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In imaging studies of neonates, particularly in the clinical setting, diffusion tensor imaging-based tractography is
typically unreliable due to the use of fast acquisition protocols that yield low resolution and signal-to-noise ratio
(SNR). These image acquisition protocols are implementedwith the aim of reducingmotion artifacts that may be
produced by the movement of the neonate's head during the scanning session. Furthermore, axons are not yet
fully myelinated in these subjects. As a result, the water molecules' movements are not as constrained as in
older brains,making it evenharder to define structure using diffusion profiles. Here,we introduce a post-process-
ingmethod that overcomes the difficulties described above, allowing the determination of reliable tracts in new-
borns. We tested our method using neonatal data and successfully extracted some of the limbic, association and
commissural fibers, all of which are typically difficult to obtain by direct tractography. Geometrical and diffusion
based features of the tracts are then utilized to compare premature babies to term babies. Our results quantify the
maturation of white matter fiber tracts in neonates.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Diffusion tensor imaging (DTI) has become one of the most widely
used tools for in-vivo brain imaging. However, DTI scanning of neonates
is challenging due to both physiological and technical issues. Physiolog-
ically, the image quality is affected by the low myelin content, the sim-
ilarity in water content between white matter (WM) and gray matter
(GM) and the differences in axonal packing in the developing brain
(Huppi and Dubois, 2006; Huang et al., 2006; Cascio et al., 2007). Tech-
nical difficulties stem from the challenge of keeping a non-sedated neo-
nate immobile in the scanner for the required amount of time to obtain
good signal-to-noise (SNR) and spatial resolution and a relatively high
angular resolution (Huppi and Dubois, 2006). As a result, clinical DTI
scanning procedures in neonates use rapid sequences with the hope of
avoiding significant motion artifacts, but at the expense of image
quality.
Angeles, Neurosurgery, 1300
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DTI methods estimate water displacement. In WM, the primary di-
rection of water motion is radial along the length of the axons. Thus,
this technique can also elucidate the pathways and connections be-
tween neurons. In practice, DTI tractography gives an approximation
of the directions of axonal bundles and provides some insight into
brain connectivity. In regards to brain maturity, the connectivity be-
tween brain zones may be a more precise marker of development
than the contrast between brain structures (Elysia et al., 2009;
Walhovd et al., 2010). In particular, it is known that some limbic tracts
such as the fornix are established after 19–20 gestational weeks
(Huang et al., 2006), and should be visible via DTI methods in neonatal
datasets. Some association fibers such as the Inferior Frontal Occipital
Fasciculus (IFOF) and the Inferior Longitudinal Fasciculus (IFL) are not
entirely developed in term babies (Huang et al., 2006; Liu et al., 2010).
Commissural fibers such as the posterior thalamic radiation (PTR) and
the anterior thalamic radiation (ATR) formmostly between the last tri-
mester of pregnancy, and these tracts are not fully myelinated until the
last gestational week (Prayer et al., 2006). All the above-mentioned
neuronal structures are markers of the brain maturity process starting
in the womb when the brain begins to form and lasting through the
first years of life (Dubois et al., 2006). Hence, a proper assessment of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
List of clinical subjects in the development test. GA stands for gestational age, PCA for post-conceptional age, PNA for post-natal age and DOS for days of scan. All ages are in weeks.

Item Term Preterm

Serial Genre GA PNA@DOS PCA@DOS Serial Genre GA PNA@DOS PCA@DOS

1 001 F 31 9.43 40.43 030 M 40 2.29 42.29
2 003 M 36 1.29 37.29 031 F 40 4.43 44.43
3 004 F 26 7.00 33.00 032 M 40 1.71 41.71
4 005 F 36 4.86 40.86 033 F 40 1.43 41.43
5 006 M 36 11.29 47.29 034 M 40 2.14 42.14
6 007 M 33 14.14 47.14 035 F 40 8.57 48.57
7 008 M 25 23.29 48.29 036 M 40 10.14 50.14
8 009 F 23 27.00 50.00 037 M 37 5.00 42.00
9 010 F 29 8.29 37.29 039 F 40 8.57 48.57
10 011 M 25 26.00 51.00 040 F 37 2.29 39.29
11 013 M 35 6.14 41.14 043 F 40 1.29 41.29
12 014 F 36 9.14 49.14 044 M 41 3.86 44.86
13 015 M 28 26.14 54.14 046 M 40 1.86 41.86
14 017 M 34 5.71 39.71 047 M 40 1.43 41.43
15 018 F 24 21.86 45.86 048 F 40 1.43 41.43
16 019 M 36 2.43 38.43 049 F 40 4.29 44.29
17 020 M 28 16.14 44.14 050 M 40 0.29 40.29
18 021 M 25 17.14 42.14 052 M 39 0.57 39.57
19 022 F 36 1.00 37.00 053 M 40 12.14 52.14
20 023 M 35 2.71 37.71 055 F 40 12.29 52.29
21 024 M 28 17.86 45.86 056 M 41 0.57 41.57
22 026 F 30 7.43 47.43 057 M 40 4.00 44.00
23 027 M 31 10.57 50.57 058 M 38 1.00 39.00
24 028 F 36 2.00 38.00 343 F 39 2.43 41.43
25 029 F 34 12.00 46.00
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these tracts in individual neonates may serve as a biomarker of brain
development.

Unfortunately, while great strides have been made in the research
setting using for example multishell diffusion techniques (Kunz et al.,
2014), due to the fast imaging sequences employed, most clinical neo-
natal data sets do not have the required image quality to perform ana-
tomically meaningful tractography.

The explanation as to why low-quality diffusion images are not suit-
able for tractography has to do with the difficulties in connecting the
principal components of the diffusion ellipsoid between voxels. The
intervoxel connectivity may be accomplished with one of three algo-
rithms; streamline tracking (STT) (Basser et al., 2000), tensor deflection
(TEND) (Lazar et al., 2003) and tensorlines (TL) (Weinstein et al., 1999).

These algorithms use different propagation strategies that lead to
more or less smooth tracts. All of them assume a dominant eigenvector
tangent to the tract pathway. However, TL, which we'll use here, can be
dynamically tuned by a factor ranging between 0 and 1. Hence, using FA
in TL, the level of anisotropy also modulates the tensor propagation
smoothness.

Despite the slight differences in propagation criteria, the three algo-
rithms use the same stopping critterion, which depends on the level of
anisotropy and the local curvature of the reconstructed fiber exceeding
a critical value (Conturo et al., 1999). To connect the current voxel with
any of the neighboring ones, the inner product is used with a threshold
Fig. 1. Schematic description of template generation.
that varies between0.8 and 0.9, allowingdiscrepancies in the range 25.8
to 36.8 degrees between concomitant principal eigenvectors (Xue et al.,
1999; Basser et al., 2000).

Noise is a major drawback for anatomically accurate tractography,
no matter which algorithm is used. Noise can not only deflect the
main component of diffusion, in which case, all cited algorithms gener-
ate fake tracts and the error is propagated with each created line, but it
can alsomodify the diffusion pattern, and Rician noise (the one encoun-
tered in the low SNR regime) has been found to increase the FA errone-
ously. This combination of effects is the reason for the prolific and
anatomically inconsistent tract creation when running tractography in
raw clinical data.

However, here our contribution does not depend on the particular
tractography used. We perform inter acquisition alignments to enable
the creation of a diffusion template. The post alignment averaging of dif-
fusion patterns allows us to diminish the non-correlated information
while keeping the correlated our method retains. As the averaging pro-
cedure is performed in the tensor domain, one the diffusion patterns o-
verlapped with the ones found in the sample selected as the model.

The alignment together with the selection of correlated regions of
the averaging function enhance the SNR and keep the orientation of
the primary eigenvectors aligned among acquisitions, the two crucial
factors used in the tractography generation.

Here we create a post-processing pipeline that executes DTI
tractography in neonatal clinical data. To do so, we create a sharp aver-
age template on which tractography can be performed, and the tracts
are projected back into the images of individual subjects. We tested
the efficacy of our procedure by extracting someof the tractsmentioned
above, including the fornix, the IFOF, the ILF, the PTR and the ATR. To
this end, we used retrospective clinical data of newborns for which di-
rect tractography could not extract these marker tracts.

Once tracts are generated, we use them to find biomarkers of abnor-
mal development due to prematurity. On average, one in ten neonates
in theworld is bornwith a neurodevelopmental condition, and the neu-
rological consequences of preterm birth are themost common plight of
babies that survive and are expected to reach the adulthood (Blencowe
et al., 2012). These neonates - 15 million yearly worldwide - may suffer



Fig. 2. Proof of concept synthetic data. Panel A shows ideal-synthetic-tensor fields: AI is the reference (equivalent to theMoD along this document); AII andAIII are tensorfields simulating
acquisition rotated 10 and 30 degrees respectively, about the reference (AI) all in a 32 × 32 pixels field of view. Panel B shows the tensor field that is generatedwhen the three acquisitions
(AI, AII, andAIII) are averaged in theDWI-domain. Panel C shows the same information in the tensor and FAdomains. Some tensors of Panel A are zoomed-in and shown in thefirst column
of CI. In Panel C, the columns simulate acquisitions with different levels of noise. In CI, the parameters of the tensors are as follows: rows 1, 2, and 3 represent tensors with 0, 10, and 30-
degree rotations, respectively. Columns 1, 2, and 3 represent tensors with 0, 0.1, and 0.2 sigma noise, respectively, except the tensors in the red boxes, in which the noise levels are
generated with σ=0.5 and σ=0.15 (left and right, respectively). Each cell of CI is a zoomed version of the field from which the FA of the images on CII are generated; positional
correspondence is kept.

631F. Yepes-Calderon et al. / NeuroImage: Clinical 14 (2017) 629–640
from diverse issues such as cerebral palsy, sensory deficits, learning dis-
abilities and respiratory illnesses among others (Cooke, 2005). Some of
these disorders are severe enough to prohibit independent functioning,
and these conditions are often present during the whole life of the sub-
ject (Nosarti et al., 2002;Gardner et al., 2004), generating emotional and
financial costs to patients' relatives and society. According to Muraskas
and Parsi (2008), in the United States, a stay in the neonatal intensive
care units costs 3500 USD per day, and long-term stays can sometimes
cost up to 1 million USD. Additionally, the long-term costs and conse-
quences of this condition are difficult to calculate across the lifespan,
due to the high diversity of long-term outcomes across subjects. None-
theless, Peristats (Plains, 2006) estimated at 26.2 billion USD the burden
of prematurity alone in the United States in 2007. Both medical and ed-
ucational expenditure, and lost productivity associated with the condi-
tion were included in the calculation.

At the time of writing of this manuscript, and despite enormous ad-
vances in scanning protocols and post-processing imaging techniques
have been done, it is still difficult to detect some of the subtle abnormal-
ities in human neonatal brains that can affect neurodevelopment, par-
ticularly in clinical settings. Finding early biomarkers of abnormal
development in premature and term-born children is of primary neces-
sity, and has been put forward as a high priority goal by the World
Health Organization (WHO) (Howson, and Dkinner, J.l., 2012;
Fig. 3. Warping strategy for subject tractography.
Blencowe et al., 2012), as well as important private organizations such
as the Gates Foundation (Gates, 2014).

Using machine learning, we have successfully demonstrated that
geometrical factors are highly discriminative in a complex problem
such as differentiating patients with Alzheimer, mild cognitive impair-
ment and controls (Yepes-Calderon et al., 2014) and hence;we consider
that geometrical measurements may be able to characterize develop-
ment in the same manner. Once an anatomically meaningful
tractography is generated, we compute a set of analytical features
from the geometries and diffusion variables of the tracts. It is known
that myelination correlates closely with neurodevelopment (Popko,
2010; Deoni et al., 2011), andwe envisage that amultivariate regression
using these geometrical and diffusion-derived features can generate
biomarkers of early human development and therefore, set a baseline
to elucidate deviations from normality.We test this concept in a dataset
of brain MRI images of premature and term-born neonates.
2. Materials and methods

2.1. Neonates data

The datasets contain diffusion MRI scans of 24 term (T) neonates
39.66 ± 0.98 and 25 pre-term (P) neonates 31.66 ± 4.05, both mean
values referring to post-conceptional ages (PCA) in weeks. These sub-
jects have been scanned at comparable chronological ages T: 43.58 ±
3.82 and P: 43.59 ± 5.41 PCA. Table 1 gives an overview of subject's
scanning times. The imageswere pulled retroactively from the database
at Children's Hospital of Los Angeles (CHLA) and screened for the ab-
sence of any delaying pathology. All studies were acquired with a 1.5T
GE scanner using 25 gradient directions, a neonatal head coil, b-
value = 700 s/mm2 and an echo planar imaging (EPI) sequence. Slice
thickness varies from 3 to 5 mm. Due to the diverse spatial resolutions
found in the clinical database our procedure includes a re-sampling
step to enforce comparable voxel sizes. The local IRB at the CHLA ap-
proved the use of this retrospective data.



Fig. 4.Results of the theoretical experiment using the new pipeline on synthetic datawith rotation induction. Column (a) contains the tensor of the reference DWI signal. Columns (b) and
(c) hold tensors of the DWI signals that have been rotated 10 and 30 respectively, respect to the x-axis. Column (d) represents the tensor of the DWI signal that has been averaged using
(a), (b) and (c) in the DWI domain without any prior rotation correction. Column (e) shows the same information as in (d), but all done in the tensor field. Column (f) and (g) contain the
corrected tensors of Columns (b) and (c), respectively. Column (h) displays the result of averaging the tensors in Columns (a), (f) and (g).
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2.2. Preprocessing

Pre-processing consists of two steps: skull-stripping and tensor esti-
mation. This preprocessing is performedwithMedInria (Toussaint et al.,
2007). Skull-striping is accomplished using an automatic algorithm that
first averages all diffusion-weighted images (DWI), thus creating a brain
tissue enhanced image, and by then removing non-brain tissues using a
uniformity criterion. Tensor estimation is done in the log-euclidean (LE)
space, as in Fillard et al. (2007). Using the LE avoids the DWI shifting
produce by Rician noise, which commonly affects DTI datasets with
low SNR. Consequently, diffusion is not underestimated as in the alge-
braic strategy. The tensor estimation thatwe use also includes a regular-
ization term that keeps the edges of the tensor field while smoothing
homogeneous regions (Fillard et al., 2007).
2.3. Template generation

Once the tensors are estimated, we build the template following the
process depicted in Fig. 1, which includes both a linear and non-linear
registration steps.

The linear registration removes global differences among all our data
sets, including displacement, rotation, scaling and shearing (Jenkinson et
al., 2002). For this purpose, we opted to do the tensor registration using
the transformationmatrix (TM) that results from registering the fractional
anisotropy (FA)mapsof our datasets to the FAmapof a common template
(Zhang et al., 2010). Then, the TM is applied to move each sample's ten-
sors to the tensor's space of the template (Jenkinson et al., 2002). This
Fig. 5. Results of the theoretical experiment using the proposed pipeline on synthetic datawith
(i) and (j) hold tensors of the two additional DWI signals that have been randomly generated. C
(j) in the DWI domainwithout any prior rotation correction. Column (e) is the same as (d) but a
and (j), respectively. Column (h) displays the tensor that has been averaged from the tensors
procedure does not affect the integrity of the data since the linear registra-
tion only interpolates the structure of the moving samples to the fixed
sample.

We then average all the affinely registered tensors to create a linear
template. This volume is a combination of blurry images. To retain de-
tails in the template, we perform a new linear registration, in which
the fixed data is the template, and the moving data is the best acquisi-
tion subject among our datasets, where ‘best acquisition’ refers to the
highest SNR image. Through this linear registration, a templatewith im-
proved image quality over individual subjects is created.

For the non-linear registration, we use the algorithm described in
Yeo et al. (2009), and implemented in MedInria (Toussaint et al.,
2007). In this step, all the affinely registered individuals are non-linearly
registered into the new affine template determined above. The non-lin-
early registered tensors are averaged to create the final template, which
we will use in the next sections for extracting tractography in the indi-
vidual subjects. Finally, we obtain the tensors and tracts in the created
template.

2.4. Testing the core enhancing strategy in synthetic data

Toy signals were programmatically created using a particles filter
that acts on a space restricted by a cylinder of p=5u and length
L=5 mmas in Barmpoutis and Vemuri (2011). The particles randomly
diffuse with preference along the length of the cylinder. Then, we creat-
ed a 32 × 32 field of view and connected the diffusionmodels to draw a
single fiber. The diffusion patterns follow the rule Fibi=[cos(α∗pi/
180),sin(α∗pi/180,0)], which allows pattern rotations in the XY plane.
no rotation induction. Column (a) contains the tensor of the reference DWI signal. Column
olumn (d) represents the tensor of the DWI signal that has been averaged using (a), (i) and
ll done in the tensor domain. Column (k) and (l) hold the corrected tensors of Columns (i)
in Columns (a), (k) and (l).



Fig. 6. Fornix tract. Rows (from top to bottom): In a subject before to post-processing, in the template and thewarped subject. Columns (from left to right): stand-alone tracts, tracts in axial
view and tracts in sagittal view.
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The parameter α in the equation above is zero in the synthetic model
signal, and will receive any value in the range [0,90] whenever non-
overlapping diffusion signals are simulated among acquisitions. Differ-
ent levels of Rician noise – Si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½SiþN1ð0;σÞþN2ð0;σÞ�p
– are induced

in the signals to simulate low quality acquisitions. The complete testing
set is depicted in Fig. 2.

With this information, we focus on demonstrating that our method
is capable of correcting the intentionally induced rotations and themis-
alignment caused by noise. To this end, we center the analysis in a cen-
ter diffusion pattern where all the signals converge in the rotated
framework. If the signals at this point are aligned, the rest of the diffu-
sion voxels should follow. We compared the outcomes of our method
with different image quality enhancement strategies used in the field,
including the DWI averaging applied during acquisition through the
avg. parameter. See the results in Section 3.1.
2.5. Subject warping

To extract the tensors' field and the tractography in each subject of
our dataset, we non-linearly register the tensor images of the linearly
aligned subjects to the final template using the algorithm described in
Yeo et al. (2009). From this, we obtain a set of displacement vectors,
the deformation fields (DFs) at each voxel. Finally, the DFs are applied
to the tracts in the template, creating the tracts in the subject. This
warping step is created using MedInria (Toussaint et al., 2007). Our
method is illustrated in Fig. 3.
2.6. Neonatal brain development marker tracts

We test our template-basedmethod by obtaining the brain develop-
ment-marking tracts mentioned in Section 1. For this purpose, we
choose two regions of interest (ROI) and apply an AND operator in the
fiber tracking algorithm. This procedure is done using MedInria
(Toussaint et al., 2007). ROI positioning in the template is determined
by an expert pediatric neuroradiologist. For the fornix, oneROI is located
in the body of the fornix and the other in the columns zone. For the IFOF,
a coded-colored FA map is used. The first ROI was located in the green
colored path that connects the temporal and parietal lobes in an
image that appears few slices anterior of the splenium of the corpus
callosum in a coronal view. The second ROI was located in a slice ante-
rior to the fornix, in a circular green spot that traverses the corticospinal
tract (Wakana et al., 2007).

For the ILF, we proceed similarly to the IFOF. In the FA coded-colored
map we identify the coronal slice that crosses the posterior edge of the
cingulum. Then, we select as first ROI all colored zones included in the
hemisphere of interest. A secondROI is placed in themost posterior cor-
onal slice in which the frontal lobe is disconnected from the temporal
lobe. Then all fibers in the temporal lobe are selected (Wakana et al.,
2007).

For the ATR, the first ROI is placed in the entire thalamus on the cor-
onal image and the second one in the anterior limb of the internal cap-
sule (Wakana et al., 2007). For the PTR, the first ROI is drawn in the
entire thalamus on a coronal image and the second one in the occipital
lobe (Wakana et al., 2007).



Fig. 7. Association tracts (IFOF and ILF). Rows (from top to bottom): in a subject before to post-processing, in the template, and in thewarped subject. Columns (from left to right): stand-
alone tracts, tracts in axial view and tracts in the sagittal view.
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FA levels of 0.1 and 0.05 are chosen as a trigger and stopping condi-
tions for all tracts.

2.7. Characterizing normality and prematurity

The following features are extracted in all subjects and for each stud-
ied tract: volume (vol), fibers' lengths (fibl), fractional anisotropy (FA),
apparent diffusion coefficient (ADC), lambda1 (L1), lambda 2 (L2),
lambda 3 (L3), relative anisotropy (RA), volume ratio (VR). For all listed
variables except the volume, we used themean value for computations.

This data is inputted into the PythonDataAnalysis Library (PANDAS)
(McKinney, 2011) data frame and posteriorly analyzed by systematic
linear regressions, where the dependent variable was set as the gesta-
tional age at birth (GA). These features were used as predictors of GA.

3. Results

3.1. Aligning synthetic data

The eigenvalues and eigenvectors that describe the diffusion geom-
etry are dependent on the accuracy of the overlays of concomitant diffu-
sion patterns. The results of these experiments are shown in Figs. 4 and
5. Recall that the analysis on the center voxel imposes the hardest chal-
lenge due to the overlapping of the three signals. The rotational correc-
tion capability exposed here should be translated to any other voxel in
the field of view. Also, consider that after linear registration, the diffu-
sion patterns end up being overlapped, but the diffusion patterns retain
the orientation that they had before the linear transformation. Hence
the necessity of re-orientating the diffusion patterns voxel by voxel.

For both Figs. 4 and 5: row (1) displays the dataset with ideal condi-
tions (no noise), row (2) the one with σ=0.1, and row (3) that with
σ=0.2. Value of Angle (°) is the nearest angle (in degrees) of the prin-
ciple eigenvectorwith respect to the x-axis. Abbreviations: FA (fraction-
al anisotropy); PCS (principal component of the diffusion ellipsoid
geometry); σ (variance of Rician noise). Also note that in the sets
marked with * (reference signals), the value of σ is 0.5 units lower
than in the additional acquisitions for the experiments affected with
noise. The columns with bold entries correspond to definitive results
and should be used for the comparisons.

In the experiments with synthetic data, the proposed method al-
ways aligns the additional acquisitions to the model dataset, thus im-
proving the overlap between structures and consequently cleaning the
images while retaining the essential information in the dataset. This re-
mains true even in the datasets affected by noise. Note also how all the
factors that affect the tractography are favorably adjusted.

3.2. Limbic structure: the fornix

The fornix is located near the splenium of the corpus callosum and
diverges from the mid-sagittal zone at the level of the crus just before
the fibers reach the hippocampus (Kendi et al., 2008). The correct loca-
tion of the fornix in our findings, just below the corpus callosum, is seen
in the sagittal views of both the template and the warped subjects. The
extracted fornix presents red colored fibers at the level of the crus,



Fig. 8. Commissural tracts. Rows (from top to bottom): in a subject before to post-processing, in the template, and in the warped subject. Columns (from left to right): stand-alone tracts,
tracts in axial view and tracts in sagittal view.
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which is consistent with the lateral displacement anatomically de-
scribed in the literature (Fig. 6).

3.3. Association structures: the IFOF and the ILF

The ILF connects the occipital cortex with the anterior temporal
lobe and amygdala, whereas the IFOF begins in the occipital cortex,
continues medially through the temporal cortex dorsal to the unci-
nate fasciculus, terminating in the orbitofrontal cortex (Philippi
et al., 2009). The tracts found in Figs. 7d–i are consistent with this
description.

3.4. Commissural structures: the ATR and the PTR

The ATR consists of fibers betweenmediodorsal thalamic nuclei and
the frontal cortex, and fibers between anterior thalamic nuclei and the
anterior cingulate cortices (Mamah et al., 2010). This tract is most ana-
tomically accurate in the warped subject as seen from Fig. 8i, where the
contrast of the overlapped FAmappermits the localization of the tract in
the brain.

3.5. Characterizing neurodevelopment

Fig. 9 shows the regression of GA using volume, length and FA aspre-
dictors. The leftmost column corresponds to the volume created by the
fibers for both the terms and preterms, and show a reduction as the ne-
onates grow older. This in agreement with what we know of the
underlying biology of white matter tracts, where maturation is accom-
panied by packaging and better definition of tract boundaries. It is re-
markable that all the white matter structures that we analyzed show
the same pattern of development for this feature. Additionally, these
plots indicate that packing (as characterized by volume) is happening
faster in the preterm group, perhaps as they are trying to ‘catch up’ to
the term subjects.

The length of the white matter fibers (the middle column of Fig. 9)
increases with age in the normal group for all five white matter struc-
tures. At neonatal ages, proliferation, pruning, and myelination take
place simultaneously in a process that shapes the brain connectivity
by prioritizing the neurons with strong connections (Rakic and
Zecevic, 2000). However, in the preterm group, increasing length with
age is only seen in the commissural tracts (ATR, PTR). According to
Prayer et al. (2006), the PTR and ATR reach full myelination at week
41 in term babies. Since the scans were taken around week 43 GA, we
may be capturing the recovering process of the preterm babies.

Interestingly, both early developing (fornix - 19–20 week of gesta-
tion) and late developing tracts (ILF, IFOF, not developed at birth) in
the pre-term group are shortening instead (Huang et al., 2006; Liu et
al., 2010). The negative slope for prematurity in the fornix and the asso-
ciation structures should not be interpreted literally as a shortening of
tracts. Instead, for example for the late developing association tracts,
the preterm brain might be in the proliferation state that happens be-
fore pruning and retraction. If more connections are taking place, the
water diffusivity should bemore isotropic,which stops the tractography
algorithm earlier. Both proliferation and retraction are present during



Fig. 9. Regressions on GAusing, from left to right columns: volume, length and FA as predictors (X-axes). The rows represent all the tracts found in Sections 3.1–3.3. The Y-axis of each plot
correspond to the dependent variable which we aim to predict, in this case the GA, and data comes from the column GA in Table 1. The Y-axis range, given in weeks, is automatically
configured in the plots by the dispersion present in the independent factors studied. The X axis is the independent factor which is defined in the header of each figure. The units of the
X axis have been omitted to favor the visualization; thus, the trending patterns are emphasized. It is our intention to see if those trends can be associated with developmental insights.
Note that the length of fibers is giving in mm while the volume is presented in mm3. The rest of variables belong to the diffusion derived group, and their units are the standard ones
for dMRI in humans. Finally, the condition is always the birth time, classified as a boolean value for the term (blue) and preterm (green) subjects.
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maturation, and alternatively leading to the formation or destruction of
structures.

Regarding the FA results in the right column of Fig. 9, there is slight
decrease in FA in term born babies for all structures. In the preterm case,
the FA also decreases for all structures, except for the IFOF, where the FA
increases. Again one might consider the competing processes of prolif-
eration, pruning, and myelination, where for example proliferation
may reduce FA, while myelination increases it.

The plots of L1, L2 and L3 in Fig. 10, correspond to the (ordered) ei-
genvalues or diffusivities, and help to explain the findings in the FA
mentioned above. As seen in the first column, the negative slope in
the FA readings of term babies is the consequence of a reduction in the
principal axis of the ellipsoid. When this component is reduced, and the
other two eigenvalues are kept constant or grow, the diffusion turns pro-
gressively into isotropic, resulting in reductions in FA. This finding sug-
gests that the transverse diffusion is increasing with age, growing
while the diffusion parallel to axons diminishes. Given the results
of Fig. 9 that the volume is reduced with age, and that the length of
the fibers is growing simultaneously, one can infer that the change
in transverse diffusion is a measure of changes in metabolic activity;
basically, these neurons have increased the interchange of fluid with
its surroundings and therefore, the transversal diffusivity - with re-
spect to L1 - grows.

In the case of the preterms subjects, the slopes increase or decrease
consistently with the FA values obtained. Note, however, that the diffu-
sion ellipsoid in the fornix shrinks faster than in any other structure; the
overall effect is a slight increase in the isotropy of the diffusion pattern.
Thismeans that thewater is being hindered equally in all directions, po-
tentially due to proliferation and retraction events, hence the reduction
in the overall diffusion. The IFOF is the only structure whose FA in-
creases in preterms. The combination of L1, L2, and L3 reveals that this
is due to an increased diffusivity in the principal axis of the ellipsoid,
but in general, its diffusion pattern does not differ much from the one
in the ILF.



Fig. 10. Regressions on GA using, from left to right columns: the 3 (ordered) diffusion tensor eigenvalues, L1, L2 and L3, as predictors (X-axes). The rows represent all the tracts found in
Sections 3.1–3.3. The Y-axis of each plot corresponds to the dependent variable which we aim to predict, in this case the GA, and data comes from the column GA in Table 1. The Y-axis
range, given in weeks, is automatically configured in the plots by the dispersion present in the independent factors studied. The X axis is the independent factor which is defined in the
header of each figure. The units of the X axis have been omitted to favor the visualization; thus, the trending patterns are emphasized. It is our intention to see if those trends can be
associated with developmental insights. Note that the length of fibers is giving mm in while the volume is presented in mm3. The rest of variables belong to the diffusion derived
group, and their units are the standard ones for dMRI in humans. Finally, the condition is always the birth time, classified as a boolean value for the term (blue) and preterm (green)
subjects.
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Fig. 11 shows the regression values for the ADC, RA, and the VR. The
ADC is the addition of the three diffusivities. In all the term-born struc-
tures, the ADC tends to decrease slightly with increasing GA. Possibly
water displacement is being hindered, but as can be seen in the L1, L2,
and L3 regressions plots, this hindering is happening in all directions.
In the preterm group, the commissural tracts - ATR and PTR - are grow-
ing. Recall that these structures are supposed to be formed at birth, but
here in the preterm group growth is delayed, and recovering. The fornix
and association structures show a descending ADC that might be asso-
ciated with the prevalence of proliferation activities.

The RA, in the center column of Fig. 11, can be used for clinical as-
sessments similar to those from the FA, in fact, results here are almost
exactly like the ones shown in the left column of Fig. 9 for FA.

The VR is the ratio between the volume of a bounding ellipsoid and
the one of the sphere createdwith a radius equal to themeandiffusivity.
As the average diffusivity is reduced over time in most of our samples
and the sphere resides in the denominator of the expression, VR tends
to go up with age. The only exception is again in the IFOF.
4. Discussion

In thismanuscript, we presented amethod that recoversmeaningful
information from tractography in datasets that originally did not have
the required quality to do so, as is often the case in the clinic. The effica-
cy of the pipeline was proven by obtaining tracts usually difficult to see
when direct tractography is used. The gist of the method lies in the fact
that the created local template is of much higher quality than any of its
individual contributors (Goodlett et al., 2009). The averaging used to
create the model ideally improves the SNR

ffiffiffiffiffiffiffiðnÞp
times, with n being



Fig. 11.Regressions onGAusing, from left to right columns: apparent diffusion coefficient (ADC), relative anisotropy (RA) and volume ratio (VR) as predictors (X-axes). The rows represent
all the tracts found in Sections 3.1–3.3. The Y-axis of each plot corresponds to the dependent variable which we aim to predict, in this case the GA, and data comes from the column GA in
Table 1. The Y-axis range, given inweeks, is automatically configured in the plots by the dispersion present in the independent factors studied. TheX axis is the independent factorwhich is
defined in the header of eachfigure. The units of the X axis have been omitted to favor the visualization; thus, the trending patterns are emphasized. It is our intention to see if those trends
can be associated with developmental insights. Note that the length of fibers is giving in mmwhile the volume is presented in mm3. The rest of variables belong to the diffusion derived
group, and their units are the standard ones for dMRI in humans. Finally, the condition is always the birth time, classified as a boolean value for the term (blue) and preterm (green)
subjects.

638 F. Yepes-Calderon et al. / NeuroImage: Clinical 14 (2017) 629–640
the number of averaged subjects (Gonzalez andWoods, 2002). The pos-
terior FA-based warping of fibers in the template enables fiber repre-
sentation in original datasets.

The registration processes depicted in Figs. 1 and 3 are performed on
the tensor fields, and include a tensor rotation before averaging. With
the tensor rotation, we ensure the correct structural overlapping of sub-
jects before the averaging process.

According to Prayer et al. (2006), cerebral myelination is a predom-
inantly postnatal process, progressing in a craniocaudal direction and
centrifugal manner. A manifestation of this process is seen when com-
paring the PTR in the template and the subject (Fig. 8e and h). The
shorter fiber projections of the PTR to the occipital lobe in the subject
are anexample of incomplete or delayeddevelopment. The unmyelinat-
ed fibers yield almost isotropic FA readings in those regions on the sub-
ject, and as a result, the tracts appear shorter.

To quantify the differences in diffusion variables along tracts, we ana-
lyzed each feature according to its capacity to retrieve the gestational age
at birth. While non-linear models may more accurately represent long-
term development, we used linear models given the short age span of
this study. We used the model to compare preterm and term neonates.

The main goal of the method here is to design a tractography algo-
rithm and diffusion-based measures that are useable in the clinic, given
low quality image data. Few other works have looked at tractography in
neonates. For example, Kinz et al. (2014) the authors recruited 13 neo-
nates and performedmuti-shell acquisitions with uniform spatial resolu-
tion and diffusion parameters. Subjects were scanned during sleepwith a
multishell scheme that included 6/50, 9/250, 12/700, 16/1400 (gradients
directions/b-values in s/mm2) and the whole protocol was completed in
9 min and 30 s including a high-resolution T2 scan. These scans used 32
channels to speed up acquisitions. While this work did a great job of elu-
cidating tractography in neonates, these protocols are not feasible with
current clinical setups. For example, in hospitals, typically 8 channels
are used for parallelization, with advanced setups going up to 16 chan-
nels. Furthermore, the voxel size in Kinz et al. (2014) is 4 to 5 times bigger
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those used in our clinical setup. Bigger voxels improve the spin recruit-
ment and thus the SNR, at the expense of losing the capacity to track
changes smaller than one voxel. More importantly, while the focus of re-
search projects such as Kinz et al. (2014) is to identify groupwise charac-
teristics, the clinic requires a patient-oriented analysis, which ourmethod
provides. Similarly, Brown et al. (2014) looked for associations between
neurodevelopment and connectivity. Subjects were scanned using a re-
search protocol including uniform voxel size and diffusion parameters.
The authors includedDWI averaging to improve the quality of the images,
but, to reduce scan time, sacrificed angular resolution by scanning with
only 12 directions. In the clinics, DWI averaging is rarely used, but higher
angular resolutions are often preferred.

5. Conclusions

A method to process information from archived low-quality DTI
datasets has been proposed and tested. It uses no other images than
the datasets to be treated. We improved the tractography performance
to the point that we could obtain limbic, commissural and association
tracts in the brain, something that we could not accomplish with stan-
dard tractography on 1.5T clinical data.

Our procedure is suitable to process clinical DTI data, which is
abundant in hospitals but often not usable for research due to its
lack of uniformity. Hospitals keep this data for legal reasons, but it
is usually stored with no prospect for further use. Recovering this in-
formation is of outstanding importance since it represents one of the
most extensive databases covering controls, pathologies, and special
cases. Our method may allow the use of new and stored DTI medical
images for rich background referencing, diagnosis and treatment de-
termination and research.

The association between tract development and underlying biological
facts was also studied, using diffusion variables extracted with the pipe-
lines depicted in Figs. 1 and 3. While our sample of 49 subjects in two
groups is relatively small, our results show a remarkable coherence with
what is knownof early developmental biology, and corroborate our initial
hypothesis: diffusion parameters and tractography in particular are useful
predictors to characterize early human brain development. However, in
the future, more subjects will be added, and a multivariate analysis will
be used, to obtain clinically useable indices of development.
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