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Objective: To explore the application of three-dimensional pseudocontinuous arterial

spin labeling (3D-PCASL) perfusion imaging in the brains of children with autism and to

understand the characteristics of cerebral blood perfusion in children with autism.

Methods: A total of 320 children with autism (160men and 160women) aged between 2

and 18 years and 320 age- and sex-matched healthy children participated in the study. All

children were scanned by 3.0 T magnetic resonance axial T1 fluid-attenuated inversion

recovery (FLAIR), T2 FLAIR, 3D-T1, and 3D-PCASL sequences. After postprocessing,

cerebral blood flow (CBF) values in each brain region of children with autism and healthy

children at the same age were compared and analyzed. Furthermore, CBF characteristics

in each brain region of autistic children at various ages were determined.

Results: The CBF values of the frontal lobe, hippocampus, temporal lobe, and caudate

nucleus of children with autism are lower than those of healthy children (P < 0.05).

Additionally, as the ages of children with autism increase, the number of brain regions

with decreased CBF values gradually increases. A receiver operating characteristic (ROC)

analysis results show that the CBF values of the frontal lobe, hippocampus, temporal

lobe, and caudate nucleus can distinguish children with autism [area under the ROC

curve (AUC) > 0.05, P < 0.05].

Conclusion: The 3D-PCASL shows lower brain CBF values in children with autism.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier: ChiCTR2000034356.

Keywords: brain, MRI, children, autism, three-dimensional arterial spin labeling

KEY POINTS

- Three-dimensional pseudocontinuous arterial spin labeling shows lower brain CBF values in
children with autism.

- The temporal lobe, frontal lobe, hippocampus, and caudate nucleus can distinguish children with
autism [area under the ROC curve (AUC) > 0.5, P < 0.05].

- The temporal lobe, frontal lobe, hippocampus, and caudate nucleus regions may be the first areas
to show cerebral blood flow changes in autistic children.
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INTRODUCTION

Autism spectrum disorder (ASD) refers to a group of
developmental disorders that start in early childhood, with high
incidence and unclear causes (1). ASD is a multifactorial disease
related to genetics, neurodevelopment, social psychology, etc.
(2, 3). Some pathogenic factors have not been clearly identified
(4, 5). For example, studies have found that some brain regions
of children with autism have abnormal anatomical structures or
abnormal brain function activities (6, 7), but whether cerebral
blood perfusion in abnormal brain regions is also abnormal
is unknown.

In previous studies, some researchers have used single-
photon emission computed tomography (SPECT) to determine
cerebral blood perfusion in children with ASD (8, 9). SPECT
is an instrument that uses radioisotopes as tracers to obtain
blood flow values in various regions of children’s brains,
which is harmful to the human body, and children are at a
high risk of adverse effects due to γ-ray (radioactive isotope
decay produces γ- ray) radiation exposure (10, 11). Therefore,
identifying a technology with no impact on children’s bodies
to determine their brain blood flow is a study hotspot for
medical researchers.

Three-dimensional pseudocontinuous arterial spin
labeling (3D-PCASL) is a technique for image perfusion
that uses continuous labeling (12, 13). This technique
is non-invasive and can be used to perform functional
imaging and evaluation of the whole brain repeatedly
without the need for contrast agent injection. It has been
widely used in clinical practice (14, 15). At present, more
reports are available on the application of 3D-PCASL
technology to adult brain examinations (16), while fewer
reports are available on its application to pediatric brain
examinations, with an especially low number of reports on
its application to head examinations in children with autism
(17, 18).

In this study, 3D-PCASL cerebral blood perfusion imaging
was used to obtain the blood perfusion value of each
brain region of the children’s brains. The blood perfusion
values of various brain regions of children with autism and
healthy children aged 2–18 years were compared and analyzed
to determine differences in the blood perfusion value of
each brain area between children with autism and healthy
children such that the brain blood perfusion characteristics of
children with autism can be accurately identified as soon as
possible, children with autism can receive a timely diagnosis
and reasonable treatment, the severity of the illness can be
improved, and the burden on the family and society can
be reduced.

Abbreviations:MRI, magnetic resonance imaging; 3D-PCASL, three-dimensional

pseudocontinuous arterial spin labeling; ASD, autism spectrum disorder; DSM-

V, Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; MCV,

mean corpuscular volume; VBM, voxel-based morphology; CBF, cerebral blood

flow; PLD, post labeling delay; FLAIR, fluid attenuated inversion recovery; T2WI,

weighted imaging; TR, repetition time; FOV, field of view; TE, time of echo; NEX,

number of excitations.

MATERIALS AND METHODS

Ethics Statement
The study protocol was approved by the Human Ethics
Committee of the Children’s Hospital of Chongqing Medical
University (No. 2018-47). Written informed consent was
obtained from the parents or guardians of all the children before
the examinations.

Study Participants
Study group: A total of 431 children with autism aged 2 to 18
years were selected, from June 2018 to March 2021, and 320
children (men 160, women 160) were included in the study.
Control group: A total of 401 healthy children aged 2 to 18
years were selected from February 2019 to April 2021, and 320
children (men 160, women 160) were included in the study. Both
groups of children were divided into eight subgroups with 40
in each subgroup according to age (2, 3, 4, 5, 6–8, 9–10, 11–14,
15–18 years old). Children who were excluded from the study
had abnormal brain lesions or did not cooperate with sedation,
resulting in breathing artifacts on imaging (Table 1).

The inclusion criteria for children in the control group: a body
mass index of 15–18 kg/m2, right-handedness, no neurological
disease, no other organ-related diseases, no other diseases that
may affect brain function and structure, and no abnormalities on
routine head MRI.

The inclusion criteria for the children in the study group:
a body mass index of 15–18 kg/m2 and right-handedness. The
children were required to meet the diagnostic criteria of the
Diagnostic and Statistical Manual of Mental Disorders (DSM-
V) for autism (19), with no neurological disease, no other
organ-related diseases, no other diseases that may affect brain
function and structure, no history of medical treatment, and
no abnormalities on routine head MRI; the children with ASD
in the study group were diagnosed at the outpatient clinic of a
physician with an associate senior title or above in the Children’s
Developmental Behavior and Child Health Department and the
Department of Psychology of Children’s Hospital of Chongqing
Medical University. Children with ASD included in the study had
tomeet the diagnostic criteria for autism in the fifth edition of the
Diagnostic and Statistical Manual of Mental Disorders and have a
Childhood Autism Rating Scale (CARS) score ≥30.

All children who did not cooperate with the examination were
examined in the sedation center of our hospital after sedation.
The sedation method was as follows: dexmedetomidine 3 µg/kg
intranasally + chloral hydrate 40 mg/kg orally. If the sedation
depth was not sufficient after 20min, dexmedetomidine 1 µg/kg
was administered intranasally again, and if necessary, chloral
hydrate 20 mg/kg was administered orally.

Imaging Data Collection and
Postprocessing
In this study, a GE 3.0 T magnetic resonance (Discovery MR750;
GE Medical Systems, Milwaukee, WI, USA) scanner with an
eight-channel head-neck joint coil was used. Children who did
not cooperate with the examination were sent to the sedation
center for sedation and axial T1 FLAIR, T2 FLAIR, T2 weighted
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TABLE 1 | Patient information.

Information

Age
2 years old 3 years old 4 years old 5 years old 6–8 years old 9–10 years old 11–14 years old 15–18 years old

Male to female ratio Healthy children 20:20 20:20 20:20 20:20 20:20 20:20 20:20 20:20

Autistic children 20:20 20:20 20:20 20:20 20:20 20:20 20:20 20:20

X2 value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

P-value 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Age Healthy children 2.4 ± 0.6 3.2 ± 0.3 4.2 ± 0.7 5.3 ± 0.3 7.1 ± 1.0 8.8 ± 1.2 12.5 ± 1.9 15.9 ± 2.1

Autistic children 2.3 ± 0.5 3.4 ± 0.5 4.3 ± 0.4 5.3 ± 0.4 7.2 ± 1.3 8.6 ± 1.3 12.4 ± 1.8 15.6 ± 1.9

T value 0.874 3.635 7.982 2.877 3.653 2.879 1.984 4.567

P-value 0.763 0.074 0.238 0.229 0.083 0.764 0.432 0.095

BMI Healthy children 15.9 ± 1.8 15.4 ± 2.3 15.1 ± 1.6 14.9 ± 2.9 15.2 ± 3.2 15.8 ± 4.7 18.6 ± 4.7 20.1 ± 5.6

Autistic children 15.7 ± 1.6 15.6 ± 2.1 15.0 ± 1.3 14.7 ± 2.1 15.1 ± 2.9 15.6 ± 5.6 18.4 ± 5.1 20.0 ± 6.9

T value 7.653 4.786 3.254 5.124 6.259 1.887 3.239 4.665

P-value 0.065 0.128 0.709 0.237 0.982 0.105 0.876 0.237

Weight Healthy children 16.6 ± 1.5 17.4 ± 1.2 16.7 ± 1.5 17.8 ± 1.3 16.3 ± 1.6 17.1 ± 1.0 18.67 ± 1.36 21.2 ± 1.5

Autistic children 16.2 ± 1.3 17.4 ± 1.3 16.5 ± 1.2 17.2 ± 1.2 16.3 ± 1.4 17.1 ± 1.1 18.5 ± 1.2 21.3 ± 1.6

T value 3.876 2.983 1.668 7.982 2.685 3.298 4.652 1.993

P-value 0.087 0.982 0.073 0.134 0.076 0.981 0.091 0.553

Sedation needed Healthy children 40 40 36 22 0 0 0 0

Autistic children 40 40 40 38 21 3 3 0

FIGURE 1 | Schematic diagram of brain volume and CBF parameter extraction.

imaging (WI), 3D-T1, and 3D-PCASL sequence scans after deep
sleep were achieved. 3D-PCASL: repetition time (TR): 4,628ms,
field of view (FOV): 25 cm, time of echo (TE): 10.4ms, number of
excitations (NEX): three times, slice thickness: 4.2mm, 32 slices,

post labeling delay (PLD): 1,525ms, and scanning time: 4min
29 s. 3D-T1: TR: 450ms, FOV: 25 cm, TE: 3.1ms, NEX: 1 time,
slice thickness: 1mm, 152 slices, and scanning time: 3min 43 s.

The range of all sequence scanning was from skull top to skull
base, including the whole brain.

Data Analysis

To calculate the quantitative parameters, including the gray
matter volume (GMV), white matter volume (WMV), and CBF
values of different brain regions, we followed an atlas-based
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FIGURE 2 | Flow chart for the data processing.

image processing approach. CBF maps were further calculated
from the 3D-PCASL data using an AW4.6 GE Workstation.
Second, we performed rigid registration between CBF maps
and 3D-T1WI data using SPM12 software (http://www.fil.ion.
ucl.ac.uk/spm/) based on MATLAB (MathWorks, Natick, MA,
USA). Third, 3D-T1WI images were segmented and nonlinearly
normalized into MNI space using the CAT12 toolbox (http://
www.neuro.uni-jena.de/cat/) implemented in SPM12 to obtain
tissue probability maps and normalized CBF quantitative maps.

Finally, the brain was parcellated into 38 anatomical regions

based on the automated anatomical labeling atlas (AAL-3) for
quantitative parameter extraction. Brain regional volumes and
CBF can be extracted by averaging the values from voxels in
specific brain regions. The estimated global GMV and WMV
were further normalized by correction of the intracranial volume
(Figures 1, 2).

Statistical Analysis
In this study, SPSS 25.0 statistical software was used, and the
measurement data were expressed as the mean and standard
deviation. The 3D-PCASL perfusion CBF value of the same brain

region in children of the same age in the study group and the
control group was compared by two-independent samples t-tests
(P < 0.05 indicates that a difference was statistically significant);
the volume of the same brain region in children of the same age
in the study group and the control group was compared by two-
independent samples t-tests (P < 0.05 indicates that a difference
was statistically significant).

A receiver operating characteristic (ROC) curve was used to
evaluate the diagnostic value of the CBF value for the diagnosis
of childhood autism. An area under the ROC curve (AUC)
> 0.5 with statistical significance was considered indicative of
diagnostic value. A value closer to one corresponded to a higher
diagnostic value.

RESULTS

Comparison of CBF Values in the Same
Age Group and the Same Brain Region
In the group with 2-year-old children, the CBF values of the
temporal lobe, hippocampus, and putamen in children with
autism were lower than those in healthy children (P < 0.05);
in the group containing 3-year-old children, the CBF values
of the frontal lobe, temporal lobe, hippocampus, and putamen
in children with autism were lower than those in healthy
children (P < 0.05); in the group with 4-year-old children,
the CBF values of the temporal lobe, frontal lobe, thalamus,
hippocampus, putamen, and caudate nucleus in children with
autism were lower than those in healthy children (P < 0.05);
in the group containing 5-year-old children, the CBF values of
the temporal lobe, thalamus, hippocampus, putamen, caudate
nucleus, substantia nigra, and red nucleus in children with autism
were lower than those in healthy children (P < 0.05); and in
the group with 6–18-year-old subjects, the CBF values of the
frontal lobe, temporal lobe, thalamus, hippocampus, caudate
nucleus, substantia nigra, and red nucleus in children with
autism were lower than those in healthy children (P < 0.05)
(Table 2, Figures 3, 4).

Volume Comparison of the Same Age
Group and the Same Brain Region
In the group with 2–5-year-old children, no statistically
significant difference in the volume of the same brain region
was found between children with autism and healthy children in
the same age group; in the group containing 6- to 8-year-olds,
the volumes of the frontal lobe, temporal lobe, hippocampus,
and putamen in healthy children were smaller than those in
children with autism (P < 0.05); in the group with 9- to 10-
year-old children, the volumes of the temporal lobe, frontal
lobe, thalamus, hippocampus, putamen, and caudate nucleus
in healthy children were smaller than those in children with
autism (P < 0.05); in the group with 11-to 18-year-old subjects,
the volumes of the frontal lobe, temporal lobe, thalamus,
hippocampus, putamen, caudate nucleus, substantia nigra, and
red nucleus in healthy children were smaller than those in
children with autism (P < 0.05) (Table 3).

The ROC analysis results showed that the CBF values of the
frontal lobe, hippocampus, temporal lobe, and caudate nucleus
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TABLE 2 | CBF values of brain regions in children [CBF (ml/100 g·min), x ± s, n = 40].

Brain regions CBF (ml/100 g·min) P-value Brain regions CBF (ml/100 g·min) P-value

Healthy children Autistic children Healthy children Autistic children

2 years old 3 years old

Frontal 48.6 ± 8.1 47.5 ± 6.2 NS Frontal 74.5 ± 7.1 36.5 ± 6.3 <0.001

Temporal 48.9 ± 7.7 33.2 ± 5.9 <0.001 Temporal 73.6 ± 6.9 45.6 ± 7.5 <0.001

Hippocampus 38.7 ± 6.2 27.1 ± 4.9 <0.001 Hippocampus 60.2 ± 8.5 32.1 ± 5.6 <0.001

TH 35.2 ± 4.5 37.1 ± 5.0 NS TH 56.1 ± 6.1 55.2 ± 8.1 NS

GP 28.7 ± 5.1 28.1 ± 6.2 NS GP 44.5 ± 5.1 43.7 ± 6.1 NS

SN 30.9 ± 7.9 28.9 ± 6.9 NS SN 50.7 ± 7.9 48.8 ± 3.6 NS

Putamen 41.7 ± 6.1 32.6 ± 5.1 <0.001 Putamen 60.2 ± 9.1 58.4 ± 8.1 <0.001

RN 33.2 ± 6.2 34.3 ± 5.1 NS RN 55.3 ± 6.1 55.2 ± 6.3 NS

CN 37.7 ± 6.3 38.0 ± 5.7 NS CN 58.6 ± 7.1 58.7 ± 8.5 NS

4 years old 5 years old

Frontal 77.5 ± 7.5 53.4 ± 7.6 <0.001 Frontal 78.5 ± 7.5 76.2 ± 6.5 NS

Temporal 78.6 ± 6.4 61.2 ± 6.1 <0.001 Temporal 83.6 ± 6.5 62.1 ± 7.8 <0.001

Hippocampus 64.1 ± 8.2 45.3 ± 9.2 <0.001 Hippocampus 64.5 ± 8.2 37.6 ± 9.1 <0.001

TH 66.1 ± 6.7 40.1 ± 7.4 <0.001 TH 66.3 ± 6.7 46.2 ± 9.6 <0.001

GP 44.5 ± 5.3 41.2 ± 6.9 NS GP 44.8 ± 5.3 43.7 ± 6.9 NS

SN 55.7 ± 7.6 53.6 ± 8.2 NS SN 55.5 ± 7.6 35.2 ± 8.1 <0.001

Putamen 65.2 ± 9.4 52.1 ± 4.8 <0.001 Putamen 68.7 ± 9.4 48.2 ± 7.6 <0.001

RN 55.3 ± 6.7 56.0 ± 8.4 NS RN 55.9 ± 6.7 35.1 ± 6.5 <0.001

CN 58.6 ± 7.9 43.1 ± 9.1 <0.001 CN 58.8 ± 7.9 30.2 ± 9.1 <0.001

6–8 years old 9–10 years old

Frontal 110.3 ± 0.11.6 96.5 ± 18.6 <0.001 Frontal 140.6 ± 37.6 122.3 ± 26.5 <0.001

Temporal 143.6 ± 37.6 121.2 ± 27.6 <0.001 Temporal 141.3 ± 41.5 116.4 ± 23.6 <0.001

Hippocampus 183.9 ± 28.9 157.4 ± 33.2 <0.001 Hippocampus 184.4 ± 38.6 155.2 ± 34.5 <0.001

TH 200.8 ± 36.2 149.5 ± 40.2 <0.001 TH 190.2 ± 32.5 129.8 ± 32.1 <0.001

GP 200.4 ± 41.2 203.7 ± 37.4 NS GP 210.3 ± 22.9 203.4 ± 43.1 NS

SN 56.7 ± 8.5 43.2 ± 9.6 <0.001 SN 57.4 ± 11.5 42.8 ± 8.2 <0.001

Putamen 190.9 ± 21.8 166.9 ± 36.6 <0.001 Putamen 198.3 ± 40.5 148.9 ± 36.5 <0.001

RN 51.3 ± 9.6 40.2 ± 8.9 <0.001 RN 40.2 ± 7.6 29.6 ± 8.2 <0.001

CN 162.4 ± 32.4 132.5 ± 27.6 <0.001 CN 178.6 ± 31.4 138.6 ± 29.5 <0.001

11–14 years old 15–18 years old

Frontal 140.78 ± 35.6 114.62 ± 30.5 <0.001 Frontal 146.23 ± 33.4 121.34 ± 37.4 <0.001

Temporal 146.52 ± 26.3 113.43 ± 27.6 <0.001 Temporal 158.27 ± 29.8 133.65 ± 33.6 <0.001

Hippocampus 190.47 ± 37.7 158.66 ± 28.9 <0.001 Hippocampus 186.63 ± 37.4 163.11 ± 41.2 <0.001

TH 200.32 ± 41.5 165.79 ± 40.5 <0.001 TH 198.54 ± 38.5 154.23 ± 44.7 <0.001

GP 220.98 ± 22.3 211.65 ± 43.2 NS GP 223.68 ± 42.6 219.63 ± 47.8 NS

SN 53.65 ± 23.6 38.69 ± 13.6 <0.001 SN 55.29 ± 15.7 37.56 ± 12.3 <0.001

Putamen 189.74 ± 26.9 127.58 ± 37.8 <0.001 Putamen 199.87 ± 40.5 165.78 ± 33.7 <0.001

RN 47.71 ± 15.2 36.33 ± 13.9 <0.001 RN 54.21 ± 21.4 39.24 ± 12.5 <0.001

CN 210.87 ± 43.2 164.17 ± 37.6 <0.001 CN 220.65 ± 55.5 176.56 ± 55.6 <0.001

TH, Thalamus; GP, Globus pallidus; SN, Substantia nigra; RN, Red nucleus; CN, Caudate nucleus. P < 0.05 indicates that a difference was statistically significant.

could distinguish children with autism (AUC > 0.05, P <

0.05), and the AUC value of the temporal lobe was the highest
(Figure 5, Table 4).

DISCUSSION

The study results imply that the decrease in the CBF value in
children with autism will increase with age. The decreases in

CBF values in these brain regions may be related to cognitive,
language, and motor retardation in children with autism (when
a child with autism is ∼2 years old, compared with a healthy
child, the gaps in cognitive, language, and motor development
are smaller. As the age of children with autism increases, the
gaps between their cognitive, language, and motor development
gradually increases compared with that in healthy children,
eventually leading to a decrease in blood perfusion and a
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FIGURE 3 | Bar chart of CBF values of brain regions in children.

gradual increase in the number of affected brain regions)
(20–23).

The study results show that except for the 2-year-old and 5-
year-old groups, the CBF value of the frontal lobe in autistic
children in the other groups was lower than that in healthy
children, and the CBF value for blood perfusion in the 3-year-
old group was significantly lower than that in the 4-year-old
group. The reason for this phenomenon may be that the growth
and development of the frontal lobe of autistic children begin
to slow down from the age of ∼3 years, resulting in a decline

in frontal lobe blood flow and perfusion, and then the growth
and development of the frontal lobe gradually recover and finally
return to normal at the age of ∼5 years. However, after the age
of 6 years, the frontal lobe’s blood flow and perfusion of children
with autism gradually decrease (24–27).

In this study, we selected the basal ganglia, frontal lobe,
temporal lobe, hippocampus, and other brain regions as
key research areas because these are important neurological
functional areas (28). The basal ganglia of the brain, which
is located deep in the brain, controls and regulates motor
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FIGURE 4 | CBF maps (A) Male, 2.3 y, healthy children. (B) Female, 2.4 y,

autistic children. (C) Male, 3.3 y, healthy children. (D) Male, 3.6 y, autistic

children. (E) Female, 4.5 y, healthy children. (F) Male, 4.4 y, autistic children.

(Continued)

FIGURE 4 | (G) Male, 5.6 y, healthy children. (H) Male, 5.4 y, autistic children.

(I) Female, 6.9 y, healthy children. (J) Male, 6.7 y, autistic children. (K) Male,

9.7 y, healthy children. (L) Male, 9.9 y, autistic children. (M) Male, 12.7 y,

healthy children. (N) Famle, 12.8 y, autistic children. (O) Male, 16.8 y, healthy

children. (P) Male, 16.6 y, autistic children.

functions together with the cerebral cortex and cerebellum
(29). The frontal lobe is the most developed brain lobe and
has a complex structure and extensive neural connections,
including movement, memory, judgment, analysis, thinking,
and other functions (30). Abnormalities in the frontal lobe
can cause abnormalities in movement, memory, and other
functions (31). The hippocampus is closely related to the
functions of learning, memory, emotion, and movement, and
abnormalities in the hippocampus can cause abnormalities
in its functions (32, 33). The results of the study showed
that the CBF values of the caudate nucleus, basal ganglia,
hippocampus, frontal lobe, temporal lobe, and other brain
regions were lower than those in healthy children. The decrease
in the CBF value may affect the development of nerve cells,
leading to abnormal neurodevelopment in the brain and
ultimately leading to abnormal behavior in children with autism
(34, 35).

The study results show no statistically significant difference

in the volume of the same brain region in children with autism

at the same age in the 2- to 5-year-old group, however, the CBF
value for blood perfusion in some brain regions of children with
autism of the same age was lower than that in the corresponding

brain regions of healthy children, suggesting that the decrease in

the CBF value for cerebral perfusion in some brain regions of

children with autism is unrelated to the volumes of brain regions

and may be related to cognitive, language, and motor retardation
in children with autism (36, 37); the study results show that in

the 6- to 18-year-old group, the volumes of some brain regions
of healthy children in the same age group were lower than

those in the corresponding brain regions of children with autism,

possibly because as the ages of children with autism increases,

cerebral blood perfusion decreases, the number of affected brain
regions increases, and long-term cerebral blood perfusion is

insufficient, which eventually leads to abnormal brain regions

(38, 39).
The study results show that the temporal lobe, frontal lobe,

hippocampus, and caudate nucleus can distinguish children
with autism (AUC > 0.5, P < 0.05). Therefore, these four
brain regions can be used as key brain regions for brain

imaging diagnosis in children with autism. If the CBF values

of the above four brain regions are reduced and the clinical

symptoms are consistent with the characteristics of autism,

the clinician can diagnose the child with autism and give
reasonable treatment in time to improve the condition of

the child.

Limitations of This Study
This study is not a multicenter study, and the results of
the study may be regional; some of the children included
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TABLE 3 | Volume values of brain regions in children [volume (cm3 ), x ± s, n = 40].

Brain regions Volume (cm3) T value P-value Brain regions Volume (cm3) T value P-value

Control group Study group Control group Study group

≥2–≤3 years old ≥3–≤4 years old

Frontal 88.60 ± 16.13 87.56 ± 11.53 18.876 0.238 Frontal 104.57 ± 16.57 107.13 ± 12.69 21.563 0.563

Temporal 87.85 ± 13.81 85.47 ± 9.66 16.125 0.093 Temporal 100.24 ± 15.21 98.57 ± 17.34 16.873 0.238

Hippocampus 7.75 ± 2.12 7.24 ± 2.31 36.421 0.982 Hippocampus 7.39 ± 2.87 7.22 ± 1.69 3.894 0.076

TH 8.15 ± 2.01 8.29 ± 2.34 5.661 0.874 TH 8.15 ± 2.24 8.26 ± 1.83 4.652 0.237

GP 1.56 ± 0.89 1.47 ± 1.01 1.134 0.094 GP 1.56 ± 0.69 1.45 ± 0.33 1.097 0.125

SN 0.13 ± 0.03 0.12 ± 0.2 0.457 0.067 SN 0.13 ± 0.07 0.11 ± 0.04 0.873 0.802

Putamen 10.65 ± 3.23 10.18 ± 2.83 2.873 0.137 Putamen 10.75 ± 3.01 10.11 ± 2.98 7.661 0.236

RN 0.0045 ± 0.0003 0.0042 ± 0.0002 0.451 0.087 RN 0.0046 ± 0.0002 0.0043 ± 0.0002 0.874 0.076

CN 6.24 ± 1.27 6.16 ± 1.31 3.284 0.076 CN 6.51 ± 1.89 6.37 ± 1.56 3.287 0.087

Whole brain volume 1266.89 ± 53.63 1254.76 ± 87.69 15.869 0.095 Whole brain volume 1287.64 ± 93.42 1301.64 ± 89.87 24.876 0.325

≥4–≤5 years old ≥5–≤6 years old

Frontal 100.58 ± 14.25 98.24 ± 16.87 13.897 0.671 Frontal 98.64 ± 8.97 99.67 ± 7.63 17.675 0.993

Temporal 109.23 ± 23.58 100.59 ± 25.13 16.657 0.084 Temporal 105.57 ± 21.83 101.62 ± 18.92 24.773 0.097

Hippocampus 7.56 ± 3.24 7.31 ± 1.64 8.378 0.981 Hippocampus 7.54 ± 2.16 7.45 ± 1.88 1.873 0.084

TH 9.29 ± 2.35 8.75 ± 2.62 8.391 0.265 TH 9.22 ± 1.96 9.13 ± 1.62 3.452 0.075

GP 1.6 ± 0.34 1.47 ± 0.38 3.124 0.871 GP 1.57 ± 0.41 1.61 ± 0.37 0.873 0.085

SN 0.14 ± 0.05 0.13 ± 0.05 0.675 0.061 SN 0.15 ± 0.03 0.16 ± 0.04 0.321 0.114

Putamen 11.13 ± 3.21 10.99 ± 3.14 3.872 0.105 Putamen 11.26 ± 3.42 10.89 ± 3.65 6.762 0.287

RN 0.0046 ± 0.003 0.0041 ± 0.0002 0.134 0.087 RN 0.0047 ± 0.001 0.0051 ± 0.002 0.875 0.271

CN 7.15 ± 1.53 6.69 ± 1.03 4.235 0.109 CN 7.42 ± 1.36 7.33 ± 1.64 2.654 0.139

Whole brain volume 1354.69 ± 58.65 1296.55 ± 88.63 15.632 0.983 Whole brain volume 1399.87 ± 87.83 1368.59 ± 89.88 18.994 0.882

≥6–≤8 years old ≥8–≤10 years old

Frontal 163.23 ± 21.45 177.57 ± 32.56 8.367 <0.001 Frontal 162.57 ± 41.54 178.46 ± 37.62 0.993 <0.001

Temporal 144.45 ± 32.65 156.66 ± 29.87 17.652 <0.001 Temporal 149.25 ± 35.63 159.97 ± 37.65 0.874 <0.001

Hippocampus 7.52 ± 1.67 8.26 ± 3.12 1.236 <0.001 Hippocampus 7.74 ± 2.13 8.93 ± 2.18 0.127 <0.001

TH 16.64 ± 4.98 16.46 ± 5.63 2.223 0.459 TH 16.72 ± 5.62 19.19 ± 5.14 0.982 <0.001

GP 8.16 ± 2.66 8.67 ± 2.11 0.871 0.147 GP 9.63 ± 3.16 9.76 ± 2.15 1.667 0.335

SN 0.96 ± 0.23 0.96 ± 0.15 1.287 0.993 SN 0.97 ± 0.17 0.97 ± 0.23 1.093 0.567

Putamen 13.27 ± 4.56 13.29 ± 5.18 6.334 <0.001 Putamen 12.72 ± 3.89 14.23 ± 3.79 5.761 <0.001

RN 0.66 ± 0.21 0.69 ± 0.24 1.732 0.564 RN 0.73 ± 0.14 0.76 ± 0.15 1.004 0.761

CN 12.29 ± 3.91 12.23 ± 4.91 8.225 0.432 CN 14.82 ± 4.87 15.18 ± 3.21 5.668 <0.001

Whole brain volume 1473.62 ± 127.68 1518.67 ± 97.68 17.623 <0.001 Whole brain volume 1485.46 ± 79.65 1523.38 ± 113.32 12.683 <0.001

≥10–≤14 years old ≥14–≤18 years old

Frontal 168.46 ± 34.54 173.25 ± 28.67 5.709 <0.001 Frontal 179.65 ± 51.23 182.68 ± 49.93 3.872 <0.001

Temporal 155.43 ± 36.89 166.19 ± 39.54 6.238 <0.001 Temporal 166.87 ± 38.92 179.11 ± 57.82 21.653 <0.001

Hippocampus 7.87 ± 2.35 8.46 ± 3.11 2.334 <0.001 Hippocampus 8.12 ± 2.13 8.92 ± 3.09 3.885 <0.001

TH 16.59 ± 4.55 17.23 ± 6.23 1.984 <0.001 TH 16.39 ± 5.69 18.56 ± 5.67 7.623 <0.001

GP 8.52 ± 2.89 8.49 ± 2.05 4.327 0.337 GP 8.47 ± 2.35 8.36 ± 2.91 2.138 0.147

SN 0.98 ± 0.23 1.09 ± 0.21 1.006 <0.001 SN 0.96 ± 0.21 1.14 ± 0.45 1.554 <0.001

Putamen 11.34 ± 3.78 12.45 ± 3.23 3.023 <0.001 Putamen 11.38 ± 4.47 12.47 ± 5.12 3.892 <0.001

RN 0.69 ± 0.13 0.74 ± 0.19 3.448 <0.001 RN 0.71 ± 0.18 0.73 ± 0.32 0.983 <0.001

CN 12.39 ± 4.67 13.56 ± 7.21 6.981 <0.001 CN 13.39 ± 5.21 14.78 ± 4.87 4.679 <0.001

Whole brain volume 1540.09 ± 141.53 1652.19 ± 117.65 13.793 <0.001 Whole brain volume 1576.79 ± 127.59 1667.21 ± 157.62 9.894 <0.001

TH, Thalamus; GP, Globus pallidus; SN, Substantia nigra; RN, Red nucleus; CN, Caudate nucleus.

in the study were examined after sedation, which may affect
the state of cerebral blood flow and ultimately lead to a
certain deviation in the study results (Ogawa found that
patients’ brain CBF values decreased after sedation). The

above shortcomings will be further studied in the future
(40, 41).

In summary, 3D-PCASL shows lower brain CBF values in
children with autism, and with increases in the ages of children
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FIGURE 5 | ROC curve analysis results of CBF values in brain region.

TABLE 4 | ROC curve analysis results of CBF values in brain regions (n = 320).

Brain region AUC Std. error P-value 95% CI

Lower

bound

Upper

bound

Frontal 0.787 0.041 0.000 0.707 0.867

Temporal 0.843 0.035 0.000 0.775 0.911

Hippocampus 0.783 0.041 0.000 0.703 0.864

TH 0.440 0.053 0.255 0.337 0.543

GP 0.389 0.051 0.067 0.289 0.490

SN 0.435 0.057 0.218 0.332 0.538

Putamen 0.442 0.053 0.272 0.339 0.545

RN 0.381 0.052 0.075 0.280 0.473

CN 0.789 0.042 0.000 0.339 0.545

TH, Thalamus; GP, Globus pallidus; SN, Substantia nigra; RN, Red nucleus; CN,

Caudate nucleus.

with autism, the number of brain regions with decreased CBF
values gradually increases.
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