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Abstract: The ubiquitous fungi belonging to the genus Aspergillus are able to proliferate in a large
number of environments on organic substrates. The spores of these opportunistic pathogens, when
inhaled, can cause serious and often fatal infections in a wide variety of captive and free-roaming
wild birds. The relative importance of innate immunity and the level of exposure in the development
of the disease can vary considerably between avian species and epidemiological situations. Given
the low efficacy of therapeutic treatments, it is essential that breeders or avian practitioners know the
conditions that favor the emergence of Aspergillosis in order to put adequate preventive measures
in place.
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1. Introduction

Aspergillosis holds a very special place in veterinary and human medicine, because it
is the main type of mycosis affecting birds and mammals, including human beings [1]. The
Aves class is particularly concerned, due to [2–4]. The great diversity of species susceptible
to this infection, including domestic and wild animals living in captivity or in natural
environments; the omnipresence of the Aspergillus fungi in varied indoor and outdoor
environments on all continents except Antarctica; the ability of this opportunistic mold
to grow efficiently in its ecological niche and in birds following inhalation of its spores;
the severity of the infections observed, which can result in a high mortality rate; the fact
that, despite the relatively large number of case reports and amount of experimental data,
particularly those obtained from poultry species, the pathogenesis of avian aspergillosis is
still poorly understood [2,5].

Historically, the birds’ contribution to our scientific knowledge of fungal diseases
in animals is far from negligible (Table 1). Since the first reports in the early 1800s of a
“mold or blue mucor” in a greater scaup (Aythya marila) by Montague and in an Eurasian
jay (Garrulus glandarius) by Mayer and Emmet, many observations based on either fungal
microscopic morphology or descriptions of lesions have been made on specimens of various
avian species. Bronchi, lungs, air sacs, and, secondarily, bones are the most affected organs.
Rayer and Montagne identified A. candidus from the air sacs of a bullfinch (Pyrrhula pyrrhula)
and recognized, for the first time, the association of Aspergillus fungi with typical lesions.
Following the identification of other Aspergillus species (Table 1), the first description of
A. fumigatus occurred as a filamentous fungus exhibiting a “smoky grey color” in a wet
mount. It was isolated in the bronchi and air sacs of a great bustard (Otis tarda) from the
zoological park of Frankfurt [6,7].
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Table 1. First descriptions of mycotic diseases in birds (Urbain and Guillot, 1938).

Year of Notification Species Description

1813 Scaup duck “Mold or blue mucor” within the air sac
1815 Eurasian Jay Parasitic thallus in air sacs, bronchi and

lungs
1816 Mute swan Green mold in the aerial cavities
1826 Stork Mold lining the internal face of air sacs and

within long bones
1827 Raven Mold in the lungs
1833 Flamingo Mold in the pulmonary cavities
1841 Eider A fungus in air sacs, bronchi, basin and

wing bones; later identified as “Aspergillus
glaucus” by Robin

1841 Parakeet Mycotic lesions in the lungs
1842 Falcon/Owl Mycotic lesions in the bronchi and air sacs
1842 Goose/Cormorant/Penguin

or Razorbill
Mycotic lesions

1842 Bullfinch White mold (“Aspergillus candidus”) in the
air sacs

1848 Golden plover Mold in the air sacs later identified as
“Aspergillus glaucus” by Robin (1853)

1853 Gull/Pheasant “Aspergillus nigrescens” found in the lungs
and the air sacs

1857 Golden eagle/Ostrich Mycelium in the airways
1866 Parrot Mold in the lungs
1866 Loon Mold in the lungs
1871 Goshawk Mold in the air sacs
1873 Duck Mold in the airways
1875 Flamingo “Aspergillus dubius” in the airways
1875 Great bustard “Aspergillus fumigatus” in the lungs and air

sacs
1880 Cardinal/Finches/Parrots Aspergillosis
1883 Parrot “Aspergillus glaucus” in the lungs and

bronchi
1883 Flamingos Aspergillosis
1885 Ostrich “Aspergillus fumigatus” in the lungs and air

sacs
1887 Swan Aspergillosis
1887 Pheasant Aspergillosis
1890 Ducks Aspergillosis
1891 Canari “Aspergillus aviarius” in the coastal pleura
1894 Swan Aspergillosis

In young birds, the disease referred to as “brooder pneumonia” is the most commonly
diagnosed infection in nestlings around the time of hatching. Other synonyms for avian
aspergillosis include fungal or mycotic pneumonia, pneumomycosis, bronchomycosis, and
colloquialisms such as “asper” and “air sac” [3].

The objective of this review was to synthesize current knowledge related to aspergillo-
sis in wild avifauna and pet or game birds that could be useful to all those involved in the
management of these kinds of animals (veterinarians, zookeepers, pet owners, conservation
program managers, wildlife rehabilitators).

2. Etiology and Ecology

Only a small percentage of the approximately 340 accepted Aspergillus species are
implicated in the development of avian aspergillosis [8]. Aspergillus fumigatus is by far
the most prevalent species, representing up to 95% of cases, in both wild and domes-
tic avifauna [3,9]. Isolation of A. flavus is less common and has been described in fal-
cons [10,11], parrots [12], and a royal tern Thalasseus maximus [13]. The species A. niger
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has been isolated from sick ostriches (Struthio camelus) [14], falcons [10,15,16], a Eurasian
eagle owl (Bubo bubo) [17], and African grey parrots (Psittacus erithacus) [18]. The species
A. terreus [16,19,20], A. versicolor [21,22], A. oryzae [23,24], A. nidulans [25,26], A. amstelodami,
A. glaucus, and A. nigrescens [27] have been unfrequently reported in diseased birds. Mixed
infections with A. flavus and A. niger, A. fumigatus and A. niger, and A. fumigatus and A.
oryae, have been described in captive ostriches, falcons, and parrots, respectively [10,23,28].
Concomitant infections of the anterior parts of the eye in lovebirds [29] and of the lungs in
white storks [30] were found to result from the association of Aspergillus sp. and Candida
albicans with different zygomycetes. Although cryptic Aspergillus species may account
for 10 to 14% of all clinical strains in human patients [31,32], data remain scarce in the
veterinary field, and related studies have used relatively small samples. By sequencing
the β-tubulin gene (benA), Vedova et al. [33] identified A. sydowii for the first time in a
Swinhoe’s pheasant (Lophura swinhoii). Using the same target, Talbot et al. [26] reported
the new species A. restrictus among 26 avian clinical isolates obtained from a Java finch
with disseminated invasive aspergillosis. A. allahabadii, an unknown species in birds, was
cultured from the air sac of a cormorant used for traditional fishing and finally identified
by the partial benA gene and ITS sequencing [34]. Molecular characterization (partial benA
and camA genes sequencing) of two Aspergillus section Fumigati and one Aspergillus section
Flavi [35] isolated from the black-browed albatross (Thalassarche melanophris) conclusively
showed the presence of the two first isolates (A. fumigatus stricto sensu) but not the last
one (A. flavus/oryzae lineage). The same team [36] identified A. fumigatus ss from lesions of
three other free-ranging aquatic birds: the white-chinned petrel (Procellaria aequinoctialis),
the neotropical cormorant (Nannopterum brasilianus), and the brown-hooded gull (Chroic-
ocephalus maculipennis). Following the amplification of the β-tubulin and rodlet A (rodA)
genes, the 53 isolates tested by Spanamberg et al. [37] were confirmed as being A. fumigatus
stricto sensu. No cryptic species from the Fumigati section were detected among 43 clinical
and 34 environmental “Aspergillus fumigatus” samples in Californian rehabilitation centers
using β-tubulin and camA gene sequencing [38]. The screening of 159 independent isolates
from Germany by camA sequencing led to similar conclusions [39]. Those results support
the preponderant role of A. fumigatus stricto sensu in the development of avian aspergillosis.

Indirect enzyme-linked immunosorbent assay (ELISA) tests on penguins have shown
a seropositivity rate of 94% in a captive population, with an average of 60% of birds from
wild colonies producing anti-Aspergillus spp. IgGs [40,41]. As evidenced by air samples, a
fungal load is regularly detected in outdoor [42,43] or indoor environments where birds
may be found. Such observations have been done in wildlife rehabilitation centers [43,44]
and zoological aviaries [45–50] sheltering various species. Air contamination levels and
the mycobiota composition are characterized by dynamic or cyclic variations [45–47,49].
These fluctuations may be related to season, environmental management, or to the pres-
ence of natural soil, plants, or litter [45,48]. A strong correlation between litter fungal
contamination and aerial mycobiota in poultry houses corroborates the aerosolization of
fungi found in litter and indicates that organic bedding may constitute the main reser-
voir of indoor contamination [51,52]. Aspergillus fungi may also be found in water and
dust [43,53]. It is noteworthy that nests of wetland birds or nest-boxes of passerines can
provide reservoirs of pathogenic fungi like A. fumigatus or A. flavus with up to 650 colony-
forming units (CFU)/g of dry mass of the nest material [54,55]. A. fumigatus has been
isolated on the feathers of 30% [56] of free-living house sparrows (Passer domesticus) and on
6 to 13% of pharyngeal/tracheal swabs sampled from captured pink-footed geese (Anser
brachyrhynchus), Canada geese (Branta canadensis), or herring gulls (Larus argentatus) that
presented as healthy carriers [57]. Positive tracheal samples from seabirds undergoing
rehabilitation [43] or trapped hatchlings to second-year goshawks (Accipiter gentilis) were
not rare and might indicate either exposure to the fungus or true sickness [19].
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3. Geographic Distribution and Seasonality

With the exception of Antarctica, aspergillosis in wild avifauna has been reported on
all continents [2]. By testing eight populations of four different Spheniscidae species for
plasma Aspergillus IgG by ELISA, Graczyck and Cockrem [40] observed a latitude-related
decrease of antibody seroprevalence, which seemed to reflect a decrease in the exposure of
subantarctical to antarctical penguins to Aspergillus spp.

Most Aspergillosis outbreaks in North-American waterfowl population happen in fall
or early winter, although individual cases can occur at any time (Figure 1) [58–63].

Figure 1. Quarterly die-off reports attributed to Aspergillosis in North-American avifauna. (USGS
1981–2014). T1: January to March; T2: April to June; T3: July to September; T4: October to December.
* To improve the clarity of the diagram, an episode that occurred in 2011 associated with a very high
mortality rate (7000 dead) is not represented in full.

This apparent seasonality may result from how local climatic conditions and fungal
ecology interplay or integrate a bird’s intrinsic factors, such a particular level of suscep-
tibility at that moment of the year. Ambient temperatures and humidity play important
roles in the lifecycles of fungi and the level of a bird’s exposure to fungal spores, as can be
seen inside poultry houses. Aspergillus fungi multiply during the wet period, producing
abundant xerophilic spores which are then dispersed into the atmosphere when conditions
become dry [5,64]. Higher morbidity and mortality rates have thus been observed in
red-vented cockatoos (Cacatua haematuropygia) during the monsoon season [65].

As summarized in Figure 2, mallards, which appear to be highly susceptible to
Aspergillosis may resort to rotting agricultural waste during inclement weather. Weakened
by forced displacements in search for food, they may land on contaminated crops. The
timing and locations of these few-days lasting outbreaks are highly suggestive of a common
source of conidia and exposure within a limited time frame [27], as has been reported in
poultry [66].
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Figure 2. Risk factors associated with aspergillosis in migratory birds. Under usual climatic con-
ditions, waterfowl exploit wetlands for food. Weather disturbances can force birds to take refuge
on cultivated lands and feed on crop residues that are sometimes heavily contaminated by molds.
Under such circumstances, exhausted individuals may suffer from airway clearance dysfunction and
develop aspergillosis with a fatal outcome.

4. Host Range and Impact

Data on the frequency of aspergillosis development in wild birds is still fragmentary
and may be partially biased by studies targeting specific birds or particular geographical
areas. Scientific data relative to free-ranging or captive wild birds gather descriptions of
sporadic cases, outbreaks and results obtained [67] during active or passive surveillance
operations [2,68]. When die-offs occur, a highly variable fraction of carcasses or moribund
birds is generally submitted to post-mortem extensive investigations. Furthermore, means
engaged to establish the final diagnostic are sometimes limited to the observation of gross
lesions [67] and sometimes histopathology [69–71] or based on phenotypical or polyphasic
characterization of the isolated fungi [30,35]. Therefore, evaluations of the prevalence of
aspergillosis may be overestimated and should instead refer to a “mycotic disease” when
conclusions result solely from the observation of “typical lesions” [30,72].

A compilation of epizootics or mortality surveys in wild birds has been published
by Converse [2]. Species that are mostly represented belong to the following taxonomic
orders: Anseriformes (swans, geese and ducks), Accipitriformes (eagles and hawks),
Charadriiformes (shorebirds and gulls), Passeriformes (singing birds), and Galliformes
(fowls, quails and pheasants). In North America, aspergillosis is considered a common
disease in waterfowl, gulls, and crows and occasionally in other songbirds and upland
gamebirds [27]. Early publications mentioned the role of aspergillosis in the death of
180 wood ducks (Aix sponsa) in Illinois [58], 170 [60], 270 [62] and more than 1500 [73]
mallards (Anas platyrhynchos) in three distinct episodes, as well as 2000 Canada geese
(Branta canadensis) in Missouri [59] and 1000 to 1500 common crows (Corvus brachyrhynchos)
in Nebraska [61]. Periodic reports published by the National Wildlife Health Laboratory
of the United States Geological Survey indicate that aspergillosis is regularly associated
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with rapid die-offs among North American avifauna [74]. Mortality rates oscillate between
tens, hundreds, and sometimes thousands of casualties (Figure 1). Dead and moribund
birds belonging to one or several species are often found in direct proximity to moldy grain
sources or rotten ensilages [58,73,74]. Waterfowl (mallards, geese) and gulls (Herring gulls)
are the most commonly affected species, although their flocking behaviour and size may
increase the likelihood of outbreak detection [74]. A Spanish serological survey detected the
highest percentages (1.7 to 3.1%) of positive birds in grey herons (Ardea cinerea), mallards,
and coots (Fulica atra) living in the Guadalquivir marshes [75]. Aspergillus antibodies
and antigens were detected in 9–50% and 27–31% of nocturnal heron chicks (Nycticorax
nycticorax) belonging to distinct populations of New York Harbor estuary, respectively [76].

In the framework of mortality studies, systematic postmortem evaluations have been
made in different targeted wild species, either emblematic or those proposed as potential
indicators of aquatic health, such as swans or loons. Close inspection of a series of carcasses
collected during pluri-annual surveys allowed a better appreciation of the impact of “as-
pergillosis” on avifauna (Table 2). This fungal disease was recognized as the primary cause
of death for 6 to 23% common loons [72,77–79] and 4 to 21% swans [67,69,71,80]. During
a two-year study on morbidity and mortality in a Wildlife refuge in New York [81], as-
pergillosis was diagnosed in 31% of necropsied birds, mostly herring gulls. Olias et al. [30]
examined 101 dead white stork chicks coming from 10 different German regions and found
45 cases of invasive fungal pneumonia, including 22 that were directly attributable to
A. fumigatus. Quite similar aspergillosis-related rates of mortality (Table 2) were found for
the Eurasian crane [82] and the threatened Whooping crane [70]. A retrospective analysis of
aquatic bird mortality events in the US between 1971 and 2005 revealed that fungal causes,
mainly due to Aspergillus fungi, accounted for 7% of mortalities attributed to infectious
diseases [76].

Occasional reports of mortality have involved conservation-dependent or critically
endangered species like California condors (Gymnogyps californius) (Rideout et al. 2012),
Hawaiian geese (Branta sandvicensis) [83], brown kiwis (Apteryx mantelli) [48], helmeted hon-
eyeaters (Lichenostomus melanops cassidix) [84], and yellowheads (Mohoua ochrocephala) [85].
Recently, aspergillosis killed seven kakapo parrots (Strigops habroptila), a species that has
fewer than 150 fully grown birds left in the world [86]. Aspergillosis is a potentially im-
portant cause of failure of conservation and translocation programs of avian species, as
highlighted by the example of the very rare New-Zealand endemic yellowhead [85] and
stichbird (Notiomystis cincta). Aspergillosis was identified as the cause of the death in 11/31
free-ranging stichbirds during a 15-year period [87], in 6/9 adults between 1995 and 1997
in another location [88] and has driven the removal of a released population from their
new environment due to excessive mortality [89].

While Anseriforms appear to be highly susceptible to the disease in both free-living and
captive conditions [64,90–92], wide variations of prevalence do exist for other avian orders.
Several case reports refer to sporadic aspergillosis in free-ranging birds of prey [19,93–98],
but this mycosis is less often diagnosed in this category in comparison with captive or
recently-captured free-ranging raptors, for which it is the most important non-traumatic
pathology [15,99,100]. Many descriptions of cases concern various species of captive
parrots [12,23,65,101–107]. The high frequency of reports on Accipitriformes, Falconiformes,
and Psittaciformes is probably due, in part, to their popularity as appreciated pets or
falconry birds. As underlined by the scientific literature, aspergillosis is a major concern
for veterinarians and zookeepers in populations of penguins under human management,
but it is rarely observed in free-ranging populations [108].
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Table 2. Prevalence of aspergillosis in mortality surveys of different birds.

Species Period Location Status a % of Aspergillosis
(Nb Cases/Total) Diagnosis b Reference

Common loon (Gavia immer)

1970–1975 USA F 18% (34/190) G/C [109]
1976–1991 USA F 6% (13/222) G/C/H [77]
1970–1994 USA F 7% (31/434) G/C/H [110]
1992–1995 Canada F 16% (5/31) G/D/H [79]
1979–1999 USA F 31% (33/105) Uns. [78]
1987–2000 USA F 3% (14/522) G/H [72]

Mute swan (Cygnus olor) 1996 UK F 14% (2/14) G/H [71]

Bewick’s swan (Cygnus bewickii)
Mute swan (Cygnus olor)

Whooper swan (Cygnus cygnus)
1951–1989 UK F

5% (7/150)
4% (8/183)
4% (1/23)

G/H [69]

Trumpeter swan (Cygnus buccinator)
Tundra swan (Cygnus columbianus) 1986–1992 USA F 21% (18/115)

10% (2/21) G [67]

Trumpeter swan (Cygnus buccinator)
Tundra swan (Cygnus columbianus) 2000–2002 USA F 17% (62/365)

5% (2/35) G/D [80]

Seabirds (Guillemot Uria aalge;
Razorbill Alca torda; Herring gull
Larus argentatus; Kittiwake Rissa

tridactyla; Oystercatcher Haematopus
ostralegus, among others)

1992–1995 Belgium F 2.9% (6/241) G/H [111]

Herring gulls (Larus argentatus),
other gulls 1981–1982 USA F 31% (50/161) G/C/H [81]

White stork (Ciconia ciconia) 2007–2008 Germany F 28% (22/101) G/C/H/S
(ITS-1) [30]

Eurasian cranes (Grus grus) 1998–2008 Germany F 4% (7/143) G/C/H [82]

Whooping crane (Grus americana) 1982–1995 USA C 7% (7/103) G/H [70]

Bewick’s swan Cygnus bewickii;
Whooper swan C. cygnus; Black

swan C. atratus; Black-necked swan
C. melanocophyrus; Trumpeter swan

C. buccinator; Tundra swan C.
columbianus

1951–1989 UK C
6.6% (adults)
5% (juveniles)

2.6% (downies)
G/H [112]

Seaducks (European Eider Somateria
mollissima; Scoters Melanitta;
Sawbills Mergus; Goldeneyes

Histrionicus, Clangula, Bucephala)

1959–1976 USA C
17% (adults)

31% (juveniles)
27% (downies)

Uns. [113]

Shelducks (Tadorna sp.)
Sheldgeese (Cyanochen sp.,

Chloephaga sp.)
1959–1976 USA C

16% (adults)
5% (juveniles)
25% (adults)

33% (juveniles)
6% (downies)

Uns. [113]

Perching ducks (Wood duck Aix
sponsa; Hartlaub’s duck Pteronetta

hartlaubii, among others)
1959–1980 USA C 7.5% (adults)

8.5% (juveniles) Uns. [91]

Stiff-tailed ducks (Ruddy ducks
Oxyura sp.; Musk ducks Biziura sp.;
Black-headed ducks Heteronetta sp.;
White-backed ducks Thalassornis sp.)

1959–1980 USA C 2% (adults)
14% (juveniles) Uns. [114]
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Table 2. Cont.

Species Period Location Status a % of Aspergillosis
(Nb Cases/Total) Diagnosis b Reference

Northern geese (Canada geese
Branta canadensis; Lesser white-front

geese Anser erythropus . . . )
1959–1980 USA C 4% (adults)

15% (juveniles) Uns. [92]

Falcons (saker falcons Falco cherrug;
peregrine falcons F. peregrinus . . . ) 1998–2001 Saudi

Arabia C 10% (13/131) G/C/H [15]

Gentoo penguins (Pygoscelis papua) 1964–1988 UK C 41% (128/314) Uns. [115]

Magellanic penguins
(Spheniscus magellanicus) 1986 USA C 61% (23/38) G/H [116]

Magellanic penguins
(Spheniscus magellanicus) 2008–2018 USA C 27% (23/85) G/H [117]

Psittacine birds (parrots,
macaws, cockatoos) 1998–2017 Canada C 1.7% (32/1850) H/Uns. [118]

Magellanic penguins
(Spheniscus magellanicus) 2004–2005 Brazil R 42% (5/12) G/D/C/H [119]

Magellanic penguins
(Spheniscus magellanicus) 2004–2009 Brazil R 20% (66/327) G/C/H [120]

Bald eagle (Haliaeetus leucocephalus)
Golden eagle (Aquila chrysaetos) 1975–2013 USA R 1% (35/2980)

1% (15/1427) Uns. [100]

Black-browed Albatross
(Thalassarche melanophris) 2015–2017 Brazil R 14% (3/14) G/C/H/S

(benA, calM) [35]

a F = free-ranging birds; C: permanent captivity; R: transitory captivity or rehabilitation; b based on gross lesions (G); direct fungal
examination (D); fungal culture (C); histopathology (H); gene(s) sequencing (S); unspecified (Uns.).

Death by aspergillosis has been described in captive gentoo penguins [115], Mag-
ellanic penguins [29,116,119,120], Humboldt penguins (Spheniscus humboldti) [121], king
penguins (Aptenodytes patagonica) [41], and African penguins (Spheniscus demersus) [122,123].
Postmortem diagnosis confirmed the implication of aspergillosis in 29%, 33%, and 48%
of serial deaths in Magellanic penguins, king penguins, and gentoo penguins, respec-
tively [41,115,124].

5. Disease Predisposition

In domestic birds, both field data and experimental results have clearly demonstrated
a higher susceptibility of turkeys (Meleagris gallopavo) and quails (Coturnix japonica) to
aspergillosis when compared to chickens, for example [125]. Furthermore, differences
in susceptibility have been demonstrated between different turkey and chicken lineages
following experimental inoculation of spores [3]. In wild species, empirical data claim
that gyrfalcons (Falco rusticolus) and hybrids, merlins (Falco columbarius), goshawks, red-
tailed hawks (Buteo jamaicensis), ospreys (Pandion haliaetus), rough-legged hawks (Bu-
teo lagopus), golden eagles and snowy owls (Nyctea scandiaca) are highly susceptible to
aspergillosis [99,126]. Similar observations have been made for the blue-fronted ama-
zon (Amazona aestiva), the African grey parrot, and pionus parrots (Pionus spp.) among
psittacine birds [4]. When mixed groups experience aspergillosis, mortality may affect only
some species. In an American aquarium, 19% of 85 tufted penguins (Lunda cirrhata) and
30% of 20 pigeon guillemots (Cepphus columba) died, but none of the 20 rhinoceros auklets
(Cerorhinca monocerata), despite being housed in the same area [127]. In Cheasapeake bay, 36
of 50 canvasbacks (Aythya valisineria) succumbed to aspergillosis, but 12 redheads (Aythya
americana) and 12 scaup ducks (Aythya sp.) which belonged to the same captive flock were
unaffected [90].

Souza and Degernes [80] found than male swans were twice as likely as females to
have fungal disease, whereas the role of gender in susceptibility to aspergillosis has not been



J. Fungi 2021, 7, 241 9 of 30

documented in raptors [126]. Cumulative data show that young animals are particularly
prone to the development of aspergillosis in poultry [3] and wild birds. Young raptors,
notably, immature red-tailed hawks, seem to be more susceptible between 2 to 4 months
of age [99,126]. Aspergillosis is prominent in captive downies and juveniles (Table 2)
of different waterfowl species (northern geese and perching ducks) and in rehabilitated
juvenile penguins in comparison to adults [91,92,120]. Immature loons were found to be
significantly more likely to be affected than breeding or wintering adults [72]. A similar
higher incidence among juveniles has been noted in free-ranging swans [69] that has been
associated with the occurrence of more severe lesions than in adults or sub-adults [80].
During a 2-year survey, 96% of the herring gulls diagnosed as having aspergillosis were
sub-adult birds [81].

There are multiple external factors implicated in causality. Accidental ingestion of
heavy metals, particularly lead, has been associated with aspergillosis in loons [78] and
swans [71]. However, Souza and Degernes [80] established that lead exposure is not a risk
factor for the development of the mycosis, which remains mild in affected swans. These
observations indicate that rapid death following primary acute lead intoxication might
prevent the development of severe fungal lesions. Two migrating Eurasian black vultures
(Aegypius monachus) were found to be suffering from aspergillosis and acute carbofuran
insecticide poisoning (Jung et al. 2009). Other non-infectious conditions associated with
aspergillosis in wild avifauna include trauma, gunshots, extreme wear to flight feathers, oil-
ing, emaciation, and exhaustion consecutive to migration [19,59,72,78,97,109]. Mixed infec-
tions are not uncommon in free-living and captive wild birds. They do not always indicate
whether aspergillosis is a primary or secondary infection. Reported intercurrent diseases
include tuberculosis in birds of prey and in an egret Egretta thula [25,94,128], salmonellosis
in loons [109], polymicrobial infection in Cape vultures (Gyps coprotheres) [129], botulism in
shore birds [81], psittacine beak and feather disease and Budgerigar fledging disease in an
African grey parrot [130], Eastern equine encephalitis in African penguins [122], hepatitis E
virus infection in Himalayan griffons (Gyps himalayensis) [21], Pox virus infection in a royal
tern (Thalasseus maximus) [13], avian malaria in Magellanic penguins [116,131], helminthosis
in a black-eared milan (Milvus migrans) [98], a blue jay (Cyanocitta cristata) [132] or a herring
gull [133], tracheal trematodosis in swans [71], sarcocystosis in parrots [104], trichomonosis
in raptors [134,135], and amebiasis in great blue turacos (Corythaeola cistata) [136]. The
use of broad-spectrum antibiotics and immunosuppressive therapies (corticosteroids) can
stimulate the occurrence of fungal pathogens in debilitated birds [23,107,137].

Concomitant primary pathogenic agents and/or diseases were identified in 64 of
94 Aspergillus-positive cases in captive falcons. When compared with a control group of
2000 disease-free falcons, Babesia shortii, Mannheimia haemolytica, Escherichia coli, and Falcon
herpesvirus infection, but not Trichomonas infection, appeared to be suitable candidates as
predisposing factors for aspergillosis [10].

As emphasized by observations in birds of prey and penguins, captivity itself may be a
major contributor to the emergence of aspergillosis, especially when deleterious conditions
such as overcrowding, poor ventilation, thermal discomfort, or a high level of exposure to
respiratory irritants (ammoniac, dust) occur [99,102,107,126]. This is even truer in the case
of animals recently captured in the wild. Increased incidences of fungal infections have
been registered for parrots, raptors, and penguins coming into permanent or transitory
captivity [23,116,135]. Aspergillosis was diagnosed in 31 out of 42 Philippine red-vented
cockatoos and 55 out of 179 houbara bustards (Chlamydotis undulata macqueeni) after they
were trapped in the framework of legal or illegal trades [65,138]. In companion animals,
hypovitaminosis A [101], participation in a bird song contest [37], transportation [139],
intensive falconry training [126], or a change of ownership [99] have been identified as
potential stressors eliciting aspergillosis.

Aspergillosis is a common and particularly feared complication of oil spills in re-
habilitation centers with high mortality rates occurring on either oiled and non-oiled
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common murres (Uria aalge), razorbills (Alca torda), common loons, New Zealand dotterels
(Charadrius obscurus aquilonius), and Magellanic penguins [120,140–143].

6. Pathogenesis

Aspergillosis typically occurs after the inhalation of the ubiquitously available spores,
but localized infections of the eye or the skin are possible [29,144,145]. Several forms are
classically recognized. Acute disease may occur following exposure to an overwhelming
number of spores from a point source. More chronic forms are slowly progressing infections
that affect birds showing some degree of immunodeficiency and may result from the regular
inhalation of spores. Understanding the relative contributions of the level of exposure and
the transient susceptibility of the host in the initiation of infection remains a challenge [3].

The question surrounding the infectious dose is still fundamental. Experimental mod-
els of acute aspergillosis indicate that unless the dose is massive (106 to 108 spores/bird),
exposure via different ways rarely produces disease and may affect species differently [5].
The intra-tracheal administration (IT) of 1.35 × 106 spores/starling (Sturnus vulgaris) in-
duces mortality in 100% of affected individuals in 6 days [146]. Inoculum of 107 (IT) and
2.107 spores (injected into the thoracic air sac) killed 2/5 and 4/4 rock pigeons (Columba
livia), respectively, but none of five gyr-saker hybrid falcons (Falco rusticolus x F. cherrug) sub-
mitted to a lower IT dose died [147,148]. In another experiment, all falcons (two peregrine
falcons Falco peregrinus and two saker x gyrfalcons) receiving 2.107 spores IT succumbed
to the infection following very rapid health deterioration [149]. A lethal dose 50 (LD50)
of 12.03 × 106/bird was established in Japanese quails by Chaudhari and Sadana [150].
Based on histopathological results as definitive diagnosis of experimental aspergillosis in
gyr-saker hybrid falcons, Fischer et al. (2018) calculated different minimal infectious doses
(MID10 (±S.E.) = 101.95 ± 1.26, MID50 (±S.E.) = 104.52 ± 0.67, and MID90 (±S.E.) = 107.10 ± 1.33).
Based on MID10 and on respiratory minute ventilation, the authors extrapolated their data
to determine the tolerable spore concentration in ambient air that must be inhaled over
24 h by a resting juvenile falcon as being 86.50 CFU/m3/h. Air samples collected under
various contexts linked to birds have highlighted the wide variability of aerial fungal
loads [5,45–47,49]. Maximal indoor measurements of the airborne A. fumigatus spores con-
centration in a German falcon breeder center [151], three Californian rehabilitation centers
and one Italian rehabilitation center all sheltering aspergillosis-diseased birds were 45, 50,
and up to 525 CFU/m3, respectively. The difficulty in clearly correlating exposure to given
fungal loads and aspergillosis occurrence combined with the variability of experimental
results underline the preponderant role of spontaneous susceptibility in birds, which differs
at the species, age, and even individual level. In fact, most mycoses in captive birds could
be related to issues of husbandry-associated stress, rather than to the presence of specific
fungal populations in the air [47].

The anatomo-physiological characteristics of the respiratory systems of birds as well
as their innate immune responses may suggest that all avian species are susceptible to
developing aspergillosis under favorable circumstances. Spores of A. fumigatus, when
inhaled through the nares, are small enough [9,152] to bypass mucociliary-dependent
clearance by the upper airways and disseminate first in the posterior air sacs rather than
in the cranial ones, in accordance with the gas pathway through the lungs [153,154]. The
trachea or syrinx may be involved as well due to anatomical particularities, such as tra-
cheal loops in swans [80] or unlaminar air-flow conditions through a narrow lumen. Air
sacs are particularly prone to contamination because they have an air flow regime that
favors particle deposition, no available macrophages to remove foreign items, and an
epithelial surface that is nearly devoid of a mucociliary transport mechanism [155]. In this
primary nidus, thermophilic spores find ideal temperature and aeration conditions to break
their dormancy, germinate, and produce multicellular hyphae [53]. Mycelial development
causes tissue necrosis and incites a strong host reaction than can be granulomatous and/or
infiltrative, depending on the immune status of the bird [156]. It relies on a mixed inflam-
matory response that involves the recruitment of macrophages, multinucleated giant cells,
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and heterophils. These cells form within the lung parenchyma as characteristic granulomas
around a necrotic center containing radiating hyphae which may be encapsulated by an
outer layer of fibrous tissue [88] or constitute plaques lining air sac membranes or airways.
In vitro, macrophages of rock pigeons demonstrate a limited capacity to kill phagocytized
spores but inhibit their germination unless the spores are not too numerous. The fact that
intracellular germination and subsequent cell death may occur following multiple spore
ingestion may explain the limited efficiency of this first line in cases of overwhelming
exposure to spores [148]. Heterophil granulocytes of the second line kill non-ingested
hyphae by oxidative and non-oxidative mechanisms. When the immune response is less
effective, infiltrative types of tissue reactions include exudative cellular inflammation with
giant cells, macrophages, heterophils, and lymphocytes. In that case, the fungus can spread
from the respiratory system via the circulatory system through pneumatized bones or by
simple extension from the air sac wall to contiguous organs or cavities. Hematogenous or
lymphatic dissemination of fungal elements is allowed by hyphal penetration of the lung
blood vessels and by means of macrophages carrying viable spores. Under appropriate
aerobic conditions, fungal asexual reproduction within air sacs is a common feature asso-
ciated with plaques becoming velvety and changing color depending on the Aspergillus
species involved [156].

Many species of Aspergillus are able to synthesize mycotoxins [7]. The exact role of
these secondary metabolites in the development of aspergillosis remains unclear. The
ergoline alkaloid fumigaclavine A has been shown to be produced by A. fumigatus during
the course of clinical aspergillosis in the lungs of falcons (Falco sp.) [156]. In turkeys, high
concentrations of gliotoxin, a mycotoxin with an immunosuppressive effect, have been
detected in tissues obtained from birds with spontaneous airsacculitis [157] or in the lungs
of birds experimentally inoculated with A. fumigatus [157]. Finally, turkey blood peripheral
lymphocytes, when exposed to high levels of gliotoxin, either died or exhibited a lower
lymphoblastogenic response [158]. This review does not address mycotoxicosis due to the
ingestion of mycotoxins (aflatoxins in particular) which have already been shown to be
responsible for high mortality rates in wild avifauna [159] in connection with moldy grain
or contaminated feeders [160,161].

Using discriminant molecular tools, a constant and very high polymorphism of As-
pergillus fumigatus isolated either from the environment or internal organs of both healthy
and diseased birds has been demonstrated in several studies [5,162]. However, the origin of
this remarkable variability, the role of sexual reproduction in its occurrence, and its putative
pathological implications remain uncertain [53]. Polyclonal infections have already been
reported in captive penguins and free-ranging white stork chicks [30,123].

Finally, it is still not clear why there is selective pressure for continued animal
pathogenicity among fungi that are well adapted to abiotic environments.

7. Clinical Signs

Aspergillosis expression in birds may be reported during field outbreaks and the
careful monitoring of its progression in diseased, captive birds or experimentally inocu-
lated animals. Affected free-living birds are generally found moribund or dead. Acute
aspergillosis usually presents with fairly non-specific signs such as lethargy, dullness, and
ruffled feathers [27,88]. Loss of interest in food and anorexia are common observations,
but pronounced weight loss is rather associated with chronic forms of the disease. Free-
ranging birds may be reluctant to escape, walk with effort, or fly due to suffering from shot
injuries and are therefore caught easily [58]. Polydipsia, polyuria, wing drop, stunting, and
sudden death occur regularly. All of these signs are similar to those of lead poisoning [4,27].
Subtle non-specific first signs observed by falconers are a decrease in preening activity, a
loss of ability to engage in prey hunting and even fly, and a failure to bathe [95,99,134].
More characteristic is the development of progressive and severe dyspnea with gasping,
accelerated open-mouth breathing, tail-bobbing, and sometimes, a non-productive cough.
Gurgle, rales, or wheezy sounds and a change in voice may be heard in cases of my-
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cotic tracheitis [11,39,88,134,137,139,163]. Central nervous system involvement causes a
loss of muscular coordination, twisting of the neck, and a head held in abnormal posi-
tions [12,27,44,89,99]. In controlled experiments of acute aspergillosis, respiratory signs
(tachypnea, dyspnea with gasping, abdominal breathing), depression, anorexia, and ruf-
fled feathers are common in inoculated (IT) starlings, pigeons, Japanese quails, and rock
pigeons. Less frequent observations include greenish urates and vomiting [146–148,164].

An unusual presentation may affect organs other than the respiratory tract. Aspergillo-
sis rhinitis and sinusitis cause nasal discharge in parrots [102]. Abrams et al. [145] described
a severe bilateral inflammation and dermatitis of the eyelids that progressively extended to
the head in a falcon hybrid. Aspergillus infections of the internal chambers of the eye are not
rare in parrots and cause epiphora, blepharospasm, photophobia, periorbital swelling, and
corneal ulcers [29,144]. Abnormal limb movements and paralysis associated with spinal
or perirenal lesions have been reported in game pheasants [165], a black palm cockatoo
(Probosciger aterrimus) [166], and a bufflehead duckling (Bucephala albeola) [167]. Painful
aspergillosis granulomas could generate feather damaging behavior and skin mutilation
in parrots [168]. Aspergillus spp. is considered a secondary invader in extensive foot web
necrotic lesions of unknown origin in wild swans caught for routine banding [169].

8. Gross Lesions

Birds that succumb to acute aspergillosis are generally in good flesh condition [170,171],
while wasting (pectoral muscle atrophy and negligible subcutaneous and internal fat) and
dehydration are common features of chronic infection [97,98,134,172]. Emaciation has
been correlated with the progression of the disease in common loons sheltered for re-
habilitation [140]. As infection generally develops following the inhalation of spores,
typical primary lesions are found in the respiratory tract and may be restricted to this
area [11,12,30,37,39,173]. Souza and Degernes [80] qualified the infection as mild when it
affected only one organ (either the trachea, the lungs or the air sacs) and as severe when at
least two locations were involved. Isolated syrinx or tracheal bifurcation involvement is
not rare and may be life-threatening with possible asphyxiation [174]. Internal air-flow cir-
culation means that lungs and posterior air sacs (thoracic and abdominal pairs) are infected
more often than anterior ones. The severity and the degree of development of the disease
determine both the morphology and extension of macroscopic lesions along the coelomic
serosa [102]. Gross lesions, either alone or in association (invasive aspergillosis) with
others, have been observed in/on the brain, kidneys, liver, spleen, intestine, testis, bones,
pericardium, and aorta [13,35,36,44,88,103,128,166,167,172,175–179]. The initial phase is
characterized by hemorrhagic and edematous lesions that progress to a granulomatous
type of inflammation [140]. Macroscopic lesions consist of white-yellowish unique or
multiple spherical nodules ranging from miliary (<1 mm in diameter) to large roughly
spherical granulomas (>40 mm) involving serosae and parenchyma of one or multiple
organs [44,131]. Parenchyma are either consolidated or scattered with dense granulo-
mas. When coalescing in air sacs, these deposits, varying in size and shape, form cheesy
caseous plaques covering the thickened membranes and even obstructing the entire lumina
where fungal sporulation may occur, as evidenced by a grey-greenish to black cottony
texture [96,156].

9. Histopathology

Hematoxylin-eosin staining is often completed with periodic acid-Schiff and/or Gro-
cott, Gomori’s methenamine silver dyes in order to detect fungal elements in tissue sec-
tions [156,180]. The use of fluorescent staining with the optical brightener blankophor has
proven to be a valuable tool [181].

Microscopic examination of Canada geese victims of an aspergillosis outbreak led
McDougle and Vaught [59] to describe three distinct types of lung infection: acute hemor-
rhagic pneumonia with few cells in the airways, a subacute form associated with caseous
granulomas containing giant cells and radiating mycelia, and a chronic presentation char-
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acterized by extensive loss of normal tissue architecture following granuloma formation
and hepatization. Based on histopathological differences, Cacciutello et al. [156] distin-
guished a deep nodular form of aspergillosis in non-aerated parenchyma and a superficial
diffuse form in aerated tissue [171,182], although granulomas are frequently seen in the
pulmonary parenchyma [97,140,178,181]. The classical structure of heterophilic granulo-
mas consists of a necrotic center containing degenerate heterophils and radially arranged
fungal elements surrounded by intact heterophils and a layer of epithelioid macrophages,
multinucleated giant cells, and sparser lymphocytes or plasma cells [30] (Figure 3). In
chronic forms, the effective host response can result in the formation of a fibrous layer
circumscribing the granuloma. An Aspergillus-linked pneumonia without any gross lesion
detection has been described following a systematic histopathological investigation in
white storks. These pneumonia cases were characterized by multifocal poorly circum-
scribed aggregates of epithelioid macrophages and multinucleated giant cells surrounding
filamentous fungus structures [30]. In the lungs, the infiltrative or diffuse forms of the
disease induce hyperemia, micro-hemorrhages, a loss of epithelium lining in the bronchi,
and its replacement with inflammatory exudate and cells (mostly degenerated heterophils
and macrophages) extending to the peripheral parenchyma and pleura. The lung structure
may be consequently replaced by multiple large areas of necrosis due to the coalescence
of adjacent parabronchial foci [12,13,97,178]. The accumulation of various fungal ele-
ments (conidiophores, spores, hyphae), inflammatory exudate, and cells in and around
airways are common features [28,44,171]. Fungal angioinvasion results in hemorrhages,
vascular thrombosis, tissue infarction, and putative dissemination of Aspergillus to dis-
tant organs [23,172,182]. Air sac walls are diffusely thickened by infiltrates containing
fibrin, heterophils, and macrophages, whereas their surface is colonized by mycelium
with occasional conidial heads [17,98,131]. The presence of oxalate crystals in necrotized
areas is an inconstant finding [17,23,95], but its frequency in avian aspergillosis could be
underestimated, as demonstrated by Payne et al. [22]. More anecdotally, the ascospores,
perithecia, and asci of A. nidulans have been documented in the lungs of an egret [25].

In several parrot species, microscopic lesions of the upper respiratory tract, possi-
bly accompanied by malformation of the nostrils (with the presence of rhinoliths), beak,
and cere, have been reported with hyphae filling the nasal cavity and paranasal sinuses,
invading blood vessels, nerve bundles, turbinate cartilages, and nasal bones in severe
cases [39,102]. In an enucleated eye of an amazon parrot, Hoppes et al. [144] described
extensive, severe heterophilic, lymphoplasmacytic, and granulomatous keratitis, scleritis,
and anterior uveitis. In the absence of respiratory lesions, the concentration of fungal
elements in the cornea and, in less frequently, in the ocular chambers are suggestive of
direct environmental contamination by contact.
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Figure 3. Lung histopathological lesions compatible with aspergillosis. (A–E) Lung of a knob-billed
duck (Sarkidiornis melanotos). (A) Multifocal to coalescing heterophilic granulomas (black arrowheads),
(B) displaying necrosis of heterophils and macrophages in their center (*) and (C) a peripheral rim of
giant multinucleated cells (black arrowheads). In the granulomas (D) and the lung surface (E), the
presence of invading thin (3- to 12 µm), non-pigmented (hyaline), septated hyphae with homogenous
acute angle branching consistent with Aspergillus spp. (F) Lung of a red-crested pochard (Netta rufina)
with numerous Aspergillus spp. conidial heads. (A–C): HES staining; (D–F): Gomori Grocott staining.

10. Diagnostics

The recognition of aspergillosis in wild birds may be established either antemortem
or postmortem [2,183]. Non-Aspergillus fungal species are able to produce similar le-
sions [30,180]. Furthermore, due to the ubiquitous nature of Aspergillus in the environment,
positive cultivation from integument or respiratory tissues without any associated lesions
may be frequent but should not be interpreted as a positive diagnosis of aspergillosis [3].
Therefore, a definitive diagnosis requires the identification of Aspergillus spp. from associ-
ated lesions [30]. Culture and isolation of the fungal agent for further characterization is
considered the gold standard. In the absence of pathognomonic structures such as conidio-
phores, and since in vivo hyphal morphologies may overlap between Aspergillus fungi and
multiple other fungi, histopathological observations of dichotomously branching hyaline
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hyphae with parallel walls on histopathological preparation may lead to false positives. In
that case, immunohistochemistry with monoclonal or polyclonal antibodies is a powerful
and accurate tool to identify in situ infections due to Aspergillus spp. or when mycological
cultures remain negative [21,29,180,184].

Classical ante mortem diagnostic procedures include blood work, serology, and imag-
ing [185]. However, ante mortem diagnosis of avian aspergillosis is much more challenging
when cytological evaluation of clinical samples is not feasible. It is also problematic because
extensive involvement of the respiratory tract can be present before clinical signs are ap-
parent. Despite the presence of non-specific clinical signs, aspergillosis should be strongly
suspected when debilitated birds suffering from respiratory distress are non-responsive
to antibiotic treatment and when careful history may reveal the presence of underlying
environmental or immunosuppressive factors [4,185].

In birds that are able to mount an appropriate immune response, blood work may re-
veal moderate to severe leukocytosis (20,000 to more than 100,000 cells per µL), heterophilia
with a reactive left shift (toxic changes), monocytosis, and hyperproteinemia [4]. Plasma or
serum protein electrophoresis can be used to obtain an overview of inflammatory changes.
Both clinical and experimental data in falcons and psittacines indicate that an increase
in β-globulins, hypoalbuminemia, a decreased albumin:globulin ratio (<0.5), and lower
prealbumin values may be indicative of aspergillosis [105,186–190]. Desoubeaux et al. [191]
combined a new biomarker with plasma protein electrophoresis in order to detect spon-
taneous cases of aspergillosis in a cohort of African penguins. Using 3-hydroxybutyrate,
β-globulin, and α2-globulin measures in tandem resulted in a high level of specificity
(>90%) and a negative predictive value (≥80%). The evaluation of two acute-phase pro-
teins (haptoglobin and serum amyloid A) in falcons [190,192] and Japanese quails [193]
gave contrasting results.

Two commercial ELISA kits have been used to detect two polysaccharidic components
of the fungal cell wall: the galactomannan (GM) is relatively specific for Aspergillus, whereas
(1-3)-β-glucan (BG) should be considered a panfungal test [194]. Different trials in various
bird species showed low levels of sensitivity and poor correlations between the GM index
and the disease status [187,188,190,191,195,196]. The BG assay appeared to be more suitable,
although the results were also species-dependent with higher average concentrations seen
in infected seabirds compared to raptors or companion birds [197]. PCR appears to be
a very sensitive and cost-effective diagnostic tool which is still in its infancy in avian
medicine. Mostly used for research purpose until recent years, PCR, generally based on
18S rRNA, allows the detection and identification of Aspergillus spp. isolated from field
cases [21,30,97,123,130,198,199].

Serologic assays for the presence of anti-Aspergillus have been used in parrots, birds
of prey, and penguins. However, the ubiquitous dispersal of Aspergillus spores and the
inability of birds to mount an adequate immune response due to the animal’s severe dis-
ease state have resulted in false positives and false negatives, respectively, which greatly
limit the diagnostic value of serology when used alone [40,41,99,186,187,190,200–202]. In a
recent experimental model of acute aspergillosis in peregrine and peregrine x saker falcons,
Wernery et al. [149] underlined the ability of anti-Afm1p (a highly immunogenic A. fumi-
gatus galactomannoprotein) antibodies to discriminate inoculated birds from apparently
healthy falcons by ELISA.

A combination of different diagnostic tools may overcome the intrinsic limitations of
each test that are inherent to the variability of the host’s status and the disease severity.
Hence, repeated testing can improve their levels of performance and can be used to evaluate
disease progression and treatment success [201].

Radiography is part of the routine clinical examination of sick birds. However, the
presence of radiologic signs indicates that birds are already in a late phase of the disease.
Computer tomography and magnetic resonance imaging offer greater resolution and
can highlight the invasive nature of the disease in birds. However none of these three
imaging techniques can conclusively diagnose aspergillosis [203–205]. Endoscopy is an
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invasive procedure that readily enables veterinary practitioners to detect aspergillosis
lesions (thickened air sac membranes, white-yellow, nodular, granulomatous, coalescing,
plaque-like lesions, pigmented mold) and to collect samples (air sac lavages, biopsy, contact
smears) for Aspergillus identification. Bronchoscopy is useful for the visualization of
tracheal lesions and facilitates their removal [206].

11. Treatment

Treatment of avian aspergillosis, when possible, is not always successful because
of the often advanced stage of the disease when the diagnosis is confirmed, the lack of
pharmacokinetic data on antifungal drugs in most avian species, the failure of drugs to
penetrate target tissues (especially encapsulated granulomatous lesions), and the frequent
presence of concurrent diseases and/or immunosuppression [4,207]. Companion birds,
raptors trained in falconry, and birds presented in zoos or to a lesser extent treated in
wildlife rehabilitation centers can benefit from different therapeutic strategies. If a bird
can tolerate anesthesia, the best way to overcome the disease is through topical therapy
after surgical debridement via endoscopy of caseous material and granulomas, even in
combination with early, aggressive, systemic, antifungal treatment [208,209]. Vacuum
suction treatment proved to be effective for removing syringeal and tracheal mycotic
obstructions detected by tracheoscopy in psittacines [174].

Historically, many protocols using different antifungal molecules or administration
routes have been used as curative and even metaphylactic options in different species of
wild birds. An oral solution of itraconazole (Fungitraxx, Floris, Vught, The Netherlands)
was recently registered as the first antifungal product for ornamental birds in Europe.
Given its broad antifungal spectrum and its fungicidal action on molds, voriconazole is
increasingly being used to treat invasive aspergillosis in birds [207,209–212]. However, the
empirical use of standard dosages to treat a great variety of bird species raises questions
and underlines the need for more evidence-based data [207,209]. Recent research (Table
3) has focused on evaluating the bioavailability of the most promising molecules in dif-
ferent target species and more rarely on their therapeutic efficacy in experimental models
of aspergillosis.

Both the formulation and the route of administration of antifungals should be carefully
evaluated in targeted host species in order to reduce toxic effects and improve the long-term
treatment of aspergillosis [213,214]. Effective management of captive birds, in particular,
fragile individuals or birds at risk of immunosuppression (for example, following oil
spill episodes), requires the minimization of handling stress. If subcutaneous implants of
antifungal agents fail to reach targeted plasma concentrations [8,216], the nebulization of
antifungal molecules could represent a promising technique that is applicable to groups of
animals even prophylactically [216–218]. Some therapeutic protocols are summarized in
Table 4.

In the framework of the one health context [219] and considering the limited number of
drugs available to treat aspergillosis, the recent increase in antifungal resistance in human
medicine should not be neglected by veterinarians and therefore should be carefully
monitored [220,221]. The flight ability allows birds to travel great distances between
cultivated fields that may be treated with fungicides. Consequently, birds might transfer
Aspergillus isolates in this way, some of which could be resistant [222].

Using the CLSI method, the in vitro susceptibility of 59 avian A. fumigatus strains to
amphotericin B, itraconazole, and voriconazole was determined. Four isolates showed
acquired resistance to both itraconazole and voriconazole [223]. Twenty-two Aspergillus
section Fumigati isolated from British captive penguins proved to be terbinafine- and
voriconazole-sensitive, but all were resistant to itraconazole using minimum inhibitory con-
centrations cutoff values [224]. Investigation of antifungal susceptibility remains scarce in
the field of wild avifauna and has been limited to newly identified Aspergillus species [33,34]
or to a few drugs. All 18 clinical and 9 environmental A. fumigatus stricto sensu from a
Californian rehabilitation center for seabirds were found to be sensitive to itraconazole [38].
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Only one of 159 independent isolates from Germany was found to be azole (itraconazole
and voriconazole) resistant [39]. In the framework of epidemiological surveys, more exten-
sive screening could increase the detectability of resistant Aspergillus fumigatus isolates and
even a multi-resistance pattern, as demonstrated in poultry contexts [225,226].

Table 3. Bioavailability and efficacy of different antifungal agents tested experimentally in several avian species.

Antifungal
Agent Status/Species Administration

Route Dose Aim Main Conclusions References

Amphotericin B
(Liposomal)

Mallard ducks
(Healthy)

Intratracheal
nebulization
(atomizer)

3 mg/kg
(single) PK

Target dose of 1 µg/g of
lungs reached (up to

9 days)
No toxic changes

(histological
examination)

[217]

Terbinafine
hydrochloride

Shelduck
(Tadorna tadorna)

(Healthy)
Oral 60 mg/kg

(single dose) PK

No adverse effects
Antifungal concentration

remains above target
doses for several hours

[227]

Terbinafine
hydrochloride

African penguins
(Healthy) Oral

3/7/15 mg/kg
(single dose)

15 mg/kg sid
4 days

PK

15 mg/kg per day oral
dose = putative

treatment
Slow elimination and
tissue accumulation

[228]

Terbinafine
hydrochloride

Red-tailed hawks
(Healthy) Oral 15/30/60 mg/kg

(single dose) PK

A dose of 22 mg/kg SID
may be a potential

treatment option to treat
aspergillosis in raptors

[228]

Terbinafine
hydrochloride

Hispanolian
amazons
(Healthy)

Oral 60 mg/kg
(single) PK

No adverse effect
Putative treatment of

aspergillosis
[229]

Terbinafine
hydrochloride

Hispanolian
amazons
(Healthy)

Nebulization
(15 min)

1 mg/mL
solution PK

Plasma concentration
above the target dose up

to 4 h
[218]

Itraconazole
(Itrafungol)

African penguins
(Healthy) Oral 20 mg/kg

(single dose) PK Putative cost effective
treatment [230]

Itraconazole
(Itrafungol)

Lesser flamingos
(Phoeniconaias

minor)
(Healthy)

Oral 10 mg/kg
(single dose) PK

Plasma drug
concentration >

0.5 µg/mL maintained
for at least 24 h after a

single dose

[231]

Itraconazole
(Sporanox/powder)

Humboldt
penguins Oral (in a fish)

6/12 mg/kg
SID/BID
14 days

PK

8.5 mg/kg BID or
20 mg/kg SID of

commercial capsule may
provide adequate

steady-state therapeutic
blood levels

[232]

Itraconazole
(nanoparticules)

Japanese quail
(Infected)

Nebulization
(30 min)

4%/10%
suspension
SID 6 days

EAA

10% nanosuspension is
well tolerated and

alleviates acute
aspergillosis

[219]
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Table 3. Cont.

Antifungal
Agent Status/Species Administration

Route Dose Aim Main Conclusions References

Itraconazole
(nanostructured

lipid carries)

Falcon (Falco sp.)
(Healthy)

Nebulization
(15 min)

(nanonebulizer)
NS -

No toxic effects on
A594 cells

Penetrates deeply into
the respiratory tract
(lungs and air sacs

(gammascintigraphy)

[233]

Voriconazole
Falcons (Falco sp.)

(Healthy vs.
diseased)

Oral (crop
gavage or

incorporated
into meat)

12.5 mg/kg BID
7/14 days PK/ET

High interindividuality
of voriconazole/no

adverse effects
Administration in meat

is effective and
avoids tress

[234]

Voriconazole African penguins
(Healthy) Oral

5 mg/kg (single
dose)

5 mg/kg SID
PK

Effective for the
treatment of aspergillosis
Potential toxicity due to

drug accumulation

[235]

Voriconazole
Magellanic
penguins
(Healthy)

Oral (in a
herring)

2.5/5 mg/kg
(single dose) PK

Above the target dose for
least 24 h following the

highest dose
[214]

Voriconazole
Hispanolian

amazons
(Healthy)

Oral

12/24 mg/kg
(single dose)

18 mg/kg QID
11 days

PK

Decrease in plasma
concentration following

administration of
multiple doses

requiring adjustment

[236]

Voriconazole Red-tailed hawks
(Healthy) Oral (gavage)

10 mg/kg
(single dose)

10 mg/kg BID
14 days

PK

More frequent dosing
(up to QID) may be

necessary to maintain
target concentration dur-
ing prolonged therapy

[237]

Voriconazole Falcons (Falco sp.)
(Healthy)

Intramuscular
injection

12.5 mg/kg
(single dose) PK

Target plasma
concentration (>1 µg/ml)

maintained 16 to 20 h
without clinical

side effects

[215]

Voriconazole Mallard ducks
(Healthy)

Intravenous
injection
or oral

(liquid/non
liquid)

10 mg/kg
(single dose)

10/20/40 mg/kg
(single dose)

20 mg/kg SID
21 days

PK

No overt/histological
signs of toxicity

A dosing interval of at
least 8–12 h at a dose of

20 mg/kg may
be required

[238]

Voriconazole Japanese quail
(Infected) Oral 20/40 mg/kg

SID PK/EAA

Prolonged survival and
less fungal burden in the

lungs with the highest
dose. No necrotic lesions

(histopathology

[239]

Voriconazole Rock pigeon
(Infected) Oral 10 mg/kg BID

20 mg/kg SID EAA

Reduction of clinical
signs and A. fumigatus

elimination at
10 mg/kg BID

[240]

BID: twice a day; EAA: experimental acute aspergillosis; ET: empirical treatment on birds with spontaneous aspergillosis; NS: not specified;
PK: pharmacokinetic studies; QID: four times per day; SC: subcutaneous; SID: once per day.
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Table 4. Antifungal treatments recommended for avian aspergillosis [4,99,241].

Avian Taxon Antifungal Agent Dose and Administration Route

Gamebirds
Itraconazole 10 mg/kg orally SID or BID

Terbinafine 15 mg/kg orally BID

Parrots

Amphotericin B Nebulization 1 mg/kg diluted to 1 mL with sterile water BID or TID

Itraconazole
5–10 mg/kg orally SID or BID

2.5–5 mg/kg orally SID in Grey parrot

Voriconazole 12–18 mg/kg orally BID

Raptors

Itraconazole
10 mg/kg orally BID for 60 days

5–10 mg/kg orally BID for 5 days then SID for 60-90 days

Terbinafine 10–15 mg/kg orally BID for 6-8 weeks

Voriconazole
10–18 mg/kg orally BID for 60 days

12.5 mg/kg orally BID in falcons

Seabirds Itraconazole 10–20 mg/kg orally SID

Waterfowl
Amphotericin B

Nebulization 12.5 mg diluted with 2.5 mL sterile water SID for 7 days

7.5 mg/kg intratracheally TID

3.25 mg/kg intravenously (in fluids) over 24 h

Itraconazole 5–10 mg/kg orally SID for 4-8 weeks

BID: twice per day; TID: three times per day; SID: once per day.

12. Prevention

Aspergillosis prevention measures are based on two main axes: controlling the level
of exposure and minimizing stressors [4].

Risk management in a natural environment is limited to the first option when it
is feasible. The abandonment of crop residues on the ground and rainy weather can
promote the development of molds. Under unfavorable conditions, such as periods of
snow or rain, crows and waterfowl can roam and ultimately land and feed on discarded
moldy grains (corn) and silage [61,62,73]. Possible but limited solutions include burying,
covering, or plowing under crop residues and reducing access to contaminated fields
or piles by using audible scaring devices (pyrotechnics) to redirect birds to alternative
feeding areas [2,27,242]. Grain used for avifauna baiting, trapping, or supplemental feeding
programs should be properly stored and controlled. Fallow plots for wildlife should be
regularly inspected. Keeping bird feeders and nest-boxes free of moldy substrates remains
essential [2,88].

Captive conditions allow for finer control of the environment close to birds. As as-
pergillosis is not a contagious disease, multiple infections in a single enclosure involve
common exposure rather than bird-to-bird spread [99]. It is useful to know the fungal loads
to which animals can be exposed, especially in very sensitive species such as penguins or
raptors. Air samples have been collected by sedimentation, filtration, or impaction in differ-
ent environments housing birds. Bioimpactors, like the Air Strategie Bioimpactor, Surface
Air Systems samplers, CIP 10-M, and Aerotech N6 (ex- Anderson N6) have been proven to
be accurate tools for measuring the airborne Aspergillus concentration. The level of expo-
sure when monitored by regular volumetric air sampling demonstrates important seasonal
variations, a mitigating effect of low temperatures in cooled aviaries (Arctic and Antarctic
species), and higher-risk micro-environments in multi-area structures [43,45–47,49,51,243].
Quantitative data are also useful to appreciate the effectiveness of filtration systems used in
conventional air-handling systems to protect the most sensitive bird species, like penguins.
High-Efficiency Particulate Air (HEPA) filters, although expensive and easily overloaded
by the spore loads, are the best technical option but require meticulous maintenance [47].
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In a Californian zoological park, among 22 variables tested, HEPA filters were shown
to have the strongest effect (adjusted Odds Ratio = 4.33) on the reduction of Aspergillus
prevalence in indoor sites [244]. Higher-than-average mortality rates due to aspergillosis
can be associated with hot, humid climates, which predominate in tropical aviaries where
many plants with a large bulk of litter and water pools are generally present. In brown kiwi
nocturnal houses, variable concentrations of A. fumigatus, measured as CFU/g of wet mate-
rial (soil, leaf litter), have been recovered with the highest counts following aspergillosis
onset. Ground-dwelling species may be at greater risk of spore inhalation when foraging.
Under stress, captive exotic birds may change their natural behaviors and spend more
time on the ground foraging or hiding. By quantitatively estimating the background load
levels of fungi, it becomes possible to identify inadequate litter management or storage
that can promote Aspergillus growth. Regular cleaning and disinfection of the nest boxes,
opening the canopy to increase the amount of sunlight reaching the floor of the aviaries,
and ensuring proper ventilation help to reduce the risk of aspergillosis [42,43,47,48,85].

Animal facilities, transport crates, incubators, and hatchers should be adequately
ventilated and cleaned and disinfected with antifungal agents (enilconazole and essential
oils) before use to keep the infection pressure low [245,246]. Potential sources of spores,
such as moldy litter materials and feed, should never be introduced. Minimizing plantings
to limit plant and soil areas and choosing artificial rather than organic material for nests
must be considered for penguin exhibits [2,46,49,119]. Finally, an indirect way of evaluating
exposure to Aspergillus spp. can consist of repeated screening of antibodies, either in the
serum or in the egg yolks, as has already been done in penguins, but this requires further
research [40,41].

Improved animal husbandry practices minimize any stress in facilities. Birds suffering
from aspergillosis can ward off the infection if it is not too severe and if global stress is
minimized and the environmental quality is maximized. Broad and prolonged use of
antibiotics or immunosuppressive drugs should be used with caution [107]. A 3-week
prophylactic treatment with terbinafine or itraconazole in highly susceptible species of
raptors is recommended by [247] in the following cases: newly captured or admitted
individuals, following a change of management, extreme heat conditions, and even sys-
tematically in young reared gyrfalcons (3–120 days of age). Prophylactic protocols with
itraconazole are also common in Spheniscidae held in zoo or rescued after oil spills [208,248].
In a Brazilian center [120], groups of penguins that received this antifungal prophylactically
had 1.8 times fewer animals with aspergillosis when compared with non-treated birds
(12.2% versus 22.9%).

Vaccination strategies have been attempted in birds but with inconsistent
results [115,126,249,250].

13. Concluding Remarks

To go further and improve our knowledge of aspergillosis in wild birds, some data
should be implemented more systematically:

As the susceptibility of the host to the disease seems to vary according to the avian
species, it is necessary to identify the affected species precisely, especially in the event of an
epizootic [74].

When grouped mortality occurs, possible sources should be sought as soon as possible
by collecting adequate samples and investigating potential risk factors [74].

When gross findings are exuberant and promptly detected, institutions sometimes
bypass histopathology or complementary diagnostic tests and conclude that “aspergillosis”
was the cause of death, thus potentially underestimating the prevalence of other fungal
pathogens [30,131,251]. The rigorous identification of a case of aspergillosis and a clin-
ical isolate should be based exclusively on the association of an Aspergillus spp. with
lesions [30,252].
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A more systematic search for other putative etiological agents in the context of epi-
zootics or analyses of mortality cohorts in particular, could make it possible to better
understand the role of Aspergillus as an agent of primary or secondary infections [80].

Accurate identification of both common and cryptic Aspergillus species should be sys-
tematically performed in epidemiological studies. Molecular tools allowing simultaneous
identification of mutations associated with a decreased sensitivity to azole antifungals such
as the cyp51A gene are already available [183,221]. A systematic identification of all clinical
isolates at the species level could be important to predict antifungal susceptibility or the
clinical spectrum of new pathogenic species [253].

The constant difficulty of finding a single infection biomarker covering all species
should prioritize the reorientation of the evaluation of these biomarkers on the species
or taxa considered as priorities. Similarly, further targeted pharmacokinetic studies are
necessary to improve the effectiveness of treatments on important species of birds of prey,
penguins, and psittacines [210,252].
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