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Abstract

Effective public health research and preparedness requires an accurate understanding of

which virus species possess or are at risk of developing human transmissibility. Unfortu-

nately, our ability to identify these viruses is limited by gaps in disease surveillance and an

incomplete understanding of the process of viral adaptation. By fitting boosted regression

trees to data on 224 human viruses and their associated traits, we developed a model that

predicts the human transmission ability of zoonotic viruses with over 84% accuracy. This

model identifies several viruses that may have an undocumented capacity for transmission

between humans. Viral traits that predicted human transmissibility included infection of non-

human primates, the absence of a lipid envelope, and detection in the human nervous sys-

tem and respiratory tract. This predictive model can be used to prioritize high-risk viruses for

future research and surveillance, and could inform an integrated early warning system for

emerging infectious diseases.

Introduction

Zoonotic viruses pose major threats to human health [1–5]. These viruses, which emerge from

animal reservoirs, can cause epidemics that require substantial resources for containment [6,

7] if sustained human-to-human transmission occurs. Even limited outbreaks from stuttering

chains of secondary (human to human) transmission can overwhelm local health systems and

undermine social and political stability [4, 8, 9]. Recent outbreak responses have been largely

reactive, rather than preemptive, often resulting in inefficient action and costly delays [9].

Developing a more proactive strategy for spillover prevention will require novel predictive

tools [10].

Animal viruses must pass through a series of highly selective evolutionary bottlenecks to

become established in the human population [11]. First, the host species barrier selects for

viruses that establish successful infections in exposed humans [11, 12]. The next bottleneck

selects for viruses capable of relatively efficient human-to-human transmission. This efficiency

can be measured by the pathogen’s basic reproduction number, R0, defined as the mean num-

ber of secondary infections propagated by an initial case in an immunologically naïve popula-

tion. Selection for variants with higher R0 values produces viruses capable of more sustained
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transmission within the new human population [12]. During this process, two discrete thresh-

olds can be defined: first, whether or not an animal virus can infect humans, and second,

whether or not a zoonotic infection can be transmitted between humans. To supplement

knowledge on the first threshold, animal-to-human spillover, several data-driven models have

been used to predict undiscovered zoonotic viruses, potential vectors [13, 14], and animal res-

ervoirs [15–17]. With regards to the second threshold, a descriptive statistical analysis by Geo-

ghegan et al found that human transmissibility was generally associated with low host

mortality, chronic infection, non-segmented genomes, and the lack of an insect vector [18].

In this study, we use a predictive machine learning model to identify specific virus species

that may have undocumented potential for human-to-human transmission. The tree-based

machine learning method we employ in this analysis, known as gradient boosted regression

trees, offers a number of distinct advantages over more parametric statistical models. Boosted

regression trees accommodate diverse data types and are robust to hidden interactions, miss-

ing data, and co-linearities among variables (e.g., correlated viral traits that arose through

shared evolutionary history) [19, 20]. Additionally, a machine learning approach also allows us

to model and interpret complex nonlinear relationships between predictor variables and the

response, which can be obscured in parametric regression models. Finally, these methods

identify viruses that best fit the trait profile of a zoonotic virus with secondary transmission in

humans, giving more precise targets (particular viruses, or viral clades) for surveillance and

future research.

Results

Consolidating records from the primary literature and existing pathogen databases yielded a

list of 224 virus species known to infect humans. For each virus, we collected data on taxo-

nomic grouping and 19 biological features (S1 Table), 16 of which do not have a counterpart

in previous analyses [18, 18]. We then assigned each virus a binary score denoting whether or

not it was known to be transmissible between humans; non-transmissible viruses received a

score of 0, while viruses transmitted directly, via an arthropod vector, or through environmen-

tal contamination received a score of 1. Fitting boosted regression trees to this data produced

an ensemble of models that identify strong predictors of human transmissibility (Fig 1) and

accurately discriminate transmissible from non-transmissible viruses: among zoonotic viruses,

models distinguished those with observed secondary transmission with ~84% accuracy

(median AUC = 0.8430 +/- 0.0778); when applied across all human viruses (zoonotic and non-

zoonotic), the model achieved even higher accuracy (median AUC = 0.9196 +/- 0.0353), dem-

onstrating that zoonotic viruses with secondary transmission are easily distinguishable from

all other human viruses on the basis of observable viral traits (Fig 2). AUC scores, tuning

parameters, and the relative influence of covariates are reported in S2 Table. We used partial

dependence plots to characterize the relationships between predictor variables and transmissi-

bility in our model (Fig 3).

Our models identified certain non-human hosts of zoonotic viruses as strong predictors of

secondary human transmissibility. Zoonoses carried by nonhuman primates were more likely

to be transmissible between humans than other zoonotic viruses, while viruses found in

rodents and birds were less likely to be transmissible. Arthropod-borne viruses also showed a

significantly reduced probability of being transmissible between humans compared to directly

transmitted viruses, corroborating previous findings [18]. Only 13.21% of the arboviruses in

our dataset were also transmissible between humans, compared to 76.61% of non-vector-

borne viruses.
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Virus presence in certain human tissues was also predictive of human transmissibility in

our model. Virus detection in the liver, the central nervous system, and the upper and lower

respiratory tracts was associated with an increased likelihood of transmission between

humans. The respiratory tracts support successful viral entry and establishment, as they place a

large surface area of exposed mucosal membrane in direct contact with the environment [21,

22]. As the livers and central nervous systems of living patients are relatively inaccessible to

diagnosticians, false negatives among under-sampled viral zoonoses could bias the observed

relationships between viral presence in these locations and transmission ability.

A number of structural features were also associated with human transmissibility, including

the absence of a lipid envelope, small virus particle size (< 75 nanometers (nm) in diameter),

and limited genome segmentation (� 2 segments). These relationships have been identified in

a previous analysis [18]. Non-enveloped virions are often more stable in the extra-host envi-

ronment than enveloped particles, and can therefore remain infectious in the air, in water, and

on surfaces for longer periods of time [23]. This corroborates previous findings [18]. The ele-

vated stability of non-enveloped viruses could partially explain the association between smaller

Fig 1. Relative influence of predictors, averaged across 40 models. For each of the 40 boosted regression tree models in our primary ensemble, the normalized relative

influence of each predictor variable was computed using Friedman’s algorithm 45. This figure shows the average of these scores (mean relative influence) for each

predictor variable in our dataset that was included in at least one model of the ensemble (mean relative influence> 0). Horizontal lines represent the interval formed

by ± 1 standard deviations. Exact relative influence values are listed in S2 Table.

https://doi.org/10.1371/journal.pone.0206926.g001
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virion size and human transmission in Fig 3, since the lipid envelope contributes to the diame-

ter of the virion; in our dataset, the average diameter of enveloped and non-enveloped viruses

was 109 and 52 nm, respectively. The negative relationship that we observed in our models

between number of genome segments and transmission likelihood does not contradict Geo-

ghegan et al, which classified genome segmentation as a binary variable and found that seg-

mented viruses are collectively less likely to be transmissible between humans [18].

Although many viral features, including genome length and strandedness, are phylogeneti-

cally conserved, only 11 of 104 (10.6%) binary family and genus variables were estimated to

have non-zero relative influence in any model, with a combined mean relative influence of

only 2.66% (S2 Table). We did not observe significant changes in AUC scores or the trait pro-

file after removing taxonomy variables from the model (S2 Table), suggesting that the covari-

ates in our model capture the majority of the important family- and genus-wide traits that

underpin secondary human transmission.

Using our primary model ensemble, we ranked viruses by their mean predicted probability

of being transmissible between humans (Fig 2 and S3 Table). Of the 85 human viruses not

Fig 2. Predicted viral risk index. This figure contrasts the observed transmission ability of all 224 viruses in our dataset (red = human-to-human transmission observed,

blue = human-to-human transmission not observed) with their average model-predicted response probabilities, as assigned by the primary boosted regression tree

models. This model ensemble accurately discriminates transmissible and non-transmissible viruses, as illustrated by the lack of “overlap” of the two groups in the rank-

ordering. The highest ranked viruses that are not currently known to be transmissible between humans were Carnivore amdoparvovirus 1, Hendra virus, Cardiovirus A,

Rosavirus A, Human T-lymphotropic viruses 3 & 4 (HTLV-3/4), and Simian Foamy virus. Crimean-Congo haemorrhagic fever virus was the lowest ranked species for

human-to-human transmission has been documented.

https://doi.org/10.1371/journal.pone.0206926.g002

Transmissibility of emerging viral zoonoses

PLOS ONE | https://doi.org/10.1371/journal.pone.0206926 November 7, 2018 4 / 12

https://doi.org/10.1371/journal.pone.0206926.g002
https://doi.org/10.1371/journal.pone.0206926


currently known to spread between humans, 47 were assigned higher probabilities than Cri-

mean-Congo hemorrhagic fever virus, the lowest ranked species with known transmissibility

between humans. Within this subset, the viruses with the highest probability of secondary

human transmission were Carnivore amdoparvovirus 1 [24], Hendra virus [25], Cardiovirus

A [26, 27], Rosavirus A [28], HTLV-3 and 4 [29], and Simian Foamy virus [30]. These patho-

gens may be predisposed to developing human-to-human transmissibility, and some may

already be capable of transmission between humans, as underreporting and misdiagnosis of

infections often allow viruses to spread unobserved [31]. Future epidemiologic studies of these

pathogens should make efforts to identify potential human-to-human transmission.

To determine the potential influence of study bias, we created a separate ensemble of mod-

els, trained on the same data-splits as the models in our primary ensemble, that included the

log-transformed number of PubMed citations for each virus as a predictor, a measure of

research effort. Study effort was relatively influential in these models (mean relative

Fig 3. Variable partial dependence plots. Partial dependence plots show how the model-predicted probability that a virus is able to spread between humans is affected

by individual viral traits when the effects all other predictors are controlled for. Dark lines represent the median predicted transmission probability across the 40 boosted

regression tree models of the primary ensemble, while shaded regions represent the corresponding 95% confidence interval. Viral features are ordered by their mean

relative influence within the primary boosted regression tree models from left to right, then top to bottom. Predictor variables with a mean relative influence score of 0

are not included in this figure. Trait definitions and exact relative influence scores are given in S1 and S2 Tables, respectively.

https://doi.org/10.1371/journal.pone.0206926.g003
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influence = 20.685, 2nd highest of all predictors), but its inclusion did not improve overall pre-

dictive performance, and the rankings of the most influential variables were highly similar

between the two ensembles (Kendall rank-order correlation = 0.929). Comparing partial

dependence plots between the two ensembles shows that including study effort as a predictor

does not meaningfully alter the predicted trait profile of transmissible viruses (S1 Fig). Fur-

thermore, rankings of individual virus species by their predicted transmission probability were

similar between models that do and do not include study effort, with a Kendall rank-order cor-

relation of 0.86. These comparisons suggest that the primary model ensemble is not severely

confounded by study bias.

In this analysis, viruses capable of spreading between humans directly, environmentally, or

through an intermediate arthropod vector are labeled as “transmissible.” To assess the robust-

ness of our findings to different definitions of the “transmissible” label, we fit a separate

ensemble of GBM models with a modified response variable definition. For these models, we

labeled viruses as “transmissible” (binary response = 1) if they are capable of spreading

between humans directly or through the environmental, while viruses that are not known to

spread between humans at all or require an intermediate vector to spread are classified as

“non-transmissible” (binary response = 0). This change in definition had the effect of reclassi-

fying the response of 5 arbovirus species (chikungunya, yellow fever, dengue, o’nyong-nyong,

and Oropouche) from “transmissible” to “non-transmissible”. The rankings of predictors by

mean relative influence were almost identical between ensembles (Kendall rank-order correla-

tion = 0.985), and a comparison of partial dependence plots shows that the trait profiles of

directly transmissible viruses and transmissible viruses as a whole do not significantly differ

(Fig 3 and S2 Fig).

Not all viruses were accurately classified by our model. In particular, some viruses with

known human-to-human transmissibility were assigned a low predicted transmission proba-

bility (Fig 2). The 10 human-transmissible viruses with the lowest predicted response values

belong to 5 families: Bunyaviridae, Togaviridae, Arenaviridae, Flaviviridae, and Poxviridae (S3

Table). These families contain relatively high numbers of individual virus species, few of which

are known to be transmissible between humans (S3 Fig). Further molecular characterization of

these viruses may identify factors that distinguish human-to-human transmissible “outlier”

viruses from their non-transmissible relatives.

Discussion

These results are subject to two key qualifications. First, by considering viruses at the species

level, our approach does not account for variation in human transmissibility within individual

species. For example, the H1N1 subtype of Influenza A has caused several human pandemics

[32], whereas the H3N8 subtype within the same species primarily infects dogs and horses,

and has never been isolated from humans [33]. Second, our approach does not consider the

efficiency of observed human transmission per se, and handles viruses with supercritical (R0 >

1) and subcritical (0 < R0 < 1) transmission identically. Future research aiming to preempt

novel viral spillover events will depend on building mechanistic understanding at these smaller

scales.

In this study, we show that the human-to-human transmissibility of zoonotic viruses can be

predicted with a high degree of accuracy by ensembles of machine learning models trained on

observed viral features. This data-driven modeling framework could allow public health work-

ers to broadly characterize the epidemic risk posed by novel viral pathogens. Linking these

models with those trained to predict the zoonotic capacity of animal viruses [15] could provide

a data-driven method for focusing broad-scale virome sampling projects.
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Our model ensemble predicts that zoonoses carried by nonhuman primates are more likely

to be transmissible between humans relative to other zoonotic viruses, while viruses found in

rodents and birds are less likely to be transmissible. This corroborates current theories on viral

emergence, which posit that both phylogenetic and physical proximity between human and

animal hosts drives spillover events and the success of subsequent adaptations [34–36]. Closer

phylogenetic relationships between hosts generally correspond to physiological and molecular

similarities that allow secondary transmission in a new host species to occur with less extensive

viral adaptation [2, 3, 12, 34, 36]. In contrast, for viruses that infect phylogenetically distant

hosts, beneficial adaptations to one host system can significantly reduce pathogen fitness in

the others, impeding the evolution of transmissibility within the new host population due to

adaptive trade-offs [34, 36, 37]. However, close physical proximity can increase contact rates

between humans and more distantly related host species, creating additional opportunities for

spillover. While genetic dissimilarities may initially inhibit the development of secondary

transmissibility in humans, increased contact creates more opportunities for successful viral

adaptation [21, 38].

The negative association between arthropod vector infection and human-to-human trans-

missibility in our model ensemble suggests that arboviruses, none of which exclusively infect

humans, are significantly constrained by the evolutionary trade-offs needed to infect both phy-

logenetically divergent arthropod vectors and vertebrate host species [34, 36, 39]. Viruses that

overcome this barrier most commonly circulate between nonhuman primate hosts and

anthropophilic vectors, again illustrating the importance of phylogenetic and physical proxim-

ity in successful viral emergence [2, 34, 36]. In contrast, the vast majority of arboviruses infect

genetically dissimilar organisms via zoophilic vectors, typically only infecting humans living in

close proximity with reservoir hosts. Humans are predominantly dead-end hosts for such

viruses.

Few quantitative studies have investigated the associations between viral traits and human

transmissibility. Our findings corroborate the results of one such study (Geoghegan et al [18])

in several important ways: both analyses found that DNA-based genomes were associated with

human transmission, while genome segmentation, presence of lipid envelopes, and associa-

tions with arthropod vectors predicted dead-end spillover. Beyond these physical attributes,

our model ensemble also shows how the human-to-human transmissibility of viral zoonoses is

shaped by ecological and evolutionary context, with virus isolation from non-human primates

and the human respiratory tract and CNS being positively associated with human transmission

(Fig 3). In our model ensemble, the variables describing the animal hosts and human organ

systems from which viruses have been isolated together account for over 38% of the overall

variable influence (Fig 1, S2 Table).

We demonstrate that a highly predictive model ensemble based on evolutionarily conserved

and readily observable viral characteristics informs the relative risks posed by different zoo-

notic virus species, and identifies optimal targets for research and surveillance efforts.

Methods

Data

We compiled data on all viruses suspected to infect humans and candidate predictive features

associated with each viral species. Our list was initially derived from the viral pathogens listed

in GIDEON [40], ViralZone [41] and the Virus Pathogen Resource (ViPR) [42]. We further

supplemented this list by searching the literature for publications describing additional viruses

which have had genetic material isolated from humans, obtaining a total of 224 viral species

recognized by the International Committee on Taxonomy of Viruses [43]. We also extracted
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information from the literature on a variety of biological features, including the genetic and

structural attributes, animal hosts, arthropod vector status, and human tissue presence of each

virus, and encoded this data as 19 predictor variables (S1 Table). Because their histograms

showed highly skewed distributions, we log-transformed the variable for number or genome

segments. To measure the influence of taxonomic grouping on transmission ability, we

included each unique family and genus (using the taxonomic groupings recognized by the

International Committee on Taxonomy of Viruses [43]) represented among our list of human

viruses as 104 separate binary variables, for a total of 123 predictor variables. This dataset con-

tains no missing or incomplete values (100% data coverage), and to our knowledge is more

extensive in the number of viruses and viral features than past studies of the association

between pathogen traits and transmission ability [18].

Based on published epidemiological information, we assigned a binary response variable to

indicate whether or not there is evidence of human-to-human transmission for each virus.

Our operational definition of “transmissible virus” is a pathogen which has spread via direct

contact with an infectious human, as well as viruses which may be indirectly transmitted

between humans through an intermediate arthropod vector or environmental source (i.e.,

transmission through the fecal-oral route or following contact with surface fomites). This defi-

nition does not encompass infection resulting from organ transplantation.

Cross-reactivity between antigenically related viral species can produce false positives in

serological tests, so we only used the 224 virus species that have had genetic material isolated

from humans to perform our analysis. All exploratory analysis and data transformations were

conducted in R [44].

Analysis

Of the 224 virus species confirmed to infect humans, we randomly selected 80% and 20% to

create the training and testing sets, respectively. We repeated this process to create 40 unique

data-splits, and built our primary model ensemble by fitting a single model to each unique

training set using the gradient boosting machine (GBM). The GBM fits a boosted regression

tree comprising a sequence of decision trees [19, 20]. Within each tree, predictors are associ-

ated with the response (here, a binary indicator of human-to-human transmission) by recur-

sively breaking down the total pool of training observations by randomly selected splitting

variables. At each step (or “split”), groups become smaller and more homogeneous. After a

specified number of splits, the mean response of each group is recorded and assigned to the

associated terminal node. This process is iterated to create a set of thousands of trees. Our

models were built with 5500 trees and specify a Bernoulli error distribution for the binary

response variable. We applied ten-fold cross validation during the fitting process to prevent

overfitting. To further investigate the effect of phylogeny on transmissibility, we built and ana-

lyzed a second ensemble of 40 models that did not include any taxonomy variables. All parti-

tioning, model building and subsequent analysis was done in R [44] using the GBM package

[45].

The structure of these tree ensembles was analyzed to gain insight into the relationships

between predictor and response variables. To determine the relative contribution of each pre-

dictor to classification performance, we computed relative influence scores using Friedman’s

algorithm [46]. For each predictor variable in a given model, this algorithm sums the reduction

in error across all nodes in the collection of trees that use the variable for splitting within a sin-

gle model. These raw influence scores are then normalized as percentages and the average and

standard deviation of scores across all 40 models in the ensemble were derived. We also con-

structed partial dependence plots, which show the marginal impact of individual predictors on
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the model response by integrating over the influence of all other variables [19]. The plots that

we display in Fig 3 show the median effect across all 40 models in the primary ensemble, with

corresponding 95% confidence intervals.

To evaluate classification performance, we computed AUC scores for each model on its

associated testing and training partitions, and used these scores to derive the mean training

and testing AUC of the ensemble.

A central premise of our analysis is that our dataset may contain viruses that have an unob-

served ability to transmit between humans. These viruses are conservatively designated as

“non-transmissible” in our analysis to denote that human-to-human transmission has not

been observed, and also to minimize type II error (the error associated with classifying a

human transmissible virus as unable to transmit between humans). This designation is analo-

gous to the treatment of presence-absence data in ecology [47], and case-control data with

contaminated controls in econometrics [48]. The statistical literature on this problem shows

that while poorly calibrated probability estimates may be a consequence of contaminated con-

trols, the ratio of probabilities for pairs of viruses are not affected [47, 48]. Thus, AUC scores

and the rank ordering of virus species by their predicted response are not affected by the dis-

crepancy either.

To investigate the differences in predictive performance between our tree-based machine

learning approach and more rigid logistic regression models, we fit a comparable generalized

linear model (GLM) to each of the 40 train-test partitions. On average, testing AUC was higher

in the primary GBM models than the primary GLM models by 0.149. When evaluated by a

paired Wilcoxon signed-rank test, this provides statistically significant evidence at p< 0.00001

that the median of the distribution of testing AUC scores is greater for primary GBM models

than primary GLM models. When taxonomy variables were excluded from models, testing

AUC was higher in GLM models by an average of 0.001 relative to GBM models, a statistically

insignificant difference (p = 0.9808 under a Wilcoxon signed-rank test). These results indicate

that the predictive performance of our machine learning methodology is equivalent to or

greater than that of parametric logistic regression models in this situation.

Supporting information

S1 Fig. Variable partial dependence plots, supplementary models with study effort. Partial

dependence plots show how the model-predicted probability that a virus is able to spread

between humans is affected by individual viral traits when the effects all other predictors are

controlled for. These models include the log10-transformed number of PubMed citations for

each virus species as a predictor variable. The relationships between predictors and the trans-

mission response are not meaningfully changed from those in our primary model, which does

not include a study effort predictor (Fig 3). This suggests that study effort is not a confounder

of variable relationships in our models.

(TIFF)

S2 Fig. Variable partial dependence plots, supplementary models with a modified response

definition. Partial dependence plots show how the model-predicted probability that a virus is

able to spread between humans is affected by individual viral traits when the effects all other

predictors are controlled for. In these models, we modified our definition of the response vari-

able such that viruses that require an arthropod vector to spread between humans are relabeled

as “non-transmissible” The relationships between predictors and the transmission response

are not meaningfully changed from those in our primary model, in which the “transmissible”

response group includes viruses that exclusively pass between humans indirectly through

arthropod vectors (Fig 3). This indicates that our decision to not differentiate between direct
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transmission and indirect vector-borne transmission in the response variable did not signifi-

cantly affect the trait-profile of transmissible virus we present in this study.

(TIFF)

S3 Fig. Family characteristics of false-negative virus species. Each point represents a virus

family that contains one or more species known to infect humans. Points represent the families

of viruses included in our dataset (those known to infect humans). Red points are the 5 virus

families containing the ten known-transmissible species with the lowest model-predicted

transmission probability (Fig 2). These families contain relatively high numbers of individual

virus species known to infect humans, few of which are known to be capable of human-to-

human transmission.

(TIFF)

S1 Table. Descriptions of the predictor variables included in our models.

(XLSX)

S2 Table. Information on the parameters, AUC scores, and variable relative influence

scores of the primary and secondary models.

(XLSX)

S3 Table. A ranking of virus species by their mean predicted response probability in the

primary GBM model ensemble. Viruses for which there is evidence of human-to-human

transmission are given a value of 1 in the column Actual.Response, while viruses which are no
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