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ABSTRACT

Objectives: Severe congenital diarrhea occurs in approximately half of

patients with Aristaless-Related Homeobox (ARX) null mutations. The cause

of this diarrhea is unknown. In a mouse model of intestinal Arx deficiency,

the prevalence of a subset of enteroendocrine cells is altered, leading to

diarrhea. Because polyalanine expansions within the ARX protein are the

most common mutations found in ARX-related disorders, we sought to

characterize the enteroendocrine population in human tissue of an

ARX(GGC)7 mutation and in a mouse model of the corresponding polyalanine

expansion (Arx(GCG)7).

Methods: Immunohistochemistry and quantitative real-time polymerase

chain reaction were the primary modalities used to characterize the

enteroendocrine populations. Daily weights were determined for the

growth curves, and Oil-Red-O staining on stool and tissue identified

neutral fats.

Results: An expansion of 7 alanines in the first polyalanine tract of both

human ARX and mouse Arx altered enteroendocrine differentiation. In

human tissue, cholecystokinin, glucagon-like peptide 1, and somatostatin

populations were reduced, whereas the chromogranin A population was

unchanged. In the mouse model, cholecystokinin and glucagon-like peptide

1 populations were also lost, although the somatostatin-expressing

population was increased. The ARX(GGC)7 protein was present in human

tissue, whereas the Arx(GCG)7 protein was degraded in the mouse intestine.

Conclusions: ARX/Arx is required for the specification of a subset of
Arx null model, but is not able to further the study of the differential effects

of the ARX(GCG)7 protein on its transcriptional targets in the intestine.
Key Words: Arx, enteroendocrine dysgenesis, polyalanine

(JPGN 2015;60: 192–199)
L oss of enteroendocrine cells (enteric anendocrinosis) related to
NEUROGENIN3 (NEUROG3) mutations is a recognized cause

of congenital malabsorptive diarrhea (1). The intestinal endocrine
system secretes more than a dozen different hormones that are
involved in digestion, absorption, and motility of the bowel
(reviewed in (2)). Mouse models of Neurog3 mutations first demon-
strated the loss of enteroendocrine cells, although the mechanism of
the malabsorptive diarrhea is not completely understood (3–5). At
present, no treatments are available for this rare disorder.

Autoimmune-polyendocrine-candidiasis-ectodermal-dystro-
phy (APECED) syndrome includes malabsorptive diarrhea related
to autoimmune destruction of enteroendocrine cells (6,7). Both
APECED and NEUROG3 mutations lead to the loss of the majority
of enteroendocrine cells, whereas proprotein convertase 1/3
(PC1/3) deficiency causes early congenital diarrhea with normal
chromogranin A staining (8). Although PC1/3 is expressed in the
majority of enteroendocrine cells, the full extent of hormonal
populations that are affected by PC1/3 processing, beyond gluca-
gon-like peptide (GLP)-1 and GLP-2, is unclear (9–11). Further-
more, changes in enteroendocrine cell function are involved in other
chronic diarrheal cases (12), although they may be overlooked
because histologic features are frequently normal and enteroendo-
crine staining is not necessarily part of the routine pathologic
assessment.

Several transcription factors have been identified in mice that
specify distinct lineages of the intestinal endocrine population (2).
ARX (Aristaless-Related Homeobox) is a paired domain transcrip-
tion factor on the X chromosome associated with neurologic disease
(13), loss of pancreatic a cells (14), and early-onset, severe diarrhea
(15). Approximately half of patients with missense or nonsense
mutations present with congenital diarrhea that leads to early
mortality. The mouse model of endodermal Arx deficiency reca-
pitulates this intestinal phenotype, with diarrhea and failure to
thrive as a result of a loss of enteroendocrine subpopulations
(16,17). Although the chromogranin A cell number is unchanged,
GLP-1, glucose-dependent insulinotropic peptide, cholecystokinin
(CCK), secretin, and gastrin-producing cells are reduced, and
somatostatin (SST)-expressing cells are increased in this model.
Interestingly, both Arx null and Neurog3 null mice die within a few
days of birth, compared with PC1/3 null mice that have reduced
survival and growth impairment similar to mice with endodermal
Arx deficiency (14,18,19). The effects of these genes on multiple
the contribution of intestinal disease to early
etermine. Thus far, human intestinal tissue
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from patients with ARX loss-of-function mutations has not been
examined.

ARX-related neurologic disorders comprise a spectrum of
phenotypes of X-linked lissencephaly with abnormal genitalia
(XLAG; OMIM #300215; (20,21)), X-linked infantile spasms
(ISSX; OMIM 308350; (22)), and X-linked intellectual disability
(XLID; (23,24)). The loss of function, missense, and protein
truncation mutations have been identified. Interestingly, approxi-
mately half of the identified disease-causing mutations are expan-
sions of the polyalanine tract within the ARX protein, of which
ARX/Arx has 4 (25,26). Polyalanine expansions have become
increasingly recognized as disease-causing mutations in a variety
of diseases (reviewed in (27)). For example, a small expansion of a
polyalanine tract in PHOX2B can cause central hypoventilation
syndrome with Hirschsprung disease (28).

Here, we report a case of enteroendocrine dysgenesis in a
patient with an ARX polyalanine expansion. The chromogranin A
population was unchanged. Duodenal biopsies, however, revealed a
reduction in CCK, SST, and GLP-1 cell number. In the mouse
model with the corresponding polyalanine insertion, the enteroen-
docrine changes mimicked those of the intestinal loss-of-function
model, that is, loss of CCK and GLP-1 cells, but an increase in the
SST-expressing population. Thus, ARX/Arx is required for the
enteroendocrine development in mice and humans.

METHODS

Mice and Tissue Preparation
The mice used for these experiments were a kind gift from

Kunio Kitamura (29). Seven (GCG) triplets were placed into the
first polyalanine tract at residue 330, resulting in Arx(GCG)7 mice.
Hemizygous mice (Arx(GCG)7/Y) were obtained by crossing hetero-
zygous females (Arx(GCG)7/þ) with C57BL/6J wild-type males. All
mice were cared and handled according to The Children’s Hospital
of Philadelphia’s institutional animal care and use committee–
approved.

All dissections were performed in cold 1� phosphate-buf-
fered saline, and tail snips were used for determining genotypes.
Genotyping primers were as follows: 50-AAAGGCGAAAAGGAC-
GAGGAAAGG-30 and 50-TGTTCAATGGCCGATCCCAT-30 and
50-CTTTAGCTCCCCTTCCTGGCACAC-30, resulting in a wild-
type band of 500 base pairs (bp) and a mutant product of 236 bp.
Following dissection, tissues were fixed in fresh 4% paraformalde-
hyde overnight at 48C, embedded in paraffin or optimal cutting
temperature freezing medium, and sectioned at 8 mm.

Human Slides

The genetic analysis for the patient was performed at Genetic
Services Laboratories at University of Chicago. In the ARX gene, all
5 coding exons were polymerase chain reaction (PCR) amplified
and sequenced. An insertion of 21 bp, 335–336ins(GGC)7, was
detected in exon 2 of the ARX gene. The insertion is in-frame,
resulting in the insertion of 7 alanine residues at amino acid position
112. Of note, the triplet repeat GCG codes for alanine; although the
insertion in human ARX is termed (GGC)7, it is the same sequence
shifted by 1 bp. Duodenal tissue was obtained during upper endo-
scopy for the evaluation of his pseudo-obstruction. For this article,
additional slides were obtained from paraffin blocks in storage in
our pathology department. Control slides were obtained from age-
matched controls viewed to be histologically normal and without a
diagnosis of celiac, eosinophilic, or inflammatory bowel disease.
The P-values were obtained by comparing the 2 temporally distinct
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biopsies of the patient with the ARX(GGC)7 mutation and 3 to 4 age-
matched controls.
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Real-Time PCR Analysis

Total RNA was extracted with TRIZOL (Invitrogen, Grand
Island, NY) using the RNeasy kit (Qiagen, Valencia, CA). Oligo-dT,
SuperScript, and other reagents were used to synthesize comp-
lementary DNA. Brilliant SYBR Green PCR Master Mix (Sigma, St
Louis, MO) was used to set up PCR reactions in the Stratagene
MX3005P (La Jolla, CA) real-time PCR machine. Primer sequences
are available upon request. All reactions were performed in tripli-
cate with reference dye normalization. Each primer set was normal-
ized to a housekeeping gene, either glyceraldehyde 3-phosphate
dehydrogenase or hypoxanthine-guanine phosphoribosyltransfer-
ase. Fold change relative to control values and standard deviation
were calculated and then plotted on a bar graph. The P-values were
obtained using Student t test.

Immunohistochemistry and Histology

Slides were subjected to microwave antigen retrieval in 10
mmol/L sodium citrate buffer (pH 6.0). Endogenous peroxidase
activity was quenched with 3% H2O2 in phosphate-buffered saline
for 15 minutes. Sections were then blocked with avidin block, biotin
block, and CAS Block reagent (Invitrogen). The sections were
incubated with primary antibodies overnight at 48C and biotinylated
secondary antibodies for 40 minutes at 378C. Immunohistochemical
detection was performed with the VECTASTAIN ABC kit (Vector
Laboratories, Burlingame, CA) and diaminobenzidine tetrahy-
drochloride as the substrate. For immunofluorescence, secondary
antibodies were directly conjugated to Cy3 or Cy2 and incubated for
4 hours at room temperature.

The primary antibodies used were as follows: anti-SST
(1:3000; Santa Cruz sc-7819 [Santa Cruz Laboratories, Santa Cruz,
CA]), anti-ghrelin (1:200; Santa Cruz sc-10368), anti–5-hydroxy-
tryptophan (5-HT/Serotonin; 1:50,000; ImmunoStar 20080 [Hud-
son, WI]); anti-chromogranin A (1:3,000; DiaSorin 20085
[Stillwater, MN]), anti-GLP-1 (1:500; Abcam ab26278 [Cam-
bridge, UK]), and anti-CCK (1:100; Santa Cruz sc-21617). Rabbit
anti-ARX polyclonal antibody (1:500) was a gift from Dr Kanako
Miyabayashi (Kyushu University, (21)). Sections were stained with
hematoxylin and eosin (H&E) or Oil-Red-O according to standard
protocols. Oil-Red-O staining was performed using frozen sections.

Hormone-positive cells from different regions of the intestine
were counted and normalized to the respective epithelial area of the
same or adjacent sections yielding cell numbers per square milli-
meter tissue area. Epithelial area was measured with an Aperio
Image Analysis System (Leica, Germany). At least 3 control and 3
mutant animals were used for each hormone analysis in the
intestine. P-values were obtained using a Student t test.

RESULTS

ARX Polyalanine Expansion Related to
Pseudo-Obstruction

To determine the intestinal consequence of an ARX poly-
alanine expansion, we identified a patient with a 335-336ins(GGC)7

mutation in ARX who presented with infantile spasms, hypotonia,
and severe intellectual disability, and was also diagnosed with
chronic intestinal pseudo-obstruction. This expansion in the first
polyalanine tract is one of the more common in the ARX gene (25).
For most of his life, this patient had feeding intolerance manifesting
as abdominal pain and vomiting. He had multiple abdominal
surgeries to place feeding tubes and had a Nissen fundoplication
that was repeated 3 times. At the age of 8, his inability to tolerate

Dysgenesis of Enteroendocrine Cells in ARX Mutations
enteral feeds and weight loss became so severe that he required total
parenteral nutrition, which has been his maintenance nutrition for
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the past 5 years. No mechanical obstruction was ever identified.
Antroduodenal manometry revealed a diagnosis of neuropathic
intestinal dysmotility based on antral hypomotility, abnormal phase
3 migrating motility complexes during fasting, and cluster contrac-
tions in the duodenum. In the process of his evaluation, 2 upper
endoscopies with biopsies were performed before initiation of total
parenteral nutrition. No pathologic diagnosis was identified in the
esophagus, antrum, or duodenum by H&E staining.

Because Arx regulates enteroendocrine development in mice
(17,30), we analyzed the enteroendocrine populations in the duo-
denum from the patient biopsies (Fig. 1). Immunohistochemistry
from 2 temporally distinct biopsies for this patient were compared
with 3 or 4 age-matched control patients (no diagnosis of celiac,
eosinophilic, or inflammatory bowel disease). Of note, the CCK and
GLP-1 populations were dramatically reduced in the ARX(GGC)7

patient biopsies; only 4 CCK cells and 2 GLP-1 cells were detected
(Fig. 1B, C). The SST population was also significantly reduced
(Fig. 1D). The chromogranin A population was unchanged
(Fig. 1A).

In the intestinal null mouse model, the chromogranin A
population is also unchanged, with a significant decrease in
CCK and GLP-1 cells. In the mouse model, SST cells are, however,
significantly upregulated (16,17). To explore whether these phe-
notypic differences were caused by null versus polyalanine expan-
sion mutations or interspecies differences, we next analyzed the
corresponding polyalanine expansion mouse model (Arx(GCG)7,
(29)).

Arx Polyalanine Expansion Mice Have Failure to
Thrive and Fat Malabsorption

First, we determined the growth characteristics of the male
Arx(GCG)7 mice compared with male littermate controls. Starting at
P5, the mutant Arx(GCG)7 mice are significantly smaller than their

Terry et al
littermate controls (Fig. 2A). This difference persists into adulthood
(Fig. 2B). The adult animals have a seizure disorder as previously
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described, and die between 2 and 3 months of age ((29), Eric Marsh,
personal communication). The tissue histology is normal by H&E
staining (supplemental Fig. 1, http://links.lww.com/MPG/A370).

Because fat malabsorption has been described in mice lack-
ing enteroendocrine cells as a result of Neurog3 mutations (5), we
analyzed stool and tissue by Oil-Red-O. Before weaning, when the
neonatal mice are on a high-fat diet while nursing, there was excess
fat in the stool smear by qualitative analysis (Fig. 2C,G) correlating
with poor weight gain. Furthermore, when investigating tissue
morphology, we found a large amount of Oil-Red-O staining in
the ileum and colon of mutant Arx(GCG)7 mice, whereas the control
littermates had minimal lipid present in those areas (Fig. 2D–F,
H–J). Once mice were weaned onto a standard low-fat diet, the
stool smears were comparable between control and mutant
Arx(GCG)7 littermates (Fig. 2K,L).

Arx Polyalanine Tract Expansion Impairs
Enteroendocrine Development

Arx is expressed specifically in subpopulations of enteroen-
docrine cells (30,31). To determine the changes in enteroendocrine
populations as a consequence of the Arx polyalanine expansion, we
determined the messenger RNA (mRNA) and protein expression
of the intestinal endocrine subpopulations at several time points:
postnatal days 0–1 (P0), postnatal day 14 (P14), and adult (5–7 weeks
of age).

At birth, the Arx(GCG)7 mutants had significantly reduced
numbers of CCK and GLP-1 containing cells in the duodenum
(Fig. 3I–P). This change corresponded to reduced mRNA expres-
sion of CCK and preproglucagon, the precursor to GLP-1. SST
expression was significantly increased by mRNA and the number of
hormone-positive cells (Fig. 3Q–T). Both chromogranin A and
serotonin (5-HT) cell number and mRNA levels were unchanged
(Fig. 3A–H).

JPGN � Volume 60, Number 2, February 2015
In the P14 duodenum (supplemental Fig. 2, http://links.lww.
com/MPG/A370), the polyalanine expansion mice demonstrated

p = 0.32 p = 0.02
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tation. Control human tissue is represented in A–D and patient tissue

; GLP-1 in C and H; and SST in D and I. The cell counts are listed below
homeobox; CCK¼ cholecystokinin; CgA¼ chromogranin A; GLP¼
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continued depletion of CCK and GLP-1–producing cells (Fig. S2I–
P). SST was significantly upregulated (Fig. S2Q–T). Although
chromogranin A expression was unchanged (Fig. S2A–D), there
was a significant, though mild, increase in 5-HT-expressing cells
(Fig. S2E–H).

These hormone changes were also present in the ileum, with
increased SST and decreased GLP-1 at P0 and P14 by cell counts
and qRT-PCR (supplemental Fig. 3, http://links.lww.com/MPG/
A370). We also assayed mRNA expression in the duodenum of
older animals (5–7 weeks) to find the same downregulation of
preproglucagon and CCK and upregulation of SST mRNAs without
a change in chromogranin A (Fig. 4).

Arx Protein is Lost in Polyalanine Expansion
Mouse Mutants

The hormone changes in the polyalanine expansion mouse
mutants phenocopy the Arx loss of function in the intestine (16,17).
To determine whether the similarity is because of changes in
expression of Arx, we first tested whether Arx was transcribed in
the polyalanine expansion mutants (Fig. 5A). At P0 and P14, the
mRNA levels were the same as control littermates. In adult mutant
Arx(GCG)7 animals, Arx mRNA was, however, significantly down-
regulated. Next, we tested protein expression in control and mutant
littermates. The Arx antibody used recognizes both wild-type and

Arx(GCG)7 protein, as previously reported (29,32). We did not detect
any Arx-positive cells in the P0 or adult duodenum of Arx(GCG)7

www.jpgn.org
mutants (Fig. 5B–G), suggesting that the Arx(GCG)7 mouse model
approaches an intestinal null situation. To determine whether this
loss of ARX protein was also found in human tissue, we stained the
patient slides. In the human ARX(GGC)7 tissue, ARX protein was
present at the same levels as in control tissue, despite the poly-
alanine expansion (Fig. 5H, I).

DISCUSSION
With recognition of the neurologic phenotype of ARX-

related disorders, it was also noted that approximately 50% of
patients with XLAG with ARX loss-of-function mutations have a
severe congenital enteropathy that is fatal in some cases (15). The
case highlighted here demonstrates changes in the enteroendocrine
population with a polyalanine expansion of the ARX protein, the
more common type of mutation (25,26). In the presence of
the ARX(GGC)7 protein, the CCK, SST, and GLP-1 lineages are
not specified, although the chromogranin A population is present at
normal density. The role of ARX was previously tested in human
intestinal organoids derived from embryonic stem cells, using small
hairpin RNA-mediated intestinal loss of function (16). With 60% to
80% knockdown of ARX, the preproglucagon and CCK populations
were lost and the SST population was unchanged. Thus, the
influence of ARX on the SST population appears to differ in human
tissue compared with the Arx loss-of-function mouse model,
wherein the SST population is increased (16,17).
Arx protein acts as both a transcriptional activator and
transcriptional repressor (33). In the mouse brain, complete loss
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of Arx results in impaired tangential and radial migration of
GABAergic interneurons. Only tangential migration is, however,
impaired in the Arx(GCG)7 mouse model, which could explain the
less severe phenotype (29). Several downstream targets have been
identified that are differentially affected by the Arx(GCG)7 protein as
opposed to an Arx null in the mouse brain (34). In the pancreas, Arx
activates the a cell program while repressing the b cell program
(35,36). In the Arx(GCG)7 mouse model, all a cells are still lost, but
without any increase in b cells, suggesting that the Arx(GCG)7

protein in early development is still capable of repression of b
cells, but not activation of the a cell program (35).

Unfortunately, the mouse model of the corresponding Arx first
tract polyalanine expansion does not fully recapitulate the human
disease because the Arx(GCG)7 protein is degraded in the mouse
intestine. In contrast, the ARX(GGC)7 protein is still present in human
tissue, although it is not fully functional. The hormone changes in the
Arx(GCG)7 mouse model are similar to those found in the Arx intestinal
null model, consistent with the fact that all Arx(GCG)7 protein is lost
(16,17). The reduced levels of the Arx(GCG)7 protein have also been
described in the brain of the mouse model (29,32), although some
Arx(GCG)7 protein is still present.

The patient described here demonstrates a unique phenotype

polymerase chain reaction; SST¼somatostatin.
of pseudo-obstruction without congenital diarrhea, compared with
patients with ARX loss-of-function mutations. At this time, we are

www.jpgn.org
not able to determine whether the enteroendocrine population
changes are directly responsible for the motility disorder. The role
of various enteroendocrine subpopulations in gut motility is, how-
ever, well-recognized through exogenous agonist and antagonist
studies (37). Many of the intestinal hormones inhibit gastric or small
bowel motility. The relation is, however, often complex and
dynamic. For example, in pediatric patients, exogenous octreotide
(an SST analogue) inhibits gastric motility and promotes small
intestine migrating motility complexes (38).

Motility studies on mouse models with alterations in the
enteroendocrine cells are necessary to further understand the contri-
bution of these cells in regulation of how the bowel moves in
fasting and fed states. Although expression of Arx by cross-sectional
analysis in the bowel is limited to the enteroendocrine cells (16,17), it
is possible that a small subset of enteric nervous system cells
expresses ARX/Arx and contributes to the phenotype, or, alter-
natively, exerts direct or indirect effects in the muscular layers of
the bowel. Another confounding variable for this case is the history of
abdominal surgeries; it is difficult to determine whether his bowel
disorder led to the multiple surgeries or what dysfunction was
attributable to multiple surgeries. Finally, his long-standing seizure
disorder and medications could also contribute to the phenotype.
Enteroendocrine dysgenesis is becoming increasingly recog-
nized for its role in congenital diarrhea, irritable bowel syndrome,
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and inflammatory bowel disease (39). With NEUROG3 mutations
(1) or AIRE mutations associated with APECED (6,7) almost all
enteroendocrine cells are lost, leading to congenital diarrhea.

Unique to Arx loss of function in the mouse intestine (16,17)
and PC1/3 mutations in humans, loss of only a subset of hormone
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producing cells can lead to congenital diarrhea (9) despite normal
chromogranin A and serotonin/5-HT staining. The determination of
which enteroendocrine subsets are responsible for the malabsorp-

tive or motility phenotype in enteroendocrine dysgenesis will
provide an excellent step forward in identifying therapeutic targets.
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