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High-throughput sequencing has revolutionized the field of microbiology, however,
reconstructing complete genomes of organisms from whole metagenomic shotgun
sequencing data remains a challenge. Recovered genomes are often highly fragmented,
due to uneven abundances of organisms, repeats within and across genomes,
sequencing errors, and strain-level variation. To address the fragmented nature of
metagenomic assemblies, scientists rely on a process called binning, which clusters
together contigs inferred to originate from the same organism. Existing binning
algorithms use oligonucleotide frequencies and contig abundance (coverage) within
and across samples to group together contigs from the same organism. However,
these algorithms often miss short contigs and contigs from regions with unusual
coverage or DNA composition characteristics, such as mobile elements. Here, we
propose that information from assembly graphs can assist current strategies for
metagenomic binning. We use MetaCarvel, a metagenomic scaffolding tool, to construct
assembly graphs where contigs are nodes and edges are inferred based on paired-
end reads. We developed a tool, Binnacle, that extracts information from the assembly
graphs and clusters scaffolds into comprehensive bins. Binnacle also provides wrapper
scripts to integrate with existing binning methods. The Binnacle pipeline can be found
on GitHub (https://github.com/marbl/binnacle). We show that binning graph-based
scaffolds, rather than contigs, improves the contiguity and quality of the resulting bins,
and captures a broader set of the genes of the organisms being reconstructed.

Keywords: metagenomics, binning approach, metagenome assembly, strain variation, genome scaffolding

INTRODUCTION

Advances in high-throughput sequencing strategies have spurred microbiome research and
revealed important insights into the microbial communities that inhabit human, animal, and
environmental habitats (The Human Microbiome Project Consortium, 2012; Oh et al., 2014;
Zeevi et al., 2019). In particular, whole metagenomic shotgun sequencing, which allows for a
comprehensive analysis of microbial DNA from a sample, has been instrumental in expanding our
understanding of the functional potential and genetic composition of different microorganisms that
have not been previously cultured. An important step in characterizing organisms that have not
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been isolated is the reconstruction of their complete genome
sequence (Uritskiy and DiRuggiero, 2019; Mu et al., 2020). This
process involves assembling short metagenomic reads into longer
contiguous sequences (contigs) based on sequence overlap.
Paired-end read information can then be used to link together
and orient assembled contigs into scaffolds (Gao et al., 2011;
Koren et al., 2011; Nurk et al., 2017; Ghurye et al., 2019).
However, constructing the genomes of organisms from a mixture
(metagenomic assembly) is computationally challenging. The
uneven abundance of organisms, repetitive sequences within and
across genomes, sequencing errors, and strain-level variations
within a single sample often contribute to incomplete and
fragmented assemblies.

In order to improve upon the fragmented assemblies
constructed by metagenomic assembly tools, researchers utilize
a strategy called binning, which involves clustering together
genomic fragments that likely originate from an individual
organism. Several strategies have been proposed for metagenome
binning. Classification-based approaches rely on assigning
taxonomic labels to genomic contigs, then grouping together
those contigs that share a taxonomic label (Nguyen et al.,
2014; Menzel et al., 2016; Von Meijenfeldt et al., 2019; Wood
et al., 2019). Because many of the microbes found in microbial
communities have yet to be characterized, classification-based
approaches are limited to organisms (and genomic segments
within) that are sufficiently related to known sequences.
Clustering-based approaches focus instead on genomic features,
such as GC content, oligonucleotide frequencies and contig
abundance (coverage), to cluster together contigs that share
similar properties (Tyson et al., 2004; Albertsen et al.,
2013). While such approaches are effective even when an
organism shares no similarity to any known sequences, they
are stymied by genomic regions that have unusual DNA
composition or that appear at higher depth of coverage than
other segments of the organism of interest – situations that
frequently occur in plasmids, mobile genetic elements, and highly
conserved genomic segments (such as the 16S rRNA operon)
(Arredondo-Alonso et al., 2017).

Clustering/binning has also been applied to genes rather
than contigs (Bjørn Nielsen et al., 2014). The resulting clusters
were termed co-abundance gene groups (CAGs). CAGs that
contained a large number of genes, roughly equivalent to the
expected number of genes in a bacterial genome were referred
to as metagenome species (MGS). More recently, in metagenome
binning, when a cluster of contigs represents a complete, or
close to complete, genome, it is referred to as a “metagenome-
assembled genome” (MAG). While it is possible to recover MAGs
from automated metagenome binning algorithms, many of the
clusters obtained are incomplete or contaminated, and manual
“finishing steps” are required to recover MAGs. In this paper,
because we work with clusters obtained directly from binning
algorithms, we refer to them as metagenomic bins rather than
MAGs unless, referring to high quality bins.

While scaffolding and binning are both approaches for
grouping together contigs that belong to an individual organism,
they are often applied independently of each other, with some
exceptions. MaxBin (Wu et al., 2014), for example, uses genomic

scaffolds as a substrate for binning, however, they appear to
be handled as if they were linear contigs. A newer version
of this tool, MaxBin 2.0 (Wu et al., 2016), focuses solely on
contigs. COCACOLA (Lu et al., 2017) incorporates paired-end
information as another source of linkage information during the
binning process, and does not explicitly construct or leverage
scaffold information. GraphBin2 (Mallawaarachchi et al., 2020)
independently bins contigs then refines the bins in the context
of an assembly graph, by correcting bin assignments and
propagating labels to unbinned nodes in the graph.

Here, we demonstrate the effectiveness of explicitly accounting
for scaffold information in binning. We describe novel
algorithms for estimating scaffold-level depth of coverage
information that are effective even for non-linear (graph)
scaffolds, and show that variation-aware scaffolders, which detect
and explicitly model ambiguity in the assembly graph, help
further improve the completeness and quality of the resulting
metagenomic bins. We present a new software tool, Binnacle that
accurately computes coverage of graph scaffolds and seamlessly
integrates with leading binning methods. We show that using
graph scaffolds for binning improves the contiguity and quality
of metagenomic bins and captures a broader set of the accessory
elements of the reconstructed genomes. Binnacle is implemented
in Python 3 and released open source on GitHub at https://
github.com/marbl/binnacle.

MATERIALS AND METHODS

Binnacle operates as an add-on to existing binning tools. It
relies on MetaCarvel (Ghurye et al., 2019) to construct genomic
scaffolds, then uses a new algorithm for estimating the depth
of coverage/abundance of scaffolds from read-mapping data,
taking into account genomic variation as well as potential
mis-assemblies and other artifacts. The resulting abundance
information across one or more samples is then provided
to a binning algorithm in order to generate scaffold-level
bins (Figure 1). Each step in this pipeline is described in
more detail below.

Metagenome Assembly
Like other binning approaches, Binnacle relies on the output
of a metagenomic assembler. Any metagenomic assembler can
be used to assemble the data, with the caveat that assembly
errors can have a significant negative impact on binning. The
results presented in this paper were generated by assembling
each sample separately (i.e., avoiding a possibly expensive co-
assembly step), and details about the tools and parameters used
are presented below.

Scaffolding With MetaCarvel
Sequencing reads are mapped back to the assembled contigs, and
the paired-end read information is used to scaffold the contigs
using MetaCarvel (Ghurye et al., 2019). This process results in
a scaffold graph, where nodes are contigs and edges represent
contig adjacencies inferred from paired-end read information.
The scaffold graphs constructed by MetaCarvel are non-linear
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FIGURE 1 | Schematic diagram of the Binnacle pipeline. Short reads are assembled into contigs with a metagenome assembly tool. These contigs are oriented and
ordered to generate graph scaffolds. For each scaffold, based on the length, orientation, and gap estimates, each contig in a scaffold is assigned global start and
end coordinates; and the span of the scaffold is computed. Scaffold coverage is the per-base depth of coverage across the scaffold span. In the mis-assembly
detection and correction routine, scaffolds are broken up if there are discontinuities in coverage signals. The final set of scaffolds and corresponding coverage
information are used as input to binning methods to generate metagenomic bins.

and preserve complex graph patterns, such as bubbles, which
manifest when contigs diverge into one or more paths before
converging again. Such patterns typically correspond to sequence
variants between closely related organisms within a community,
such as insertion/deletion (indel) events. Binnacle specifically
works with the MetaCarvel scaffolder because of its unique ability
to preserve variation in scaffolds.

Estimating Scaffold Span and Coverage
One of the key features used by binning algorithms is information
about the abundance/depth of coverage of genomic contigs,
either within a single sample, or across multiple samples.
To our knowledge, coverage estimation of scaffolds within
metagenomic data sets has not been critically explored. Most
current approaches rely on raw read counts averaged across
the contigs or scaffolds being binned, similar to the “reads per
kilo-basepair per million” (RPKM) measure used in RNA-seq
analysis. A number of artifacts impact coverage estimation from
scaffolds using such an approach, including potential overlaps
between contigs (particularly relevant within regions of genomic
variation), and assembly or scaffolding errors.

In non-linear “graph” scaffolds, such as those generated by
MetaCarvel, the genomic extent covered by the scaffold cannot
be directly inferred from the size of the contigs that are scaffolded
together. To estimate the scaffold span – total effective length
of the scaffold, i.e., the distance from the starting contig to
the maximal rightmost coordinate of contigs contained in the
scaffold – we rely on the following algorithm. For every graph
scaffold, we identify a node with in-degree 0 which is assigned
coordinate 0. If a scaffold contains no nodes with in-degree 0, we
break the cycle using an approximation of the minimum feedback
arc set problem. This problem is known to be NP-complete
(Berger and Shor, 1990; Even et al., 1998) and hence we use an
approximate solution: delinking the incoming edges of a vertex
with the lowest in-degree. Coordinates for the other contigs in
the scaffold are assigned in a breadth-first manner taking into
account the length of the contig, the length of overlap between
contigs, and the relative orientation of the contigs (Figure 2). If
there are multiple possible coordinate assignments for a contig
(vertex), we retain the one with the largest possible value. We
use this heuristic because choosing any other strategy to break
ties might lead to an artificial increase in depth of coverage
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FIGURE 2 | Assigns start and end coordinates to contigs in a scaffold. The lowest start coordinate and the highest end coordinate determine the scaffold span.

and negatively impact coverage computation. The span of the
scaffold is then assigned to the distance between the right-most
and left-most ends of the scaffolded contigs, based on the inferred
contig coordinates.

Once the coordinates are available, we map reads to the contigs
using Bowtie 2 (version 2.3.0) (Langmead and Salzberg, 2012)
and estimate per-base contig coverage using the genomecov
program in the bedtools (version 2.26.0) suite with the options
-bga and -split. The per-base coverage of the scaffold is computed

by adding up the coverage information of the contigs that overlap
at each position in the scaffold span.

Detection and Correction of
Mis-Assemblies
When building graph scaffolds, MetaCarvel uses mapping of
paired-end reads to contigs to infer adjacency information,
however, this approach can sometimes falsely link together
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contigs. To detect such events, we rely on discontinuities in the
depth of coverage signal as follows.

Ignoring sequencing biases, we expect each genomic position
within a scaffold span to be covered equally well (uniformly).
Hence, we assume that the per-base coverage of each organism
(scaffold) follows a Poisson distribution and can be approximated
by a Gaussian distribution with a mean, µ and a variance, σ2. To
break up scaffolds containing contigs possibly originating from
multiple species, we rely on a change point detection algorithm
(Adams and MacKay, 2007; Aminikhanghahi and Cook, 2017)
that operates on the per-base coverage signals.

To identify change points, we slide a window w of size |w|
along the coverage signal, computing the empirical means and
variances. The user can select any value of w, but by default, we set
|w| = 1500 bp. For scaffolds shorter than 3000 bp, we recursively
set |w| = |w| /5 until the scaffold length is at least 2w. For each
position i along the scaffold span, we note the mean µi−1 and
variance σ2

i−1 of the window wi−1 defining the coverages from
the coordinates i− |w| to i and the mean µi and variance σ2

i
of the window wi defining the coverage along the positions from
i to i+ |w|. We identify the windows wi−1 and wi with respect to
the position i as predecessor and successor windows, respectively.
Given the coverage distribution for the two windows, we compare
these distributions using the two-sample Z-statistic given by,

Z =
µi−1 − µi√
σ2i−1 + σ2i

The empirical distribution of the Z-statistic such derived forms a
Gaussian distribution, and we select the points within the tails
of the Z-statistic distribution as candidates for change points
(by default, we set α = 1 percentile). To reduce the potential
for false-positives, we next check if the change points coincide
with the start or end of a contig within the scaffold, which
suggest that the identified contig is incorrectly linked into the
scaffold. Therefore, we delink the contig from its predecessors
if the change point coincides with its start and delink from its
successor if the change point coincides with its end (β = read
length). We also note that there are a few change points identified
by our algorithm that do not coincide with the start or end of a
contig. These could be due to either statistical artifacts or errors
introduced by the assembler, but we do not currently address
these in Binnacle.

This change point detection algorithm can work with both
contig and scaffold coverages. We note that 40% of the time, a
change point coincides with the beginning or end of a contig.
When this happens, we delink the contig in the scaffold (i.e.,
remove the connections between the contig and its neighbors,
resulting in multiple scaffolds). The remaining 60% of change
points either occur too close to a previously delinked contig
or occur in the middle of contigs, revealing potential assembly
errors. The handling of such situations requires further research
that goes beyond the scope of this manuscript. The algorithm
is described in detail in Figure 3. An example of the algorithm
applied to a scaffold in the HMP dataset is shown in Figure 4. In
the HMP dataset, an average of 4% of all the scaffolds were broken
by change point detection.

After correcting potential scaffolding errors, Binnacle
generates files reporting the per-base coverage for all scaffolds,
describing the global coordinate information and describing the
mean and standard deviation in coverage for all the scaffolds. In
addition, we also provide a FASTA file of the final set of scaffolds
after the mis-assembly detection routine. The abundance file and
the scaffolds file provided by Binnacle can be readily used by
existing binning algorithms. We currently provide interfaces to
MetaBAT2 (Kang et al., 2019), MaxBin 2.0 (Wu et al., 2016), and
CONCOCT (Alneberg et al., 2014).

Estimating Scaffold Coverage Across
Multiple Samples
The procedure described above is used when estimating scaffold
coverage within the sample from which the scaffold is derived.
If multiple samples are available, binning algorithms can
leverage coverage information from all the samples to identify
contigs/scaffolds that co-vary in abundance. When using multiple
samples, the reads from each sample are mapped to the
contigs/scaffolds of all of the samples and the mean abundance
of each contig/scaffold is reported on a per sample basis. This
approach produced fewer high contamination bins than binning
without combining coverage information from multiple samples
(Supplementary Figure 1). Identifying and comparing contigs
across samples is challenging. Determining how to best use
abundances estimated from multiple samples remains an active
area of research.

Analysis of Metagenomic Datasets
To benchmark Binnacle, we first relied on a known-composition
mock dataset described in Kyrgyzov et al. (2020a), which
is referred to as “simulated data” in the remainder of this
paper. The corresponding data were obtained from the GigaDB
database (Kyrgyzov et al., 2020b). We also evaluated our
method on three real metagenomic datasets: (1) a time series
of 18 fecal samples from a single premature infant (infant
31) from Sharon et al. (2013) referred to as the “infant gut
data” in the remainder of this paper, (2) 20 complex stool
samples from the Human Microbiome Project (The Human
Microbiome Project Consortium, 2012) referred to as the
“HMP gut data,” and (3) a time series of 12 samples from
subject HV12 in a skin microbiome study (Oh et al., 2016)
referred to as the “skin longitudinal data.” All three datasets
are complex, human-associated microbiomes. The infant gut
data was selected because there is good understanding of the
underlying community structure and the study assembled and
published several reference genomes1 of organisms identified
within these samples. For the three real metagenomic datasets, we
downloaded reads from the NCBI read archive. Supplementary
Table 1 provides a list of accessions from each dataset.

For the HMP gut dataset, we used IDBA-UD assemblies
provided by the HMP consortium. For all other datasets, we
assembled the reads into contigs using MEGAHIT (version
1.1.2) (Li et al., 2016). For all datasets, we generated scaffolds
using MetaCarvel (Ghurye et al., 2019). Both MetaCarvel

1https://ggkbase.berkeley.edu/carrol/organisms
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FIGURE 3 | Pseudocode describing the change-point detection algorithm. The algorithm takes in two parameters α and β denoting the threshold for identifying
outliers and the cutoff parameter to delink contigs, respectively.

and MEGAHIT were run with default parameters. MetaCarvel
outputs both variation-aware graph scaffolds and optimized
linear sequences as linear scaffolds. Through Binnacle, a mis-
assembly detection and correction routine was used to break
up any mis-joined scaffolds, and then scaffold coverages were
estimated. We refer to scaffolds obtained through the Binnacle
step as “graph scaffolds” and linear sequences from MetaCarvel
as “linear scaffolds.”

To assess the quality of binning, in the simulated data set
we relied upon the known genome sequences from which this
dataset was constructed. Similarly, the publication describing the
infant gut dataset identified a set of 33 reference genomes that
were present in these samples, which we use as a reference for
validation. In both datasets, we aligned the binned contigs to
the reference genomes using minimap2 (version 2.1) (Li, 2018).
Each bin was assigned to the genome to which the majority of
base pairs aligned. We compute completeness as the percentage of
the assigned genome represented in the bin, and contamination
as the percentage of base pairs in the bin that did not align
to the assigned genome. For the HMP gut data and the skin
longitudinal data, where reference genomes were not available,
we used CheckM (version 1.0.11) to compute the completeness
and contamination of the bins.

In the simulated dataset, we tested three binning methods –
MaxBin 2.0 (version 2.2.5) (Wu et al., 2016), COCACOLA
(Lu et al., 2017), and MetaBAT2 (version 2.12.1) focusing on
three features: contigs, linear scaffolds, and graph scaffolds. All
methods employ a different threshold on the length of contigs
used for binning. To make comparisons across binning methods
fair, we ran MaxBin 2.0, COCACOLA, and MetaBAT2 with the
same contig threshold (>2500 bp). COCACOLA can use paired-
end information to assist binning. To assess the effectiveness of
this feature we ran COCACOLA in paired-end mode on the
assembled contigs. When applied to graph scaffolds and linear
scaffolds, we disabled COCACOLA’s paired-end processing.

MetaBAT2 generated bins with lower contamination than
both MaxBin 2.0 and COCACOLA (discussed later in results).
Hence, for the three real metagenomic datasets, we only
show results obtained with MetaBAT2 (Kang et al., 2019)
(default parameters). MetaBAT2 uses the abundances and
sequence composition information to bin genomic sequences.
We estimated the coordinates, span, and abundance of scaffolds
using Binnacle for each sample with its own set of reads. We then
estimated abundances for each scaffold along the scaffold span
using the reads of all other samples in the dataset as additional
features. Similarly, while binning with contigs and binning with
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FIGURE 4 | The mis-assembly detection algorithm in Binnacle. This is a scaffold from HMP sample SRS012902. The plot on the top shows the position of contigs
along the scaffold span. The plot at the bottom shows the per-base depth of coverage across the scaffold span. The locations detected by the change point
detection algorithm are highlighted by vertical red lines.

linear scaffolds, we computed mean and variance of coverages
from all samples.

To examine bins in the skin longitudinal dataset, we focused
on bins that belonged to the Cutibacterium (Propionibacterium)
genus, as identified by CheckM (Parks et al., 2015). We
extracted the contigs within each bin and aligned them
to the Cutibacterium acnes KPA171202 reference genome
(GCA_000008345.1) using MetaQUAST (Mikheenko et al.,
2016). Contigs within linear and graph scaffolds were used
(instead of the scaffold sequences) to prevent misalignment of
structural variant features. For pangenome analyses, a total of
27 complete C. acnes reference genomes were downloaded from
NCBI (see Supplementary Table 2 for accession numbers). Genes
were predicted from these references using Prokka (Seemann,
2014) and the pangenome was calculated using Roary (Page et al.,
2015). Genes found in all 27 references were considered “core”
genes and those found in at least 2 samples were considered
“accessory.” Genes were predicted in the MAGs using Prodigal
(Hyatt et al., 2010) with the “-p meta” option and were aligned
using BLAST (Altschul et al., 1990) against the pangenome
reference sequences (E-value 1e-3, percent identity 75). BLAST
hits with a query and subject coverage of at least 50% were
retained and annotated as either “core” or “accessory” genes.
Genes with multiple hits were assigned to the hit with the greatest
alignment length and percent identity. Genes identified in the
metagenomic assemblies but not found in the reference genomes
were flagged as “putative-accessory” genes. CRISPR/Cas elements
were detected within the bins using CRISPRCasFinder on the web

(Couvin et al., 2018). Contigs in MET0773 were annotated using
Prokka v 1.12 (Seemann, 2014) and visualized with the R package
genoPlotR (Guy et al., 2010).

RESULTS

To determine whether graph scaffolds can improve binning
quality, we analyzed one simulated dataset and three sets of real
metagenomic samples: infant gut samples, HMP gut samples,
and skin longitudinal samples, described further in Methods. For
samples from each of these datasets, we assembled and binned
contigs and scaffolds with Binnacle and MetaBAT2.

Impact of Accurate Estimation of
Scaffold Coverage/Abundance
Depth of coverage information is one of the key features used
by binning algorithms. Correctly estimating this information is
difficult, particularly in metagenomic datasets where genomic
variants and highly conserved regions confound the signal. As
described in Methods, Binnacle leverages information about the
relative placement of contigs inside of a scaffold to better estimate
abundance. As seen in Figure 5, the coverage signal estimated
by Binnacle across the scaffold span of a single scaffold from the
HMP stool sample SRS023829 is fairly uniform. This signal takes
into account the overlap between multiple contigs, aggregating
the coverage information within the overlapping region. The
contigs from this scaffold can be assigned to organisms from
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FIGURE 5 | An example scaffold with coverage estimated with Binnacle. The plot at the top shows the position of contigs along the scaffold span. Contigs within the
red dotted box are part of a bubble (signature of strain variation) detected by MetaCarvel. Only three contigs (highlighted in blue color) were binned by MetaBAT2
when contigs rather than scaffolds were provided as input. The plot at the bottom shows the cumulative per-base depth of coverage across the scaffold span as
estimated by Binnacle.

the Bacteroides genus through a BLAST (Altschul et al., 1990)
search against the nt database. When using contigs alone for
binning, only three of these contigs were binned (highlighted in
blue color in Figure 5). Some of the unbinned contigs may have
been excluded due to their size as, by default, MetaBAT2 only
bins contigs greater than 2,500 base pairs. However, there were
also several long contigs that remained unbinned despite having
strong paired-end read connections to the rest of the contigs.

Binnacle Improves Contiguity,
Completeness, and Contamination of
Bins
To assess the effectiveness of different types of information in
binning, we provided binning algorithms with three sources
of data: (i) contigs (the most common usage); (ii) linear
scaffolds; and (iii) graph scaffolds that preserve the ambiguity
introduced in the assembly graph by genomic variation. The
comparison between linear scaffolds and graph scaffolds allows us
to determine whether any improvement in binning effectiveness
is due to the longer sequences provided to binning algorithms,
or if there is a real benefit in accounting for the structure of the
graph in regions of genomic variation.

We compared results from three binning methods, MaxBin
2.0, COCACOLA, and MetaBAT2 each supplied with contigs,
linear scaffolds, or graph scaffolds. For all three methods,

bins generated with graph scaffolds comprised more base
pairs, and had higher completeness and lower contamination
than bins generated with contigs or with linear scaffolds
(Figure 6). The simulated dataset contained 100 genomes.
We aligned contigs from each bin to the known reference
genomes and taxonomically annotated bins with the genome
for which the majority of base pairs aligned. To ensure
only one bin per reference genome, we only considered
bins that were at least 50% complete. Graph scaffolds, linear
scaffolds, and contigs recovered 40, 38, and 21 putative
genomes on average, respectively. In the case of COCACOLA,
a tool that can leverage paired-end information natively,
we observed that its handling of this information was less
effective than that provided by scaffolding approaches such
as MetaCarvel (the basis for the scaffolds used in Binnacle)
(second row in Figure 6). Moreover, when using paired-end
information, contiguity and completeness were comparable;
only contamination of the bins was improved. Irrespective of
the binning method employed, graph scaffolds improved the
contiguity, completeness, and contamination of the resulting
bins. However, we used MetaBAT2 as the binning method for the
remaining analyses in this paper.

We assessed both the completeness and level of contamination
of the resulting bins from all three real metagenomic datasets.
For the infant gut dataset, we computed completeness and
contamination of the bins based on a set of 33 reference
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FIGURE 6 | Binning with graph scaffolds improves contiguity, completeness, and contamination in genome bins from the simulated dataset. Comparing bins
generated by MetaBAT2 (solid lines) (1), COCACOLA (dotted lines) (2), and MaxBin 2.0 (dashed-dotted lines) (3) using contigs (yellow), linear scaffolds (black), and
graph scaffolds (blue) for the simulated dataset. COCACOLA contigs were binned both with and without paired end information. (A) Cumulative base pairs binned
with contigs, linear scaffolds, and graph scaffolds. Bins are ordered in decreasing order of their size. The upper curve corresponds to higher contiguity for the same
number of bins. (B) Completeness is defined as the percentage of the assigned genome represented in the bin. Bins are ordered in decreasing order of their
completeness value. The upper curve indicates that more base pairs are binned by graph scaffolds at the same or higher level of completeness. (C) Contamination
of a bin is defined as the percentage of base pairs that did not align to the assigned genome. Bins are ordered in the increasing order of their contamination value.
The higher curve indicates that more base pairs are binned by graph scaffolds at the same or lower level of contamination.

genomes that were identified to be present in these samples (see
section “Materials and Methods”). Similar to the performance on
simulated data, bins generated with graph scaffolds contained
more base pairs than bins generated with contigs and linear
scaffolds (Supplementary Figure 2). Moreover, bins from graph
scaffolds had higher completeness and lower contamination than
bins generated with contigs and linear scaffolds.

We next analyzed complex metagenomic samples from the
HMP gut study. We did not have prior information about
the community structure and genomes present, so we used
CheckM (Parks et al., 2015) to evaluate the bins. CheckM
uses sets of highly prevalent single-copy genes to assess the
overall quality of genomes or genome bins, including their
completeness, contamination, and strain heterogeneity. Bins
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FIGURE 7 | Graph scaffolds bin more contigs and reduce bin contamination in the HMP gut dataset. Comparing bins generated by MetaBAT2 using contigs, linear
scaffolds, and graph scaffolds for the HMP gut dataset. The completeness and contamination of bins were evaluated with CheckM. (A) Cumulative base pairs
binned with contigs, linear scaffolds, and graph scaffolds. Bins are ordered in decreasing order of their size. The upper curve corresponds to higher contiguity for the
same number of bins. (B) Bins are ordered in decreasing order of their completeness value from CheckM evaluation. The upper curve indicates that more bins are at
the same or higher level of completeness. (C) Bins are ordered in the increasing order of their contamination value from CheckM evaluation. The higher curve
indicates that more bins are at the same or lower level of contamination.

generated from linear scaffolds grouped more base pairs than bins
generated with contigs (Figure 7A). They also had comparable
completeness and generally lower contamination (Figures 7B,C).
When using graph scaffolds that include potential strain variants,
the contiguity of the resulting bins improved, and a majority of
bins have low contamination level (Figure 7, solid blue line).

Samples in the HMP gut dataset contained an average of
70 million reads. Binnacle took an average of 7.75 min to run
(min = 2.7, max = 96.75, SD = 31.75 min) and had a peak memory
usage of less than 3GB on average (min = 1.6, max = 10, SD = 2.57
GB). The run time and memory requirements on the HMP gut
samples are shown in Supplementary Table 4. We ran these
samples on a Linux computing cluster specifying a memory limit
of 36 GB using a single processor. Given that these jobs took less
than 10 GB of memory to run, they should run efficiently on most
modern computing hardware.

Binnacle Recovers Cutibacterium acnes
Bins From Sebaceous Skin Samples
To further evaluate Binnacle’s performance, we used it to bin
the skin longitudinal dataset with multiple samples from two
sebaceous, or oily, skin sites – the back of the head (occiput)
and the external auditory canal of the ear – as well as two
moist body sites – the toe web and plantar heel – all from the
same healthy volunteer. Within these samples, there were similar
improvements in bin contiguity, completeness, and level of
contamination when binning graph scaffolds compared to when
binning contigs and linear scaffolds (Supplementary Figure 3).

Cutibacterium acnes, formerly referred to as
Propionibacterium acnes, is a known prominent bacterial
community member at sebaceous skin sites because it utilizes
the fatty acids in the sebum (the oily substance produced by
sebaceous glands) for energy. Different strains of the commensal
C. acnes have been associated with acne vulgaris (Fitz-Gibbon
et al., 2013). Because of its prominence on the skin and its
implications for skin health, we searched for this organism in the

skin longitudinal dataset; we were able to recover bins belonging
to the Cutibacterium genus from five of the six sebaceous
samples (Table 1). These bins contained contigs belonging to
C. acnes. We mapped the Cutibacterium bins to the reference
genome for C. acnes and found that bins generated with graph
scaffolds generally covered a greater proportion of the reference
genome than bins generated with contigs and linear scaffolds.
Furthermore, both linear and graph scaffolds were able to
recover a Cutibacterium bin from sample MET0754 that was not
identified when binning with contigs alone.

A common concern with binning algorithms is that they
largely capture the core genome of organisms, omitting
potentially relevant accessory genes. We classified C. acnes genes
into core, accessory, and putative-accessory genes as described
in Methods. As seen in Figure 8, bins constructed from graph
scaffolds captured a larger fraction of accessory and putative-
accessory genes, while bins constructed from contigs (the
most commonly used approach) contained mostly core genes.
Among the accessory and putative accessory genes identified in
the metagenomic assemblies, 86.9% were binned within graph
scaffold bins (10.5% were uniquely binned by graph scaffolds and
no other methods).

Binnacle Captures Structural Genomic
Variation
By using scaffolds that include structural variants, we intended
to capture genes and genomic elements that are typically missed
by contig-based analyses. As shown in Table 1, many contigs
identified within variant regions by MetaCarvel appeared only
in bins constructed from these scaffolds, i.e., the information
typically used by binning algorithms was not able to associate
these contigs with the C. acnes genome.

In sample MET0773, all three scaffolding methods detected a
C. acnes bin (Table 1), however, the C. acnes bin generated using
graph scaffolds was more contiguous and had less fragmentation
than the bin generated using contigs (Figure 9A). Furthermore,
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a total of 32 variant contigs (2 indels, 20 simple strain variants,
and 10 complex strain variants) were uniquely identified in the
C. acnes bin generated using graph scaffolds. One such variant
contained elements of the subtype I-E CRISPR-Cas system
(Figure 9B) that has previously been characterized in C. acnes
(Brüggemann et al., 2012). Within this same sample, a contig
that was not in a structural variant but was uniquely binned
using graph scaffolds contained a CRISPR array with five spacers,
one of which had close similarity to the Cutibacterium phage
PAVL21 genome (Supplementary Table 3). Another indel that
was only binned by graph scaffolds contains genes involved in
the degradation of myo-inositol into acetyl-CoA (Figure 9C).
In Corynebacterium glutamicum, genes involved in this pathway
allow the bacterium to use myo-inositol as a carbon and
energy source (Krings et al., 2006). This indel also contains
genes encoding two HTH-type transcriptional regulators (galR
and degA). A contig uniquely binned by graph scaffolds in
a complex strain variant contains a gene annotated as mptA
(Figure 9D); in Mycobacterium tuberculosis and C. glutamicum,
this gene is involved in the biosynthesis of cell-wall associated
lipomannan that has several immunomodulatory properties
(Mishra et al., 2007, 2011).

DISCUSSION

Binning (based on sequence composition and depth of coverage)
and scaffolding (based on paired-end information) provide
complementary approaches for grouping together contigs from
metagenomic samples that likely originate from the same
organism. At the outset of our study, we hypothesized that
combining the two approaches would yield improvements
in the contiguity and quality of the resulting bins. While
others have used paired-end read or scaffold information to
augment binning, we identified a major overlooked factor – the
computation of depth of coverage at a scaffold level, computation
that can be impacted by scaffolding errors and strain variation.
To our knowledge this contribution is novel, and as we have
shown, providing binning algorithms with depth of coverage
information derived from linear and non-linear (graph) scaffolds
improves the quality of the bins over what can be achieved by
binning contigs alone.

We attribute the improvements we have demonstrated to
three factors. The first is, as already mentioned, a more accurate
estimation of scaffold depth of coverage, information used by
the binning algorithm to determine which contigs or scaffolds
should be grouped together. The second is simply the longer-
range information available in scaffolds as opposed to individual
contigs. A third factor is the use of variation-aware scaffolds
which were referred to as “graph scaffolds” in the manuscript.

Binning algorithms rely on depth of coverage and sequence
composition information, and accurately estimating this
information requires long genomic segments. As a result, small
contigs get excluded from binning either by design or because
of incorrect estimates of coverage or sequence composition. The
longer genomic context of scaffolds provides an opportunity for
binning algorithms to more accurately estimate the information
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FIGURE 8 | Cutibacterium bins generated by graph scaffolds capture more auxiliary genome elements. Genes predicted from C. acnes bins were mapped to genes
from the C. acnes pangenome and characterized as core, accessory, or putative-accessory. The x-axis denotes the number of genes in all of the C. acnes bins and
the y-axis denotes the method by which each gene was binned. The label denotes the total number of genes in each bar. In (A) all genes binned by each method
are included in the bars, while in (B) they are separated by how they are shared across binning methods.

FIGURE 9 | Cutibacterium bins in sample MET0773. (A) Ordered lengths of graph scaffolds (top), linear scaffolds (middle) and contigs (bottom) included in C. acnes
bins, highlighting the greater fragmentation in the bin generated using contigs. Red boxes highlight graph scaffolds depicted in parts (B–D). In (B–D), the large
arrows represent contigs in a single graph scaffold. Lines connecting contigs denote paired-end read support. Contigs are colored to indicate the methods that
include them in the C. acnes bins. Scaffold plots were generated by MetagenomeScope (Fedarko et al., 2017) but updated and modified to improve visualization in
Illustrator. Genes in contigs uniquely binned by graph scaffolds are depicted below the scaffold as thin arrows. Genes were predicted and annotated by Prokka
(Seemann, 2014) and visualized with the R package genoPlotR (Guy et al., 2010).

necessary for binning. Furthermore, certain genomic regions,
such as mobile elements, usually have a different sequence
composition from the rest of the genome (this is in fact one
of the signals used to detect such regions) and may, therefore
be missed. Paired-end information, however, can link together
contigs irrespective of length and sequence composition, thereby
capturing a larger fraction of the sequence from the assembly.
These links are generally accurate; in the simulated dataset over
99% of the paired-end reads linked contigs belonging to the same
species (Supplementary Figure 4).

Typically, metagenome assemblers and scaffolders attempt
to construct a single linear sequence representing a segment
from the chromosome of an organism in the sample. In
many cases, however, such a linear representation ignores the
presence in the sample of multiple variants of an organism, not
unlike the presence of multiple isoforms of genes in eukaryotic
transcriptomes. By explicitly modeling this variation, Binnacle

is able to more accurately estimate the depth of coverage of
scaffolds, thereby improving the efficacy of the binning process.
When considering only a linear representation of a contig or
scaffold, conserved genomic regions would appear to have higher
depth of coverage than the variant regions. We examined the
distribution of coverage across contigs, linear scaffolds, and
graph scaffolds. In the human metagenomic datasets analyzed
here, the median coverage of contigs binned was 4.2× (Sharon),
19.5× (skin), and 23× (HMP). We found that graph scaffolds
are not biased toward contigs that are more highly abundant
(Supplementary Figure 5). In fact, graph scaffolds have the
ability to bin variants that are usually lower coverage, simply
because variants are linked to higher coverage neighbors.

We observed that binning results varied widely across
samples. When samples had great strain diversity, like the mock
community that contains over 100 different taxa, using graph
scaffolds significantly improved the contiguity and quality of the
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bins. However, when samples were less diverse, like those in the
Sharon dataset, all binning approaches produced similar results.
The complexity and strain diversity of a sample have a significant
impact on the effectiveness of binning, and on the improvement
that can be obtained by leveraging variation-aware scaffolds.

Another advantage of working with variation-aware scaffolds
in Binnacle is that the resulting bins contain a better
representation of the genic content of the organisms from the
sample. In our investigation of C. acnes in the skin microbiome,
bins constructed from graph scaffolds contain a larger number
of accessory genes than bins constructed from linear scaffolds
or contigs. Furthermore, graph scaffold bins uniquely identified
contigs in structural variants that were related to the CRISPR-
Cas system, catabolic processes, transcriptional regulation, and
cell wall biosynthesis; traditional binning approaches missed the
association of these variants with this genome. We hope that this
observation will further strengthen the case for the development
and use of tools that explicitly model strain variation when
analyzing metagenomic data sets.

It is important to note that while read-based binning
approaches exist (Cleary et al., 2015; Kyrgyzov et al., 2020a),
many metagenome binning methods, including Binnacle, can
only work with assembled sequences from the sample. It
has been shown that assembled sequences improve taxonomic
classification (Tran and Phan, 2020). Generally, reads from rare
species and low-coverage regions do not assemble well. Thus,
binning methods may not be effective for low abundance species.
Another important but often overlooked point is the variable
resolution of bins obtained. Even though one would like to
obtain all bins as species-level metagenome assembled genomes,
this goal is rarely achieved in practice. First, it is important
to note that the concept of a bacterial species is not well
defined. Second, the level of sequence divergence between closely
related organisms varies widely across the bacterial taxonomy
and even across the length of genomes. This may explain the
somewhat surprising observation that Binnacle maintains low
bin contamination even when using graph scaffolds that include
sequence variation. CheckM relies on the number of multicopy
marker genes to compute contamination, and these genes are
more likely to be conserved among the strains forming the
pangenome represented by Binnacle bins. In mock communities,
we were able to compute contamination more precisely by
mapping contigs to the relevant reference genome sequences.
Even in this setting, the use of graph scaffolds did not result in
higher contamination levels. As we have noted earlier, the paired
end information we used accurately linked together contigs from
the same organism, i.e., the underlying scaffold information itself
has a low level of contamination. We hypothesize that the longer
context provided by scaffolds allows binning algorithms to more
accurately detect relationships between sequences derived from a
same organism, thereby leading to lower levels of contamination
than when using contigs as a substrate for binning.

In its current implementation, Binnacle does not attempt
to resolve the multiple strains/haplotypes represented in
its bins. A number of algorithms developed for haplotype
phasing (Low et al., 2020; Rhie et al., 2020), viral quasi-
species estimation (Eriksson et al., 2008; Zagordi et al., 2010;

Astrovskaya et al., 2011), and species estimation in
metagenomics (Quince et al., 2017) can be applied here to
estimate the number of species in a bin, and to split bins into
multiple MAGs. We intend to pursue this line of research in
future iterations of our tool.

We would also like to argue for the importance of effective
visualization tools that can provide researchers with more
information about the relative placement of contigs within a bin
along a chromosome as well as variation information. Tools for
visualizing assembly graphs, such as Bandage (Wick et al., 2015)
and MetagenomeScope (Fedarko et al., 2017) are a first step in
this direction, but these tools are still cumbersome to use in large
data sets. Further opportunities for future research include new
approaches for estimating depth of coverage, particularly when
using data from multiple samples. While substantial progress has
been made in the field of RNA-seq quantification [e.g., Salmon
(Patro et al., 2017)], metagenomic approaches still rely on fairly
simplistic assumptions.

We believe that Binnacle represents a first step toward the
development of effective metagenomic analysis tools that can
leverage all the information contained in one or more samples
to reconstruct nearly complete genomic sequences, approaching
the goal of automated reconstruction of MAGs.
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