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Abstract

Plexins are cell surface receptors for the semaphorin family of cell guidance cues. The cytoplasmic region comprises a Ras
GTPase-activating protein (GAP) domain and a RhoGTPase binding domain. Concomitant binding of extracellular
semaphorin and intracellular RhoGTPase triggers GAP activity and signal transduction. The mechanism of this intricate
regulation remains elusive. We present two crystal structures of the human Plexin-B1 cytoplasmic region in complex with a
constitutively active RhoGTPase, Rac1. The structure of truncated Plexin-B1-Rac1 complex provides no mechanism for
coupling RhoGTPase and Ras binding sites. On inclusion of the juxtamembrane helix, a trimeric structure of Plexin-B1-Rac1
complexes is stabilised by a second, novel, RhoGTPase binding site adjacent to the Ras site. Site-directed mutagenesis
combined with cellular and biophysical assays demonstrate that this new binding site is essential for signalling. Our findings
are consistent with a model in which extracellular and intracellular plexin clustering events combine into a single signalling
output.

Citation: Bell CH, Aricescu AR, Jones EY, Siebold C (2011) A Dual Binding Mode for RhoGTPases in Plexin Signalling. PLoS Biol 9(8): e1001134. doi:10.1371/
journal.pbio.1001134

Academic Editor: Gregory A. Petsko, Brandeis University, United States of America

Received January 26, 2011; Accepted July 20, 2011; Published August 30, 2011

Copyright: � 2011 Bell et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Wellcome Trust, the UK Medical Research Council, and Cancer Research UK. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: yvonne@strubi.ox.ac.uk (EYJ); christian@strubi.ox.ac.uk (CS)

Introduction

Plexins constitute a large family of semaphorin receptors that

mediate the repulsive chemotactic response necessary for axon

guidance in the developing nervous system. They also play an

important role in regulating cell migration, angiogenesis, and

immune responses [1,2]. Mutations in plexin receptors have been

found in cancers from a variety of tissues [3,4].

There are four classes of Plexins (A, B, C, and D) [1]. Their

architecture is conserved across the family with a large

extracellular region including the ligand binding sema domain, a

single transmembrane spanning helix, and an intracellular region

that transduces signals to a number of downstream pathways

[1,2,5]. Recently, truncated ectodomain structures of plexins from

different classes in complex with their cognate semaphorin ligands

have been solved [6–8]. They revealed a common architecture in

which two plexin monomers bind one semaphorin dimer. This

bivalency has been shown to be crucial for the function of the

plexin-semaphorin complex [6].

Plexins are transmembrane receptors distinguished by their

ability to interact directly with small GTPases of the Ras and

Rho family through their intracellular region [9,10]. They

consist of two domains, the GTPase activating protein (GAP)

domain, first identified by sequence similarity to RasGAP, and

the RhoGTPase binding domain (RBD) [11–13]. Recent

structural studies of the intracellular region of human Plexin-

B1 and mouse Plexin-A3 revealed that the GAP domain is an

integral structural unit, with the RBD forming a domain

insertion into one of the exposed GAP domain loops [14,15].

Importantly, the catalytic machinery remained identical, with

catalytic arginines found in the same positions in RasGAP and

both Plexin-B1 and Plexin-A3 [14–17].

Within the plexin family, the human Plexin-B1 signalling

pathway is the most extensively characterized to date; two

members of the Ras superfamily have been identified as targets

of the Plexin GAP activity so far, R-Ras and M-Ras [9,18].

Inactivation of R-Ras by Plexin-B1 GAP leads to suppression of

integrin activation and cell migration, ultimately leading to

repulsive axonal guidance [19,20]. Downregulation of M-Ras

leads to reduced dendritic outgrowth and branching [18]. The

Plexin-B1 RBD has been shown to bind to the Rho GTPases

Rnd1, Rac1, and RhoD exclusively in their active, GTP-bound

form [21–23]. Small GTPases of the Rho family are key players in

remodelling of the actin cytoskeleton and are involved in a

plethora of processes initiated by extracellular stimuli [24,25].

Both Rac1 and Rnd1 are important for the ligand-induced

activation of the plexin GAP activity and Rac1 has been found to

increase semaphorin binding to Plexin-B1 [19,26–28].

Simultaneous binding of semaphorin on the extracellular side

and a RhoGTPase on the intracellular side is a prerequisite for

plexin GAP activity [27,29]. Bivalent semaphorin binding can be

mimicked by extracellular, antibody-induced, clustering of the

intracellular domain and activation is observed in the presence but

not in the absence of Rnd1 [9,29]. This suggests that semaphorins

have a crucial role in bringing together plexin receptors as a step

towards activation. Despite a number of structural studies on the

plexin RBD and its complex with Rnd1 [15,30,31] it remains

unclear how RhoGTPases modulate plexins and how the

concomitant binding of ligands on the extracellular and the

intracellular side of the receptor is integrated into a single

signalling output, inactivation of Ras. To address this question we

characterized the complex between the intracellular region of

Plexin-B1 and a constitutively active form of the RhoGTPase

Rac1 both structurally and functionally.
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Results

Structure of the Intracellular Domain of Plexin-B1 in
Complex with Constitutively Active Rac1

Several constructs of the intracellular domain of human Plexin-

B1 were designed, of which three, Plexin-B1cyto, Plexin-B1D1, and

Plexin-B1D2, could be solubly expressed in insect cells (Figure 1a).

Rac1 was rendered constitutively active by introducing a

Gln61Leu mutation [32] in addition to loading with the non-

hydrolyzable GTP analogue GppNHp. This Rac1 mutant,

expressed in E. coli, was used in all subsequent experiments and

is named Rac1* hereafter. We have determined the crystal

structure of Plexin-B1D1 in complex with Rac1* to a resolution of

3.2 Å and refined it to a crystallographic R-factor of 20.7%

(Rfree = 23.8%, Figure 1b, Table 1, Figure S1).

The overall structures of Plexin-B1D1 and Rac1* in the complex

are very similar to their apo-structures [15,33] with rmsd values of

1.5 Å and 0.6 Å, respectively. However, there is some flexibility

between the Plexin-B1 GAP and the RBD with the RBD being

rotated by ,6u compared to the apo-structure (Figure S2). Rac1*

binds exclusively to the RBD and does not form any contacts with

the GAP domain. The interface between Rac1* and the Plexin-B1

RBD covers a buried surface area of 707 Å2 and is dominated by

hydrophobic interactions. Plexin-B1 residues Trp1807Plex,

Leu1815Plex, Thr1823Plex, and Tyr1839Plex form a continuous

hydrophobic patch that is complemented by Rac1 residues

Phe37Rac, Val36Rac, Leu67Rac, and Leu70Rac (Figure 1b). All of

these residues are almost completely buried within the interface (at

least 80% of the solvent accessible surface area) with the exception

of Val36Rac (38%). Thr1823Plex and Tyr1839Plex are part of a

potential hydrogen bonding network involving Asp1821Plex,

Ser1824Plex, Asn1834Plex, and His1838Plex that is likely to be

crucial for the structural integrity of the domain. The hydrophobic

interaction between Plexin-B1D1 and Rac1* is extended by two

potential hydrogen bonds formed between the sidechain of

Asp38Rac and the backbone amides of Val1811Plex and Ala1812Plex.

Remarkably, all of the Plexin-B1 residues described above are

conserved across A- and B-class plexins (Figure S3), therefore most

likely preserving this mode of recognition.

On Rac1*, all residues mentioned above map onto the switch I

or switch II region [11] (Figure S4) whose conformation resembles

that of active Rac1 in other Rac1-effector complexes [34]. Since

these regions undergo large conformational changes upon GTP

binding, this explains why Plexin-B1 is highly specific for active,

GTP-bound Rac1 [21]. Recently, the structure of the RBD

fragment of Plexin-B1 in complex with the constitutively active

RhoGTPase, Rnd1, has been reported [15]. Structural superpo-

sition of the RBD-RhoGTPase complexes gives an rmsd of 0.96 Å

(Figure S5). Despite a sequence identity of only 32% between

Rac1 and Rnd1, the Plexin-B1 RBD-Rnd1 complex interface is

very similar to the one described here. All hydrophobic

interactions as well as the two potential hydrogen bonds are

conserved in both structures.

To corroborate our structural findings we studied the affinity

between Plexin-B1cyto and Rac1*, as well as Rnd1, using surface

plasmon resonance (SPR). Rnd1 is constitutively active due to its

lack of GTPase activity [35]. Plexin-B1cyto binds to Rac1 and

Rnd1 with an affinity of 18.9 mM and 22.9 mM, respectively

(Figure 1c–e, Figure S6), which is in agreement with recently

published affinities determined by isothermal titration calorimetry

[15]. We found that a series of Plexin-B1 mutations in the

hydrophobic interface, Trp1807GluPlex, Leu1815ProPlex (previ-

ously linked to prostate cancer [4]), and Leu1815GluPlex,

completely abolished its interactions with Rac1* and Rnd1

(Figure 1d–e, Figure S6).

To validate these effects on binding in a functional context, we

performed COS cell-based collapse assays with the full-length

transmembrane receptor, testing for Plexin-B1 activity in vivo

[36]. Surprisingly, none of the mutants shown to abolish Rac1* or

Rnd1 binding had an effect on the collapse response of the cells

(Figure 1f–h). We explored this finding further in an independent

experimental assay to monitor directly Ras GTPase activity in

vivo. In agreement with our results from the collapse assay, none

of the interface mutants had an effect on the GAP activity of

Plexin-B1 towards R-Ras in this COS cell-based pull-down (Figure

S7). Since the necessity of RhoGTPase binding for plexin function

is well established [9,27], it was unclear how to correlate the

biophysical and cellular results.

Three-Fold Arrangement of the Plexin-B1-Rac1 Unit
The relative position of Rac1* in regard to the putative Ras

binding site revealed no mechanism for the direct regulation of

the catalytic activity of Plexin-B1 by the small RhoGTPase. To

address whether the N-terminal residues missing in the Plexin-

B1D1 construct might harbour an important site for RhoGTPase

mediated plexin activity, we solved the crystal structure of the

entire cytoplasmic domain of Plexin-B1 (Plexin-B1cyto) in

complex with Rac1* (Figure 2a). The 4.4 Å model is of high-

quality for this resolution range, reflected by the crystallographic

R-factor of 23.4% (Rfree = 26.4%, Table 1, Figure S8). The

asymmetric unit contains a trimeric arrangement comprising

three copies of the Plexin-B1cyto-Rac1* unit, with each Rac1*

molecule contacting two Plexin-B1cyto molecules (Figure 2a–b).

This arrangement is not the result of crystallographic symmetry

but does show near perfect 3-fold geometry (120u between pairs

of Rac1* molecules and 117u, 119u, and 124u between the copies

of Plexin-B1cyto). Moreover, the interfaces between Plexin-B1cyto

and Rac1* are essentially identical across the three copies in the

Author Summary

Axon guidance is fundamental to the development of the
central nervous system. The growing axon is guided to its
correct location by a plethora of extracellular signals. One
of the most important extracellular signals is semaphorin,
which binds to plexin receptors on the axon. Usually, this
kind of extracellular ligand binding is sufficient to transmit
the extracellular signal to the intracellular space to trigger
changes in the cell, like axon growth. However, activation
of plexin receptors requires a ‘‘dual’’ ligand binding:
semaphorin on the extracellular side, and a RhoGTPase
on the intracellular side. Signal transduction can only occur
if both ligands are present. How this intricate regulation
mechanism is organized and how concomitant ligand
binding can be integrated into a single signalling output
within the cell has remained largely unclear. Here, we
present crystal structures of one plexin receptor, Plexin-B1,
in complex with an intracellular RhoGTPase ligand (Rac1)
and show that binding of Rac1 brings together three
Plexin-B1 molecules. In this trimeric arrangement each
plexin molecule interacts with two Rac1 ligand molecules.
This leads to a previously unidentified plexin-Rac1 ligand
interface that is crucial for its function. Further biophysical
and cellular analysis in combination with previous findings
on the extracellular plexin-semaphorin complex allow us
to propose a model for how ligand-induced clustering
events on the extra- as well as intracellular side are
combined to trigger signal transduction.

Dual Binding of RhoGTPases in Plexin Signalling
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Figure 1. Structure of the monomeric Plexin-B1D1-Rac1* complex. (a) Schematic domain organization of the Plexin-B1 receptor. ECD, extracellular
domain; TM, transmembrane region; GAP, GTPase activating protein domain; RBD, Rho GTPase binding domain. The constructs used in this study are shown
below. (b) Ribbon diagram of the complex between Plexin-B1D1 and Rac1* with colour coding for Plexin-B1 as in (a) and Rac1* in wheat. GppNHp and residues
involved in the interaction are shown in stick representation. Residues mutated in SPR binding experiments are marked with an asterisk, mutations analysed in
the cell collapse assay with a blade. (c–e) Binding properties of the Plexin-B1cyto-Rac1* interaction. (c–d) Left, representative sets of experimental sensorgrams
from typical equilibrium-based binding experiments, with reference subtraction. Right, plot of the equilibrium binding response (response units [RU]) against
RhoGTPase concentrations ranging from 120 nM to 500 mM. Best-fit binding curves are shown as lines. ND, not determinable. (e) Table of binding constants
(Kd) measured by SPR between different Plexin-B1 mutants and Rac1* and Rnd1. Data are expressed as mean 6 standard error and no detectable binding is
represented by a dash. (f–h) COS-7 cell collapse assay. (f) Histogram showing the effect of different mutations on semaphorin induced collapse. Each
experiment was repeated twice and 26200 cells were counted each time. Results represent the mean with error bars showing standard error. (g–h)
Representative images of non-collapsed cells (g) and SEMA4D-induced collapsed cells (h). Scale bar, 40 mm. Arg1677Ala is a constitutively inactive Plexin-B1
mutant and served as negative control.
doi:10.1371/journal.pbio.1001134.g001
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asymmetric unit and are not found in any of the crystallographic

symmetry generated interfaces. These observations strongly

suggest that this 3-fold complex is not purely a product of crystal

lattice formation. We were not able to show a 3-fold complex

with the soluble constructs in analytical ultracentrifugation at a

plexin concentration of 250 mM (unpublished data). This suggests

that high local concentrations in the crystal or indeed at the

plasma membrane are necessary for this arrangement and that

the 3-fold interaction might be too weak to be detected in solution

[37].

There are no major conformational changes within the three

Plexin-B1cyto-Rac1* units when compared to the one-to-one

complex. This 3-fold arrangement is mediated by a previously

unidentified second binding site for the Rho-GTPase on Plexin-

B1cyto (site B, the previously observed Plexin-B1 RBD-RhoGTPase

interface hereafter called site A). Site B involves the N-terminal

region of a-helix 11 and the loop preceding it (residues 1913Plex–

1923Plex) plus a-helix 16 (residues 2036Plex–2039Plex) and is in close

proximity to the putative Ras binding site (Figure 2a,c, Figure S3). It

covers a total buried surface area of ,570 Å2, therefore significantly

extending the interface for Rac1 binding, and is dominated by

hydrophobic interactions. On Plexin-B1cyto the majority of contacts

(60% of buried surface area) are made by the loop residues

1913Plex–1918Plex (Figure 2c). Interestingly, these residues are

disordered in the apo-structures of Plexin-B1 and Plexin-A3. The

site B interface on Rac1* is predominantly formed by residues that

precede the switch I region (residues 24–33, Figure 2c). The

conformation of these residues is known not to depend on the

activation state of the RhoGTPase [11]; thus, the specificity of

Plexin-B1 for active RhoGTPases appears to result exclusively from

interactions with site A. The 3-fold complex is further stabilized by

contacts between two adjacent Plexin-B1cyto molecules, on the one

side mainly involving a loop comprising residues 1808Plex–1813Plex,

and on the other side a surface directly adjacent to site B (residues

1919Plex–1938Plex and residues 2036Plex–2044Plex, Figure 2c). How-

ever, this plexin-plexin interaction is unlikely to be stable without

the addition of the bridging Rac1* since it only contributes a total

buried surface area of ,310 Å2.

In order to assess the potential functional significance of site B,

we designed three Plexin-B1 mutants, Thr1920GluPlex, Arg1921A-

laPlex, and Leu2036ArgPlex. We first studied the binding affinity of

these mutants to Rac1* and Rnd1 using SPR. None of the site B

mutations had a significant effect on the affinity towards either of

the RhoGTPases, suggesting that site A alone is sufficient for

Rac1* and Rnd1 binding (Figure 3a, Figure S9). However, these

mutations as well as additional ones at these and other site B

residues (Ile1917Plex, Leu1923Plex, and Ala2039Plex) completely

abolished the typical collapse response in the COS-cell assay

(Figure 3b). Every site B mutation tested was detrimental to Plexin-

B1 activity and led to a complete loss of function. All mutant

proteins showed a similar expression level, as judged by

immunofluorescence, and were present in the plasma membrane,

indicating their structural integrity (unpublished data). In the same

background, the Plexin-B1 site B mutants also did not show any

Table 1. Data collection and refinement statistics.

Data Collection and Refinement Plexin-B1D1 – Rac1* Complex PlexinB1cyto – Rac1* Complex

Data collection

Resolution (Å) 3.20 (3.31–3.20)a 4.40 (4.56–4.40)

Space group C2 I212121

Cell dimension

a, b, c (Å) 184.1, 63.9, 84.6 142.1, 224.1, 258.3

a, b, c (u) 90, 107.5, 90 90, 90, 90

Redundancy 5.2 (5.3) 5.1 (5.2)

Completeness (%) 100 (100) 95.7 (97.5)

Rsym (%) 14.3 (65.0) 8.4 (54.4)

Avg I/s 11.3 (2.5) 15.7 (2.1)

Refinement

Resolution (Å) 46.0–3.2 42.0–4.4

No. Reflections 15,648 (2,807) 25,522 (2,662)

Rwork/Rfree
b (%) 20.7 (25.3)/23.8 (29.6) 23.4 (25.1)/26.4 (26.7)

Complexes in the asymmetric unit 1 3

No. Atoms

Protein 5,762 16,493

B-factors

Protein (Å2) 66.6 124.6

r.m.s. Deviations

Bond lengths (Å) 0.008 0.009

Bond angles (u) 0.93 1.16

aNumbers in parenthesis are for the highest resolution shell.
bRfree equals the Rwork against 5% of the data removed prior to refinement.
doi:10.1371/journal.pbio.1001134.t001
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GAP activity towards R-Ras, thus further validating the findings of

the collapse assay (Figure S7). These results indicate that although

site B is not essential for binding of the RhoGTPase, it is crucial for

Plexin-B1 activity, suggesting that the 3-fold complex seen in the

crystal has functional significance. In accordance with this putative

functional role, all of the residues in site B are conserved across all

species and classes of plexins with the exception of Ala1913Plex and

Pro1915Plex, whose sidechains do not participate in the Rac1-site

B interaction (Figure 3c).

The Importance of the N-Terminal Segment of the Plexin-
B1 Cytoplasmic Region

The 3-fold complex revealed by the crystal structure and the cell

collapse assays suggest that GTPase binding at site B contributes to

plexin function. However, the SPR experiments reveal no direct

evidence for GTPase binding at this site. We therefore sought an

explanation for this lack of binding. In both the one-to-one and 3-

fold complex structures, we were unable to trace the N-terminal

helix (residues 1511Plex–1562Plex, Figure S3) due to a lack of well-

ordered electron density. Interestingly, there is a similar absence of

electron density in this region for the high resolution apo-structure

of Plexin-B1 [15]. This suggests that the N-terminal helix of

Plexin-B1 has some internal flexibility, likely around the hinge

region adjacent to Ile1563. In agreement with this, the three

residues preceding Ile1563 are Gly1562, Ser1561, and Gly1560,

which may allow large conformational freedom of the N-terminal

helix even in a trimeric arrangement. In contrast, in the apo-

structure of mouse Plexin-A3 [14], this region was well-defined.

Superposition of the Plexin-A3 structure with the 3-fold complex

reveals that this helix would block site B, therefore preventing its

interaction with Rac1* (Figure 4a). This steric hindrance model

predicts that shortening of the N-terminal helix will remove this

block and allow Rac1* and Rnd1 to bind to site B.

To test this model we generated mutant constructs lacking the

N-terminal helix (Plexin-B1D2) and assayed for RhoGTPase

binding in SPR. Indeed, RhoGTPase binding to the site A

Plexin-B1D2 mutant Leu1815GluPlex was now observed, suggesting

that truncation of the N-terminal helix has exposed site B

(Figure 4b, Figure S10). However, binding can only be observed

with high coupling densities of the Plexin-B1D2 on the SPR chip

(Figure 4b). This is consistent with a bivalency effect in which two

adjacent plexin molecules bind the same RhoGTPase molecule,

implying that the mutated site A is still competent to contribute to

an avidity effect [38]. At low coupling densities the Plexin-B1D2

molecules are too far apart from each other to allow a bivalent

interaction with Rac1* or Rnd1. We did not observe an increase

in affinity for wild-type N-terminal truncated Plexin-B1D2

compared to the full-length Plexin-B1cyto even at high coupling

densities (unpublished data). Binding studies on the isolated Plexin-

B1 RBD show similar affinities [21] to those we determined for the

full-length cytoplasmic region. Thus these observations suggest

that, if intact, site A dominates binding to the RhoGTPase.

Figure 2. Structure of the 3-fold Plexin-B1cyto-Rac1 complex. (a) Overview of the 3-fold arrangement of the three Plexin-B1cyto-Rac1* units.
Rac1* is coloured in wheat, orange, and yellow, and Plexin-B1cyto is coloured in skyblue, paleblue, and palecyan, respectively. GppNHp is shown as
spheres. Termini for Rac1* are labelled in the left panel, and termini for Plexin-B1cyto in the right panel. a-helices 13, 14, and 15 harbouring the
putative Ras-binding site are highlighted in red. (b) Schematic overview of the complex. The orientation and colour coding is as in (a), right panel. The
two Rac1 binding sites, site A and site B, are marked by arrowheads. (c) Detailed view of the Rac1 binding site B. The orientation of the left panel is
similar to Figure 1b, right panel. The three boxed panels correspond to the close-up views depicted in the left panel. Colour coding is as in (a).
doi:10.1371/journal.pbio.1001134.g002

Dual Binding of RhoGTPases in Plexin Signalling
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Interestingly, sequence analysis of the N-terminal cytoplasmic

segment of Plexin-B1 (residues 1511–1539) predicts a trimeric

coiled-coil (Figure S11) and similar regions in other plexins from

all classes are also predicted to adopt a coiled-coil conformation.

In accordance with this, Ile1563Plex in Plexin-B1cyto, the first

residue visible in the electron density map, points towards the

inside of the 3-fold complex locating the three N-terminal

segments in close proximity to each other (Figure 2a, right panel).

This proximity suggests an explanation for the observation of the

higher oligomeric state 3-fold complex in the crystal. Although the

N-terminal helix is not well-ordered in the structure, it could form

a trimeric coiled-coil, albeit containing significant flexibility.

Discussion

Plexin-semaphorin signalling is dependent on signals from both

the extra- and intracellular side. Several studies have shown that

both semaphorin binding on the outside and RhoGTPase binding

on the inside of the cell are required for plexin activity to occur

[9,27]. The nature of these signals and how they are integrated

into a single output, namely RasGAP activity, has been a critical

question in this field and several models have been proposed [6–

8,14,15,39].

Recently, several structures of truncated plexin ectodomains in

complex with their cognate semaphorins have been reported [6–

8]. Despite ranging across three different classes, all of these

ectodomain complexes share the same overall architecture with

one semaphorin dimer bringing together two plexin monomers. In

combination with a detailed biophysical and cellular character-

ization, these structural data have led to the proposal that the

bivalency effect is a prerequisite for plexin signalling [6,8].

For the cytoplasmic region, our structures of Plexin-B1 in

complex with Rac1* do not show major structural rearrangements

when compared to the apo-structure of Plexin-B1 [15]. For the

one-to-one complex, Rac1* is positioned distant from the Ras

binding site on the Plexin-B1D1 molecule. This excludes the

possibility of a direct interaction or regulation of RasGAP activity

Figure 3. Characterization of the second binding site. (a) Binding
constants (Kd) measured by SPR between different Plexin-B1 constructs
carrying mutations in binding site B, and Rac1* and Rnd1, respectively.
Data are expressed as mean 6 standard error. (b) Histogram showing
the effect of different site B mutations on semaphorin-induced collapse.
Results are shown as mean with error bars representing standard error
of the mean. (c) Sequence alignment of residues involved in site B
interaction. Residues that were mutated in the cell collapse assay are
marked with a triangle and those that were analysed in both SPR and
cellular assays are marked with a dot.
doi:10.1371/journal.pbio.1001134.g003

Figure 4. Analysis of the Plexin-B1cyto N-terminal juxtamem-
brane helix. (a) Superposition of mouse Plexin-A3 (PDB ID: 3IG3) onto
the 3-fold Plexin-B1cyto-Rac1* complex. Colour coding is as in Figure 2a.
Plexin-A3 is shown in pale green. The juxtamembrane helix ordered in
the Plexin-A3 structure would block Rac1* binding to site B. (b)
Representative plots of the equilibrium binding response against Rho
GTPase concentration ranging from 120 nM to 2,000 mM. ND, not
determinable. The plexin constructs used in each experiment are
schematically presented on the right with colour coding as in Figure 5.
doi:10.1371/journal.pbio.1001134.g004

Dual Binding of RhoGTPases in Plexin Signalling
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by the RhoGTPase. Instead, the 3-fold complex reveals an

additional binding site on a neighbouring Plexin-B1cyto molecule

that is in close proximity to the predicted Ras binding site. This

interaction may result in a small conformational change in the Ras

binding region, although a detailed analysis of these changes

cannot be made due to the low resolution of our data. It is,

however, noteworthy that allosteric regulation of Ras binding by

RhoGTPase binding has been proposed by He et al. based on a

homology model of the Plexin-A3-Rnd1 complex [14]. We cannot

exclude the possibility that within the protein crystal the trimeric

arrangement is favoured over other site B mediated oligomeric

states due to the lattice contacts. Indeed, the 3-fold arrangement

constitutes the asymmetric unit in the crystal and therefore

accommodates slight variations between the three Plexin-B1-Rac1

units (see Results section).

The occurrence of a 3-fold arrangement in crystals of Plexin-B1-

Rac1 complexes appears to be dependent on the juxtamembrane,

N-terminal helix. Physiologically, this region connects the

intracellular domain with the transmembrane and extracellular

region. This suggests a mechanism by which both semaphorin

binding on the outside and RhoGTPase binding on the inside are

connected to result in RasGAP activity (Figure 5). The first step in

this model is binding of the RhoGTPase to binding site A of the

intracellular domain. Although RhoGTPase binding has been

shown to be a prerequisite for Ras binding, it is not sufficient to

trigger signalling [9]. Semaphorin binding on the outside of the

cell may result in clustering of the receptors [6] either from an

autoinhibited, monomeric, or dimeric state [14,15,39]. Such

extracellular rearrangement could be transmitted to the intracel-

lular N-terminal helix. The rearrangement of this juxtamembrane

helix would free up binding site B, allowing the RhoGTPase to

bridge two plexin molecules and stabilize the 3-fold arrangement.

Formation of a trimeric cluster could result in the proper

positioning of the catalytic machinery allowing RasGAP activity

to occur, since it has been shown that clustering of the intracellular

domain is crucial for this activity [9]. In summary, we propose that

receptor clusters nucleated by the dimeric complex on the

extracellular side and the trimeric complex on the intracellular

side will integrate both RhoGTPase and Semaphorin binding into

a single signalling output.

Materials and Methods

Protein Expression and Purification
A series of constructs of the intracellular domain of human

Plexin-B1 (GenBank ID: NP_001123554) lacking both C- and N-

terminal regions as well as the RBD were designed and cloned into

pBacPAK9 with a C-terminal His6-Tag for purification. Of these

constructs three could be solubly expressed via baculovirus

infection in Sf9 cells (Plexin-B1D1, residues 1533–2135; Plexin-

B1D2, residues 1543–2135; and Plexin-B1cyto, residues 1511–

2135). Cells were harvested at 2,0006g for 15 min, resuspended in

binding buffer (20 mM phosphate, pH, 7.4, 500 mM NaCl,

0.5 mM b-mercaptoethanol), sonicated, and then centrifuged at

46,0006g for 1 h at 4uC. The supernatant was collected and the

protein was purified by ion metal affinity chromatography

followed by size exclusion chromatography in 10 mM Hepes,

pH 7.5, 150 mM NaCl, 2 mM TCEP [40].

Mutations were generated by a two-step overlapping PCR using

Pyrobest Polymerase (Takara). Mutant plexin constructs used for

SPR studies were expressed in human HEK 293T cells essentially

as described [41]. Three days after transfection the cells were

harvested and purified following the protocol used for the wild-

type proteins. All mutant proteins had similar expression level

compared to Plexin-B1cyto as determined by SDS-PAGE.

Rac1 Gln61Leu (residues 1–176, GenBank ID: CAB53579) and

Rnd1 (residues 5–200, GenBank ID: BAB17851) were cloned into

the expression vector pET22b, expressed in E. coli BL21 Star

(Invitrogen), and purified following an established protocol

described elsewhere [40]. After purification Rac1 was incubated

with 10 mM EDTA, pH 8.0, and calf intestine alkaline phospha-

tase (NEB) to degrade any bound nucleotide. Subsequently the

protein was loaded with the non-hydrolyzable GTP analogue

Figure 5. Model for intracellular plexin signalling. We propose
that the Ras-GAP activity of Plexin-B1 is a result of a two-step signalling
process. Step one would consist of Rnd1 binding to the intracellular
Plexin-B1 RBD region. Binding of Ras molecules to this complex cannot
result in GTPase activity unless a second binding event, involving
extracellular semaphorin-mediated plexin clustering, induces formation
of the intracellular 3-fold Plexin-B1-Rnd1 complexes. Such an arrange-
ment is stabilised by the interaction of Rnd1 with a novel binding site
on a neighbouring Plexin-B1 molecule, exposed following the
displacement of a juxtamembrane helix at the N-terminal of the plexin
intracellular region. In this clustered arrangement RasGAP activity can
occur and Ras gets inactivated. The trimer on the inside, in conjunction
with semaphorin-plexin dimers on the extracellular side, may lead to
the formation of an extended signalling array. R-Ras/M-Ras (Ras) and
Rnd1 (Rnd) are depicted in their GTP-bound form. Plexin-B1cyto is
depicted in blue rectangle, with sites A and B highlighted. The mobile
juxtamembrane helix at the N-terminal of the plexin intracellular region
is indicated by a red disc. The two GTPases are shown as orange ovals
(Rnd1) and green diamonds (Ras), respectively. Semaphorin induced
dimerization of the plexin ectodomain is indicated by black lines.
doi:10.1371/journal.pbio.1001134.g005
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GppNHp and purified by size exclusion chromatography in

10 mM Hepes, pH 7.5, 150 mM NaCl, 2 mM MgCl2, 2 mM

TCEP.

SEMA4Decto (residues 22–677) was expressed in CHO lecR

cells as previously described [6].

The Ras binding domain of Raf-1 (residues 51–131) was fused

to GST (GST-RBD), expressed in E. coli BL21 Star (Invitrogen),

and purified following an established protocol described elsewhere

[40].

Crystallization, Data Collection, and Structure Refinement
Prior to crystallization all proteins were concentrated by

ultrafiltration to 10 mg/ml and complexes were formed by mixing

Plexin-B1 and RhoGTPase in a 1:1.2 molar ratio. Nano-litre

crystallization trials were set-up using a Cartesian Technologies

robot (100 nl protein solution plus 100 nl reservoir solution) in 96-

well Greiner plates [42], placed in a TAP Homebase storage vault

maintained at 295 K, and imaged via a Veeco visualization system

[43]. The PlexinB1cyto-Rac1* complex crystallized in 1 M Li2SO4,

0.5 M ammonium sulphate, 0.1 M citrate, pH 5.6, and Plexin-

B1D1-Rac1* complex crystallized in 20% PEG 3350, 0.2 M

KSCN, 0.1 M Bis-Tris Propane, pH 6.5.

Diffraction data were collected at 100 K with the crystals being

flash-cooled in a cryo N2 gas stream. Prior to flash-freezing,

crystals were treated with a cryo protectant solution consisting of

25% (v/v) glycerol in mother liquor. The Plexin-B1D1-Rac1*

crystals crystallized as thin needles and data were collected at the

microfocus beamline ID23-2 at the European Synchrotron

Radiation Facility, France, following a helical data collection

strategy. Plexin-B1cyto-Rac1* crystals crystallized as thin squares

and data were collected at beamline I03 at Diamond Light Source,

UK. X-ray data were processed and scaled with the HKL suite

[44]. Data collection statistics are shown in Table 1.

Both structures were solved by molecular replacement using

PHASER [45] with the structure of human Plexin-B1 (PDB ID:

3HM6 [15]) and active Rac1 (PDB ID: 1MH1 [33]) as search

model. The solution was manually adjusted using COOT [46] and

refined using autoBUSTER [47]. Refinement statistics are given in

Table 1; all data within the indicated resolution range were

included. The 4.2 Å structure was refined using 3-fold NCS as

implemented in autoBUSTER [47] and tight geometric restraints

to minimize the introduction of any model bias.

Stereochemical properties were assessed by MOLPROBITY

[48]. Ramachandran statistics are as follows (favoured/disallowed

(%)): Plexin-B1cyto-Rac1* 91.7/0.2, Plexin-B1D1-Rac1* 95.5/0.2

(pre-proline residue Leu1981 is in a disallowed region in both

structures). Superpositions were calculated using SHP [49]. Buried

surface areas of protein-protein interactions were calculated using

the PISA webserver (http://www.ebi.ac.uk/msd-srv/prot_int/

pistart.html).

Surface Plasmon Resonance Binding Studies
SPR experiments were performed using a Biacore T100

machine (GE Healthcare) at 25uC in standard buffer supplement-

ed with 0.05% (v/v) Tween 20. Protein concentrations were

determined from the absorbance at 280 nm using calculated

molar extinction coefficients. All plexin constructs for surface

attachment were enzymatically biotinylated within an engineered

C-terminal tag. These proteins were then attached to surfaces on

which 5,000 RU of streptavidin were coupled via primary amines

[50] yielding a density of 500–5,000 response units (RU) of

biotinylated protein. All experiments were done in duplicates with

independently purified proteins. The signal from experimental

flow cells was corrected by subtraction of a blank and reference

signal from a mock or irrelevant protein coupled flow cell. In all

experiments analyzed, the experimental trace returned to baseline

after each injection and the data fitted to a simple 1:1 Langmuir

model of binding. Kd values were obtained by nonlinear curve

fitting of the Langmuir binding isotherm (bound = C*max/(Kd+C),

where C is analyte concentration and max is the maximum analyte

binding) evaluated using the Biacore Evaluation software (GE

Healthcare).

Functional Cell Collapse Assay
Cellular collapse assays were performed essentially as

described [36]. Briefly, COS-7 cells were seeded on glass

coverslips and transfected with full-length human Plexin B1

carrying an N-terminal Flag-tag essentially as described [42].

Two days after transfection, cells were treated with medium

containing secreted SEMA4Decto and incubated for 30 min at

37uC. Finally, the cells were fixed and stained with anti-Flag

primary antibody (Sigma) and Alexa 488-labelled secondary

antibody (Invitrogen). Cell nuclei were counterstained with

DAPI (Invitrogen) and cells were visualized with a TE2000U

fluorescence microscope (Nikon) equipped with an Orca CCD

camera (Hamamatsu). Plexin B1-expressing cells were classified

as collapsed or non-collapsed on the basis of reduced surface

area. Each experiment was repeated twice and 26200 cells were

counted each time. Results are shown as mean with error bars

representing standard error of the mean.

Pull-Down Assay
Pull-down assays were performed essentially as described [51].

COS-7 cells were seeded in 6-well dishes and transfected with full-

length human Plexin-B1 and its mutants, respectively, and R-Ras.

Two days after transfection, cells were treated with medium

containing secreted SEMA4Decto and incubated for 10 min at

37uC. Cells were washed twice with ice-cold phosphate-buffered

saline and then lysed with lysis buffer (50 mM Tris-HCl, pH 7.5,

200 mM NaCl, 5 mM MgCl2, 10% glycerol, 1% Non-ident P-40

substitute, 2 mM b-mercaptoethanol). Cell lysates were incubated

with GST-RBD pre-coupled to glutathione-agarose beads (GE

Healthcare) for 45 min at 4uC. After three wash steps with lysis

buffer the beads were collected in Laemmli sample buffer and

analyzed by SDS-PAGE and immunoblotting with R-Ras- and

GST-specific antibodies, respectively.

Accession codes. Atomic coordinates and structure factors of

the Plexin-B1D1-Rac1* and the Plexin-B1cyto-Rac1* complexes

have been deposited in the Protein Data Bank with accession

numbers 3SU8 and 3SUA, respectively.

Supporting Information

Figure S1 Stereoview of the electron density of the Plexin-B1D1-

Rac1* interface. The orientation is similar to Figure 1b, right

panel. The density represents a 3.2 Å SigmaA-weighted 2Fobs-

Fcalc map contoured at 1.0 s.

(TIF)

Figure S2 Superposition of the Plexin-B1apo structure onto the

Plexin-B1D1-Rac1* complex. Colour coding is as in Figure 1b with

Plexin-B1apo in pale green. Coordinates for the Plexin-B1apo

structure can be found under PDB ID: 3HM6. The complexes

were aligned onto the plexin GAP domains using SHP [49]. The

orientation is similar to Figure 1b, right panel. The slight rotation

of the Plexin-B1D1 RBD in comparison to the Plexin-B1apo

structure is indicated by an arrow.

(TIF)
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Figure S3 Sequence alignment of the intracellular region of plexins

from different classes and organisms. The plexin sequences were

aligned using MULTALIN (bioinfo.genotoul.fr/multalin/multa-

lin.html) and formatted with ESPRIPT (espript.ibcp.fr/ESPript/

ESPript/). Numbering corresponds to the full-length human Plexin-

B1. Secondary structure elements are shown for human Plexin-B1.

Residues that were mutated and studied in SPR as well as in the

cellular collapse assays are marked with a dot; those that were only

studied in the cellular assay are marked with a triangle.

(TIF)

Figure S4 Sequence alignment of the human RhoGTPases

Rac1, Rnd1, and RhoD. The alignment is prepared as described

in Figure S2. Numbering corresponds to human Rac1. Secondary

structure elements are shown for human Rac1. The three regions

characteristic for small GTPases and their activation state, the P-

loop, switch I, and switch II, are marked by yellow boxes.

(TIF)

Figure S5 Superposition of the Plexin-B1 RBD-Rnd1 complex

onto the Plexin-B1D1-Rac1* structure. Colour coding is as in

Figure 1b. Rnd1 is in pale green and the Plexin-B1 RBD of the

Plexin-B1 RBD-Rnd1 complex in purple. Coordinates for the

Plexin-B1 RBD-Rnd1 complex can be found under PDB ID:

2REX. The complexes were aligned onto the plexin molecules

using SHP. The orientation is similar to Figure 1b, right panel,

with Rnd1 residues labelled in pale green.

(TIF)

Figure S6 Binding of Rac1* and Rnd1 to site A mutants of Plexin-

B1. Left, representative sets of experimental sensorgrams from typical

equilibrium-based binding experiments, with reference subtraction.

Different concentrations of the respective RhoGTPase were injected

over surfaces coupled with the plexin constructs. For all injections, the

experimental traces reached equilibrium and returned to baseline after

the injection. Right, plot of the equilibrium binding response (response

units (RU)) against RhoGTPase concentration ranging from 120 nM

to 500 mM. Within one experiment each concentration was measured

twice. All experiments were performed in duplicate. Best-fit binding

curves corresponding with a 1:1 binding model are shown as lines.

Binding constants (Kd) are given as mean with the error representing

the standard error of the mean. WT, wild-type; ND, not determinable.

(a) Plexin-B1cyto Leu1815Pro+Rac1*, (b) Plexin-B1cyto Leu1815-

Glu+Rac1*, (c) Plexin-B1cyto WT+Rnd1, (d) Plexin-B1cyto

Trp1815Glu+Rnd1, (e) Plexin-B1cyto Leu1815Pro+Rnd1, and (f)

Plexin-B1cyto Leu1815Glu+Rnd1.

(TIF)

Figure S7 Mutations in site B but not site A abolish Plexin-B1

RasGAP activity. COS-7 cells transfected with full-length Plexin-B1

and its mutants were stimulated with SEMA4Decto for 10 min. The

cell lysates were incubated with GST-fused Ras-binding domain of

Raf-1 and bound R-Ras and total cell lysates were detected by

immunoblotting. The results shown are representative of two

independent experiments that yielded similar results. WT, wild-

type; mock, chicken receptor protein tyrosine phosphatase s Ig1-2.

(TIF)

Figure S8 Stereoview of the electron density of the Plexin-

B1cyto-Rac1* site B interface. The orientation is similar to

Figure 2b, third panel. The density represents a 4.4 Å SigmaA-

weighted 2Fobs-Fcalc map contoured at 1.0s.

(TIF)

Figure S9 Binding of Rac1* and Rnd1 to site B mutants of Plexin-

B1. Data are presented as in Figure S5. (a) Plexin-B1cyto

Thr1920Glu+Rac1*, (b) Plexin-B1cyto Leu2036Arg+Rac1*, (c) Plexin-

B1cyto Arg1921Ala+Rac1*, (d) Plexin-B1cyto Thr1920Glu+Rnd1,

(e) Plexin-B1cyto Leu2036Arg+Rnd1, and (f ) Plexin-B1cyto Arg1921Ala

+Rnd1.

(TIF)

Figure S10 Binding of Rac1* and Rnd1 to Plexin-B1cyto and

Plexin-B1D2. Data are presented as in Figure S5. (a) Plexin-B1cyto

Leu1815Glu+Rac1*, 500 RU loaded on the chip, (b) Plexin-B1cyto

Leu1815Glu+Rnd1, 500 RU loaded on the chip, (c) Plexin-B1D2

Leu1815Glu+Rac1*, 500 RU loaded on the chip, (d) Plexin-B1D2

Leu1815Glu+Rnd1, 500 RU loaded on the chip, (e) Plexin-B1D2

Leu1815Glu+Rac1*, 5,000 RU loaded on the chip, and (f) Plexin-B1D2

Leu1815Glu+Rnd1, 5,000 RU loaded on the chip. Data for binding of

Rac1* or Rnd1 to Plexin-B1cyto Leu1815Glu with 5,000 RU loaded on

the chip can be found in Figure S5b and S5f, respectively.

(TIF)

Figure S11 The juxtamembrane helix is predicted to form a

trimeric coiled-coil. Coiled-coil probabilities were calculated for

human Plexin-B1 using MultiCoil (http://groups.csail.mit.edu/

cb/multicoil/cgi-bin/multicoil.cgi) and plotted against residue

number. Overall probabilities are shown in dashed blue, trimeric

coiled-coil probabilities in green, and dimeric coiled-coil proba-

bilities in red. The domain organization corresponding to the

residue numbers is shown under the graph.

(TIF)
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