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Abstract

Most people are exposed to at least one traumatic event during the course of their lives, but

large numbers of people do not develop posttraumatic stress disorders. Although previous

studies have shown that repeated and chronic stress change the brain’s structure and func-

tion, few studies have focused on the long-term effects of acute stressful exposure in a non-

clinical sample, especially the morphology and functional connectivity changes in brain

regions implicated in emotional reactivity and emotion regulation. Forty-one months after

the 5/12 Wenchuan earthquake, we investigated the effects of trauma exposure on the

structure and functional connectivity of the brains of trauma-exposed healthy individuals

compared with healthy controls matched for age, sex, and education. We then used

machine-learning algorithms with the brain structural features to distinguish between the

two groups at an individual level. In the trauma-exposed healthy individuals, our results

showed greater gray matter density in prefrontal-limbic brain systems, including the dorsal

anterior cingulate cortex, medial prefrontal cortex, amygdala and hippocampus, than in the

controls. Further analysis showed stronger amygdala-hippocampus functional connectivity

in the trauma-exposed healthy compared to the controls. Our findings revealed that survival

of traumatic experiences, without developing PTSD, was associated with greater gray mat-

ter density in the prefrontal-limbic systems related to emotional regulation.

Introduction

Trauma exposure is common and could increase lifetime vulnerability to mental health prob-

lems when individuals encounter stress or adversity, especially the most traumatic events, such

as a massive earthquake, terrorism or war [1–3]. Although only a minority of humans develop

posttraumatic stress disorders (PTSD) [4, 5], traumatic experiences predict an increased risk

for psychopathology later in life in the general population [6–9]. Although previous studies

have indicated that trauma exposure could impact brain function and structure in nonclinical

individuals [10–12], few studies have focused on the long-term effects of trauma exposure in a
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nonclinical sample. Moreover, it is not yet clear how the long-term effects of trauma exposure

cause the change of brain structure and function associated with emotion and memory pro-

cessing in trauma-exposed individuals. Thus, the changes in brain structure and functions

might help us understand the neural mechanisms underlying both vulnerable and resilient

individuals in this nonclinical sample.

Extensive neuroimaging studies of patients with mood disorders have shown significant

alternations in brain structure and function [13–16], which have also been found in healthy

adults after stressful life events [10, 17, 18]. Other researches have indicated that the amygdala,

hippocampus and ventral medial prefrontal cortex (vmPFC) play an important role in emotion

regulation, memory and coping with stress responsively [19–24]. Animal studies also indicate

that these brain regions are associated with emotion processing and regulation of the hypotha-

lamic pituitary adrenal axis under stressful situations [25–28]. The amygdala is hyper-respon-

sive in PTSD, which is associated with exaggerated fear responses and emotional arousal [29].

Exposure to stress could induce increased activity within the amygdala related to traumatic

events [30, 31], and a hypo-responsive vmPFC and hyper-responsive amygdala are exhibited

in anxiety-related disorders [32, 33]. Previous animal and human studies have shown that

exposure to stress induces neural structural and functional abnormalities of the hippocampus

associated with dysfunctional episodic and autobiographical memories [34–40]. Moreover,

recent studies with nonclinical samples have also found decreased volume in the frontal-limbic

regions, such as the hippocampus, anterior cingulate and medial prefrontal cortex, which were

related to serious chronic life stress [41], closer proximity to the disaster on 9/11 [10] and

more cumulative adverse events [17]. Additionally, some studies have indicated that the expe-

rience of acute events has a short-term effect on structure and function [11, 42] in the prefron-

tal-limbic, parietal and striatal brain systems. As a consequence, it is important to explore the

long-term effects of experiences of acute events on brain structure and function and to better

understand the neural circuits underlying resilience in these trauma-exposed individuals with

no psychiatric disorders.

Rather than mass univariate analyses, multivariate-pattern-analysis (MVPA) is sensitive to

spatially distributed effects and can be used to separate patients from the healthy controls

using structural MRI (magnetic resonance imaging) data or the functional MRI data [43, 44].

Previous mass univariate analyses studies have reported differences between patients and con-

trols at the group level. Unlike univariate analyses, MVPA neuroimaging studies generally

trend to make inferences at the level of the individual rather than the group [45]. Apparently,

mass-univariate and multivariate methods are complementary approaches. Thus, we com-

bined the two types of analyses to reveal the neuroanatomical correlates of trauma-exposed

individuals with no psychiatric disorders.

In the present study, more than 3 years after the 5/12 Wenchuan earthquakes, we used

voxel-based morphometry (VBM) and resting state fMRI (rs-fMRI) to investigate the changes

in brain structure and functional connectivity between the stress-related brain areas in trauma

survivors compared to healthy controls.

Methods

Subjects

A total of forty-two healthy undergraduate students participated in this study about forty-one

months after the 5/12 Wenchuan earthquake. Twenty-one individuals (14 female, ages 20.5 ±
1.3) from the Wenchuan earthquake disaster area were identified by the post-traumatic stress

disorder self-rating scale (PTSD-SS) (with score < 60) as resilient trauma survivors [46]. The

PTSD-SS was constructed based on the definition and diagnostic criteria of PTSD described in
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the Diagnostic and Statistical Manual of Mental Disorders: Fourth Edition (DSM-IV). And

participants who have got the total score below 60 in PTSD-SS are thought of no serious PTSD

symptoms [47]. PTSD-SS serve as a screening tool for PTSD. Subjects were excluded if they (1)

had clinically significant PTSD symptoms (PTSD-SS total score over 60); (2) had undergone

any form of psychotherapy or taken psychotropic medications after the Wenchuan earth-

quake; (3) or had only experienced psychotic illness through the files of mental health educa-

tion. Moreover, twenty-one healthy controls (12 female, ages 21 ± 1.1) who were not exposed

to the earthquake were recruited from the local campus by advertisements. The two groups

were well matched for age (p = 0.24), sex (p = 0.58) and length of education (p = 0.62) (two

sample t-test using SPSS, Inc., Chicago, IL, USA). Two participants were tested but excluded

from the VBM analysis due to problems in the image registration.

The Impact of Event Scale Revised (IES-R) is a self-administered, 22-item questionnaire as

indicators of PTSD. It should be administered due to trauma and have no other medical basis,

and perhaps it is the most widely used self-administered assessment in the field of traumatic

stress. The IES-R was administered after scanning for all subjects to record their current sub-

jective distress. They were told: “Please read each item, and then indicate how distressing each

difficulty has been for you during the past 7 days with respect to wenchuan earthquake [48].”

The IES-R is not a diagnostic or screening tool for PTSD. We aimed to observe the degree of

distress especially in resilient trauma survivors that they respond to the traumatic event. There

are no specific cut-off scores for the IES-R and the higher scores are representative of greater

distress.

The Spielberger State-Trait Anxiety Inventory (STAI) [49] was used to measure the differ-

ence in the trait component and current state of stress response between the two groups, a

long time after the earthquake. All subjects had normal or corrected-to-normal vision and

none had a history of neurological or psychiatric disease. The Southwest University Brain

Imaging Center Institutional Review Board approved this study. Written informed consent

was obtained from all subjects.

Functional magnetic resonance image acquisition

All MRI data were performed on a 3T scanner (Siemens Trio, Erlangen, Germany) at the

Brain Imaging Research Central at Southwest University. First, resting-state functional MR

images were obtained using an Echo Planar Imaging (EPI) sequence with the following param-

eters: time repetition [TR] = 2000 ms; time echo [TE] = 40 ms; flip angle [FA] = 90, slices = 28,

matrix = 64×64; field of view [FOV] = 192 mm; acquisition voxel size = 3.4 × 3.4 × 4 mm. A

total of 242 volumes were collected for each subject. During fMRI scanning, subjects were

instructed to close their eyes, not to move, think about anything particular, or fall asleep [50,

51]). Each subject reported not having fallen asleep using a simple questionnaire after the scan.

Second, a high-resolution 3D Magnetization Prepared Rapid Gradient Echo structural image

was acquired with the following parameters (TR/TE/FA = 1900 ms/2.2 ms/9˚, resolu-

tion = 256×256 matrix, slices = 176, thickness = 1.0 mm).

Functional magnetic resonance image processing

The resting-state data preprocessing was performed using a Matlab (Math works Inc., Natick,

MA) toolbox Data Processing Assistant for Resting-State fMRI (DPARSF, http://resting-fmri.

sourceforge.net/). This included the following steps: the first 10 functional images were dis-

carded due to signal instability and the subject’s adaptation to the scanning noise. The slices of

the remaining 232 volumes for each subject were corrected for different collection times of sig-

nals by slice time correction. Subsequently, the functional image time series were motion-
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corrected by realigning all images to the middle image volume. The individual structural

image of each subject was co-registered to the mean functional image generated after motion

correction. Third, the functional images were spatially normalized into the Montreal Neuro-

logical Institute (MNI) space using the transformation information generated by segmentation

and resampled into 3 mm cubic voxels. The normalized images were smoothed with an isotro-

pic Gaussian kernel (FWHM = 4 mm).

Structural data preprocessing

The structural MRI images were processed using SPM8 software (Welcome Department of

Cognitive Neurology, London, UK; www.fil.ion.ucl.ac/spm). For better image registration, the

reorientation of the images was manually set to the anterior commissure. The structural image

was then segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CF).

Subsequently, we performed diffeomorphic anatomical registration through exponentiated lie

(DARTEL) algebra in SPM8 for registration, normalization and modulation. Then, the regis-

tered images were transformed to Montreal Neurological Institute (MNI) space. Finally, the

normalized, non-modulated images (gray matter and white matter density images) were

smoothed with a 10-mm full-width at half-maximum Gaussian kernel to increase the signal to

noise ratio.

Traditional univariate VBM analysis

The general linear model (GLM) approach was used to test the gray matter density (GMD) dif-

ferences between the trauma-exposed group and the healthy controls. To control for the effects

of age, gender, and whole brain gray matter density, these variables were added as additional

covariates. We also applied absolute threshold masking (all voxels with GM values of< 0.2

were excluded) to avoid edge effects between gray and white matter. To explore whether there

ware structural differences in the amygdala, parahippocampal and dACC, which have been

considered to be involved in emotion regulation and stress responsively [19–24], small volume

corrections (SVC) were applied using masks created using the WFU PickAtlas toobox [52–54].

Finally, to further investigate the predictive ability of regional gray matter density, the signifi-

cant differences map (Height threshold: p< 0.005; Extent cluster threshold: p< 0.05, with a

whole brain FWE-corrected) and separate clusters obtained from the univariate analysis were

used as a region of interest mask, and we used Support Vector Machine (SVM) [55] to dis-

criminative between trauma-exposed group and healthy controls.

Multivariate pattern analysis based on VBM

The PRONTO toolbox based on pattern classification techniques was used for the analysis of

neuroimaging data [56, 57]. The dataset is usually divided into two sets: training and testing.

During the training phase, an algorithm learns some mapping between patterns and the labels

[56]; during the test phase, the learned function is used to predict the group membership of

the test individuals. To make the test data set independent from the training set, a mean cen-

tering and leave one out cross-validation (LOOCV) procedure [58] was performed for each

subject. Because the variance of the importance weights can be large or even infinite, leave-

one-out may lead to an unreliable estimate [59–61]. However, it provides an almost unbiased

estimate of the generalization ability of a classifier [61]. Most of statistical theory and machine

learning theory are based on the assumption that the data is independently and identically dis-

tributed. However, in neuroimaging research, this assumption is often not met [62]. Therefore,

classical estimates of confidence intervals may not always be appropriate. Permutation testing

is a non-parametric procedure that allows to obtain meaningful confidence intervals and

Prefrontal-Limbic Systems Associated with Trauma Exposed
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p-values in this case [62]. In order to obtain more meaningful confidence intervals and p-val-

ues of each cluster, a random permutation test (10,000 times) was used to examine the statisti-

cal significance of the classification models [63, 64].

Functional connectivity: Region of interest selection and data analysis

Functional connectivity was performed by applying a seed region correlation approach [65]

using the Resting-State fMRI Data Analysis Toolkit (REST) software package [66]. Previous

studies have shown that acute stress was closely interrelated with structural or functional alter-

nation of the amygdale, medial prefrontal cortex and hippocampus [19–24]. Therefore, both

sides of the three brain areas were chosen as the regions of interest (ROI) using a previously

validated, anatomically labeled (AAL) template image [53]. Subsequently, the band pass filter-

ing (0.01–0.08 Hz) and linear detrending were performed. The time courses for the various

covariates (white matter, cerebrospinal fluid, and 24 motion parameters for head movement)

were extracted and regressed out to cancel out the potential impact of physiological artifacts.

Here, the Friston 24-parameter model, which includes 6 current head motion parameters, 6

head motion parameters from the previous imaging volume, and the 12 corresponding

squared items, was utilized to regress out head motion effects from the realigned data based on

previous reports demonstrating benefits of higher-order models in reducing head micromove-

ments [67, 68]. Then, we implemented a “scrubbing” procedure to censor high motion vol-

umes [69, 70]. The time course for each ROI was extracted by averaging the time series of all

voxels within each ROI. Finally, the correlation coefficients were transformed to z-values using

Fisher’s r-to-z transformation to improve the normality of the partial correlation coefficients

[71, 72]and to enable group comparisons. In the group comparison analysis, we tested for

strength connection (z-transformed r value) between the trauma survivors and the healthy

controls. To investigated whether the functional connectivity (amygdala-medial prefrontal

cortex, amygdala-hippocampus and medial prefrontal cortex-hippocampus) would be affected

by the IES-R scores between the earthquake exposed group and the control group, we calcu-

lated the Pearson correlation coefficients between the z-scores of each ROI-to-ROI and the

IES-R scores with controlling the sex and age as regressors of no interest.

Results

5/12 earthquake-exposed versus comparison group

The levels of anxiety were within the normal range across all groups, and the STAI scores were

not significantly different between the trauma survivors and healthy controls (Table 1). Age,

sex and length of education were not significantly different between the two groups. The

PTSD-SS scores of the trauma survivors were significantly higher than the healthy controls’

Table 1. Demographic Characteristics of trauma Survivors and healthy controls.

Characteristics Survivors ± SD (n = 21) Controls ± SD (n = 21) P

Female to male, no 14:7 12:9 p = 0.58

Mean age, y 20.5 ± 1.3 20.9 ± 1.1 p = 0.24

Years of education 13.7 ± 1.4 13.9 ± 1.1 p = 0.62

PTSD-SS Scores 46.5 ± 11.3 32.9 ± 7.7 p < 0.001**

STAI(S-AI) Scores 39.7 ± 6.8 43.7 ± 9.9 p = 0.14

STAI(T-AI) Scores 41.7 ± 7.5 46 ± 11.2 p = 0.15

IES-R Scores 24.3 ± 15.1 11.5±5.8 p < 0.001**

doi:10.1371/journal.pone.0168315.t001

Prefrontal-Limbic Systems Associated with Trauma Exposed
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(t = 4.3; p< 0.001). The IES-R scores for the healthy control group fell well within the normal

range, and were significantly lower than trauma survivors’ (t = -3.5; p< 0.001).

The VBM results of univariate analysis and MVPA

Compared with the healthy controls, the trauma survivors showed that greater GMD in the

dorsal medial frontal cortex (dmPFC), dorsal anterior cingulate cortex (dACC) extended to

the rostral anterior cingulated cortex (rACC) and bilaterally in the hippocampus/amygdala

and lower GMD of the frontoparietal association cortex (Fig 1 and Table 2).

We also used MVPA to further investigate the predictive ability of regional gray matter den-

sity at the individual level, based on the GMD differences map (GMD map) and regions of

interest obtained from the univariate analysis. The applications of SVM to dmPFC clusters

classified the trauma-exposed and healthy control groups with a sensitivity of 71.4% and

73.7%, respectively, leading to an overall accuracy of 72.5%; dACC (76.2%, 68.4%, 72.5%);

hippocampus/amygdala (52.4%, 78.9%, 65%). When all these clusters were considered

Fig 1. Differences in gray matter density (GMD) between Trauma Survivors and Healthy Controls using univariate

analysis based on voxel-based morphometry. The hot in the map represent represents the results of GMD

Trauma >Control. While, the blue represents the result Control > Trauma.

doi:10.1371/journal.pone.0168315.g001
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simultaneously, it classified the trauma-exposed and healthy control groups with a sensitivity

of 100% and 68.4%, respectively, leading to an overall accuracy of 85%. Permutation testing

indicated that these predictive accuracies were all statistically significant (see Fig 2).

The Strength of connections between ROIs and impact of event scale

revised

A group comparison analysis revealed that there were no significant differences in the func-

tional connection of the amygdala with the mPFC between the two groups (t = -1.56;

p = 0.126). However, an increased strength of the connection of the amygdala with the hippo-

campus was found in the trauma survivors compared to the healthy controls (t = 2.86;

p = 0.007, Fig 3A). Additionally, there was a significant positive correlation between the

strength of the connection and IES-R scores in the trauma survivors (r = 0.45; p = 0.04,

Fig 3B).

Discussion

In the current study, we investigated the long-term effect of the traumatic event (the Wench-

uan Earthquake) on human brain structure and functional connectivity. We found that resil-

ient trauma-exposed survivors showed greater gray matter density in prefrontal-limbic brain

systems and lower gray matter density in the frontoparietal association cortex than controls.

Resting-state functional connectivtiy analysis found that resilient trauma-exposed survivors

showed strengthened functional connectivity between the amygdala and hippocampus com-

pared to controls.

The prefrontal cortex plays an important role in top-down emotion regulation and it can

regulate the neural activity of the limbic systems, especially the amygdala and hippocampus

[20, 21, 73–75]. The previous review which focused on the neuroimaging findings in PTSD

patients has suggested that volume reductions in the prefrontal cortex might be related to a

reduced capacity to inhibit fear and modulate affective responses [76]. Similar studies have

revealed that resilient trauma survivors showed an increased gray matter volume in the right

middle prefrontal gyrus compared with PTSD patients [77] and that healthy subjects who

experienced the traumatic event showed increased resting-state activity in the left lateral pre-

frontal cortex compared to healthy controls [11]. Moreover, the structural abnormalities in the

dACC and amygdala may reflect predisposed neural abnormalities that increased the likeli-

hood of developing PTSD following exposure to trauma [78]. Sekiguchi et al. revealed that

Table 2. The differences in gray matter density between trauma survivors and controls.

Brain structure cluster t MNI

x y z

Trauma survivors > Controls

L dMPFC* 528 3.69 -20 14 38

dACC*** 1005 4.29 19 26 17

Parahippocampal/Amygdala** 498 3.56 -27 -3 -15

Trauma survivors < Controls

Frontoparietal cortex * 612 3.88 -23 -38 75

* Height threshold p< 0.005, uncorrected.

** p < 0.01, small volume corrected.

*** p < 0.005, small volume corrected.

doi:10.1371/journal.pone.0168315.t002

Prefrontal-Limbic Systems Associated with Trauma Exposed
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subjects with lower gray matter volume in the ACC before the earthquake were likely to have

PTSD symptoms [79]. Thus, combine our results, greater gray matter density in the prefron-

tal-limbic systems might be associated with the better ability to control the sustained hyper-

activation in limbic systems due to the traumatic experience [42].

It has recently been highlighted that periods of traumatic stress might alter the structural

and activity in the human parietal lobule [77, 80–83]. An MRI study found that resilient

trauma survivors showed less gray matter volume in the parietal cortex compared to healthy

controls [81]. Interestingly, there was a pattern of increases cerebral blood flow in PTSD

patients and decreases in resilient trauma survivors in the parietal cortex with exposure to

traumatic pictures and sounds [82]. These findings suggested that the frontoparietal associa-

tion cortex is sensitive to traumatic stress. The frontoparietal association cortex was implicated

in the visual imagery representing, an important component of the visuospatial processing of

preparation for responding to a physical threat, as well as a critical component of flashbacks

and similar PTSD symptoms. Therefore, combine our results with previous studies, the density

Fig 2. The classfication plot of individual diagnosis results. A support vector machine was used to construct multivariate models and to

classify participants as trauma survivors or controls. Evaluation value of GMD: the output value of the machine’s decision function for each

test sample. The decision threshold is displayed by a horizontal line at the centre of the plot. Statistical significance P-values were generated

by using permutation test (n = 10,000).

doi:10.1371/journal.pone.0168315.g002
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reduction in the frontoparietal association cortex might be related to reduced flashbacks and

non-excessive reaction to a threat.

Furthermore, trauma not only induces an anxious state and emotional arousal but can also

impair memory through the amygdala’s interactions with other brain regions [27, 84, 85]. The

hippocampus is widely implicated in memory encoding and maintenance, forming and stor-

ing memories associated with emotional events [86, 87] and autobiographical memory [88,

89]. Many studies have shown abnormal hippocampus activity [19, 90] and decreased hippo-

campal volume [37, 91] in stress-related pathologies, such as major depressive disorder and

PTSD. Resilient early life stress subjects yet showed increased degree of the hippocampus in

graph network relative to healthy controls [92]. In addition, decreased hippocampal volume is

also associated with serious and long-lasting traumatic stress [93]. In this study, we have

observed increased functional connectivity between the amygdala and hippocampus in the

resilient trauma survivors. Previous studies suggested that increased amygdala-hippocampus

correlations during recollection of negative autobiographical memories [94, 95] or emotional

events [94, 96]. For example, Smith et al. (2004) showed that retrieval of emotionally valenced

contextual information is associated with increased connectivity between the hippocampus

and amygdala [97]. Greenberg et al. observed co-activation of the amygdala and hippocampus

during autobiographical memory retrieval task (recollection of episodes from the personal

past) [98]. This hippocampal-amygdala effects in autobiographical memory also were found in

other studies [99, 100]. Admon et al. (2009) showed that amygdala activity could predict the

subsequent reactivity of the hippocampus in resilient trauma-exposed individuals [38]. Several

studies indicated that the connectivity between the amygdala and hippocampus is associated

with the modulation of stress effects on memory consolidation, memory retrieval [24, 101–

103]. Thus, increased connectivity between the amygdala and hippocampus may store and

maintain negative autobiographical memory. Moreover, resilient trauma survivors can retrieve

autobiographical memories more specifically than PTSD patients [104]. The connectivity

strengths might imply one potential mechanism by which increased functional connectivity

between the amygdala and hippocampus indexes lower risk for PTSD.

Fig 3. Differences in Functional Connectivity Maps for Trauma Survivors compared with Healthy Controls. (A) Trauma

survivors showed significant stronger functional connectivity of the amygdala-hippocampus. (B) The correlation between the

strength of the connection and IES-R scores in the trauma survivors.

doi:10.1371/journal.pone.0168315.g003
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However, we observed a significant positive correlation between the connectivity strength

and distress. It is not consistent with the notion that greater connectivity serves as a protective

role in developing PTSD. Thus, this correlation should generally be interpreted with caution.

To begin with, the range of the symptom severity might not large enough to explore the brain-

behavioral relationship. Perhaps there would be an inverse association between symptoms and

hippocampus-amygdala connectivity in subjects with high-level symptoms. Besides, the

trauma-exposed condition is characterized by other three typical symptom clusters: re-

experiencing, avoidance and hyperarousal symptoms [105, 106]. It is possible to observe the

significant negative correlations between other specific symptom clusters and the connectivity

strength. Last but not least, the correlation between distress and connectivity might not be

explained by linear regression. Perhaps, performing the nonlinear correlation analysis would

be more acceptable. These interpretations remain largely speculative and need further

investigation.

Our study revealed that resilient trauma survivors showed greater gray matter density in

the prefrontal-limbic systems that were implicated in emotional regulation. The emotional

regulation ability plays a critical role in preventing the onset of PTSD in those trauma-exposed

nonclinical adults. However, there are two possible explanations for the current findings. One

possibility is that these structural differences might be a pre-existing factor and those partici-

pants did not develop PTSD due to these biological protective factor. Nevertheless, we cannot

rule out the possibility that the structural differences are the brain “scar” after the traumatic

event. Our study is quite preliminary in nature and only longitudinal studies that examine the

changes in behaviors and neuroimaging measures in individuals before and after the traumatic

stress could fully rule out one of the possibilities.

Of note, there are other limitations in our study. First at all, we did not include the partici-

pants who experienced the Wenchuan earthquake and then developed the PTSD in our study.

This limitation restricted our ability to differentiate the resilience and vulnerability factor at

the neural level. We expect to recruit an additional PTSD patients group and carry out the lon-

gitudinal project in the future. Besides, the sample size of our study was modest and the range

of symptoms severity is limited. This point largely affects the reliability of our brain-behavior

correlational analysis. Finally, the assessments of symptom in this study are not comprehensive

enough. The assessments should be multiplex and include different symptoms clusters, such as

re-experiencing, avoidance and hyperarousal symptoms along with a high rate of dissociative

symptoms [107, 108].

Our results are largely consistent with findings from studies on other stressors (and stress

in general) in the literature [11, 19–24, 77]. Although the sample size of the study was modest,

we have provided a reliable and valid stress model especially for gray matter density effects

through MVPA analysis. Previous studies mainly focused on the short-term effect of trauma

exposure or patients with PTSD, while our study investigated the long-term effects of trauma

exposure in a nonclinical sample. Furthermore, our findings revealed the structural and func-

tional differences in brain regions that are usually implicated in emotional regulation. In con-

clusion, our study revealed that survival of traumatic experiences, without developing PTSD,

was associated with greater gray matter density in the prefrontal-limbic systems related to

emotional regulation.
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