peroxisome prolif-
erator receptor γ coactivator-1 (PGC-1α) which, in addition to being a key transcriptional
regulator of energy metabolism, functions as a suppressor of reactive oxygen species in
neurons. Oxidative stress causes nuclear translocation of α-Syn where the protein binds
to the promoter element of PGC-1α (Figure 2), resulting in decreased expression of this
transcription factor and downstream mitochondrial genes [122]. PGC-1α levels are also
downregulated in post-mortem PD substantia nigra neurons [122,123], whereas exogenous
PGC-1α expression protects against α-Syn-mediated toxicity in cellular PD models [124].
We note however that both Nurr1 and PGC-1α are downstream of cyclic-AMP-response-
element-binding protein (CREB) and extracellular signal-regulated kinase (ERK) signaling
(see below) in dopaminergic neurons [125], and so the mechanism of their downregulation
may be more complex. For example, a recent study using primary cell cultures, rodent mod-
els, and human post-mortem brains from LBD patients identified a potential mechanism of
α-Syn toxicity related to the presence of α-Syn oligomers in the mitochondria [126]. The
authors found that decreased expression and activity of SIRT3, a mitochondrial sirtuin that
maintains mitochondrial function and prevents oxidative stress [127], lead to decreased
CREB phosphorylation. As pCREB controls PGC-1α expression [128], thus affecting mito-
chondrial dynamics and function [126], and the fact that PGC-1α may also control SIRT3
expression [129], demonstrate the intricacy of cellular RedOx homeostasis, where α-Syn
might play both physiological and pathological functions.

2.3. α-Syn-Dependent Regulation of Immediate Early Genes

Multiple studies have demonstrated that α-Syn can regulate the expression of immedi-
ate early genes, including CREB, nuclear factor of activated T cells (NFAT), and ETS Like-1
protein (Elk1), although the precise mechanisms remain under investigation. Specifically,
α-Syn might be involved in at least two signal transduction cascades: MAPK/ERK and
Ca2+/CAMKII- mediated transcriptional control.

2.3.1. Regulation of Transcription via MAPK/ERK Pathway

Mitogen-activated protein kinase (MAPK) signaling cascade includes a group of kinases
and phosphatases that mediate the nuclear translocation of several transcription factors, in-
cluding CREB and Elk1. Elk1 is a member of the ternary complex factor (TCF) of transcription
factors that includes nuclear phosphoproteins involved in regulating immediate early gene ex-
pression. Elk1 in its inactive form is colocalized in the cytoplasm with mitochondrial proteins
or microtubules. Elk1 phosphorylation in response to kinases such as extracellular signal-
regulated kinase 2 (ERK2) results in its translocation to the nucleus, where pElk1 is implicated
in regulating chromatin remodeling and neuronal differentiation. Both ERK2 and Elk1 have
been shown to form complexes with WT [76,130,131] and A53T mutant α-Syn [130,132]. This
binding reduces the amount of available active ERK2 and Elk1, resulting in altered gene
expression and accelerated cell death (Figure 3). However, other reports either did not find
a change in pERK levels in cultured rat primary neurons that overexpress α-Syn [133,134],
or found an increase in pERK in stable neuronal cells treated with non-toxic levels of
extracellular α-Syn [135].

2.3.2. Regulation of Transcription via LTCC/CaMK Pathway

Activity-dependent opening of voltage-gated calcium channels provides another
mechanism that allows to encode acute information flow into changes in gene expression
that form the basis of neural plasticity. In particular, L-type calcium channels (LTCC) are
uniquely positioned to couple neuronal activity and immediate early genes expression
(Figure 3) [136,137].
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Figure 3. Role of α-Syn in regulation of immediate early gene responses. Left, Cytosolic α-Syn can interact with transcription
factors involved in mitogen-activated protein kinase (MAPK) signaling such as ERK2 and Elk1, resulting in the downregulation
of gene response elements. Middle, Activity-dependent pCREB activation is triggered by Ca2+ influx through LTCC which
activates calmodulin (CaM), which then binds to and activates calcineurin (CaN). Activated CaM phosphorylates CaMKIIα/β,
which in turn phosphorylates CaMKIIγ that results in the dissociation of Ca2+/CaM from CaMKIIγ and its translocation
to the nucleus—the step that requires CaN activity. Nuclear Ca2+/CaM phosphorylates CREB via CaMKK and CaMKIV
pathways, resulting in the binding of pCREB to its promoter on the DNA. Serine/threonine protein phosphatase 1 (PP1) inhibits
this cascade by dephosphorylating pCREB and CaMKIIα/β. Right, Activated CaN dephosphorylates NFATc, exposing its
nuclear localization sequences (NLS) and facilitating its translocation to the nucleus, where it binds to promoter DNA to control
transcription. Binding of α-Syn to Ca2+/CaM/CaN complex and PP1 may affect the induction of NFATc and pCREB factors as
well as the gating properties of LTCC by interfering with Ca2+-dependent facilitation (CDF) or inactivation (CDI). *—The effect
of α-Syn expression on pCREB induction has not been investigated to date.

LTCC are comprised of four subunits that form a hetero-oligomeric complex [138].
LTCC expressed in the brain are represented by Cav1.2 and Cav1.3 types that express α1C
and α1D pore-forming subunits, correspondingly. LTCC gating properties are intricately
regulated via structural changes of the α1 subunit, whereas auxiliary α2, β, and δ subunits
play structural and modulatory roles. Binding of various proteins as well as Ca2+-induced
phosphorylation/dephosphorylation events on the α1 subunit C-terminus modulate LTCC
conductance by inducing Ca2+-dependent inhibition and facilitation (CDI and CDF), thus
changing the kinetics of channel activation, inactivation, and reactivation [139].

Voltage-dependent opening of the LTCC initiates a signaling cascade when Ca2+ binds
to calmodulin (CaM), which is constitutively attached to the channel’s α1 subunit [140,141].
Ca2+/CaM plays a principal role in this pathway due to its kinase activity as well as its
formation of a complex that activates calcineurin (CaN a.k.a. PP2B) phosphatase. Sequen-
tial activation of Ca2+/CaM-dependent protein kinases (CaMK), including CaMKIIα/β/γ,
CaMKIV, and CaMKK [142] ultimately phosphorylates and activates nuclear CREB [143],
which binds to a highly conserved cAMP response elements (CRE) on DNA, thereby
modulating gene transcription. Similarly, CaN-dependent dephosphorylation of cytoso-
lic NFAT (NFATc) allows its nuclear translocation, where together with nuclear partner
proteins (NFATn) that are regulated by other pathways including the MAPKs, it binds to
corresponding NFAT response elements [144–147].

Multiple studies demonstrate an interaction between α-Syn and the members of
the LTCC/CaMKII pathway (Figure 3). α-Syn-binding partners were recently studied in
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primary rat cortical neurons by an ascorbate peroxidase (APEX) assay [148], which is based
on the short-lived radicals that label amino acids in their immediate proximity (<10 nm). In
addition to α-Syn ligation with members of endosomal pathways, pre-synaptic machinery
and mRNA-binding proteins, the assay identified its proximity to CaN catalytic subunits
(PPP3CA and PPP3CB), LTCC β subunits (CACNB1 and CACNB3), and serine/threonine-
protein phosphatase PP1 catalytic subunits (PPP1CA, PPP1CB, and PPP1CC).

More directly, it was shown that α-Syn activates CaN and induces NFATc3 nuclear
translocation in vitro, in HEK293 cell lines and in primary cultures of DA neurons, [149].
In a follow-up study, the same group investigated the interaction of α-Syn and CaN
in vitro using a series of biochemical techniques, including microscale thermophoresis,
GST pulldown, and co-immunoprecipitation [150] and reported that α-Syn binds the
catalytic subunit of CaN with a Kd of 6.9 ± 0.4 µM, well within the estimated range of
cytosolic α-Syn levels [151]. Furthermore, this interaction was significantly enhanced in the
presence of Ca2+/CaM and did not occur in the absence of Ca2+ [150]. In another in vitro
ligation study, α-Syn was used as a bait to photo-crosslink possible interacting partners
from bovine brain cytosol [80]: CaM was identified as the major cross-linked protein and
the interaction was confirmed in SNKSH neuroblastoma cells. Binding of α-Syn to CaM
could be blocked by CaM inhibitor calmidazol and was dependent on Ca2+ concentration.

These studies strongly suggest thatα-Syn interacts with principal players in the LTCC/Ca
MKII signal transduction pathway and that changes in its level of expression either during
pathology or as a result of anti-synuclein therapy may have effects on the ability of neurons
and other cells to adapt to the changing environmental and behavioral stimuli.

3. Conclusions and Future Directions

Although multiple studies implicate an involvement of α-Syn in transcription, it is
unclear whether these pathways are physiologically relevant in humans. An important
distinction needs to be drawn between studies of α-Syn overexpression/mutation, which
are meant to emulate synucleinopathies, and those where the protein is depleted, which are
intended to address its normal function. While several cellular regulators of transcription
have been shown to mediate toxicity induced by α-Syn overexpression, it is unknown if
decreasing α-Syn levels will have an opposite effect on gene expression. Similarly, even
though reports of deficits in working and spatial memory in α-Syn null mice support a
role of the protein in learning [56], further studies are required to determine the effects of
therapeutic doses of anti-synuclein medications and more specific tests for the immediate
early genes expression. Finally, while it is abundantly expressed in the brain, α-Syn is
also expressed in the gut, liver, lungs and is necessary for the normal development and
functioning of these tissues [152]. Silencing α-Syn in the periphery may cause side-effects
by affecting the expression of genes in non-neuronal cells, a possibility that should be
investigated in future studies.
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Abbreviations

AADC Aromatic L-amino acid decarboxylase
CaN calcineurin
CaM Calmodulin
CaMK CaM-dependent protein kinases
CRE cAMP response element
pCREB phospho-cyclic-AMP-response-element-binding protein
DA dopamine
DNMT1 DNA methyl transferases 1
EF sequence Elongation Factor sequence
EHMT2 euchromatic histone lysine N-methyltransferase 2
Elk-1 ETS Like-1 protein

ERK2
Extracellular signal-regulated kinase 2 (a.k.a. MAPK1: mitogen-activated
protein kinase 1)

GCH 1 GTP Cyclohydrolase 1
HAT histone acetyltransferase
HDAC histone deacetylase
LTCC L-type calcium channels
MAPK Mitogen activated protein kinase
NBRE NGFI-B response element
NFATc/n Nuclear and cytosolic factors of activated T cells
NFAT-RE nuclear factor of activated T-cells response element
Nurr1 nuclear receptor related 1
PD Parkinson’s Disease
PTM post-translational modification
PPARγ peroxisome proliferator-activated receptor-γ
PGC-1α receptor γ coactivator-1
RA retinoic acid
RAR Retinoic-acid receptor
RARE retinoic acid response element

REST
repressor element-1 silencing transcription factor (a.k.a.
NRSF: neuron-restrictive silencer factor)

RXR retinoid-X receptors
α-Syn α-Synuclein
SRE Serum response element
TH Tyrosine Hydroxylase
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