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Predictive models for mild cognitive 
impairment to Alzheimer’s disease 
conversion

Alzheimer’s disease (AD) is an irreversible 
a n d  p ro g re s s i ve  n e u ro d e ge n e rat i ve 
disease as well as the most common form 
of dementia. It usually affects the older 
population, but early onset AD is still possible 
(Ritchie et al., 2015). Recent studies propose 
that AD is a middle-life disease (Ritchie et al., 
2015). Regardless the onset of the disease, 
it is important to note that it takes years for 
the symptoms to manifest. Specifically, it 
is believed that AD begins 20 years before 
the onset of symptoms. AD broadly includes 
three stages: preclinical AD, mild cognitive 
impairment (MCI) and dementia (Grassi et 
al., 2019). Researchers find it challenging to 
classify the MCI stage. This is partly because 
although MCI patients appear to have 
neurological deficits, their symptoms are not 
advanced enough to meet the AD criteria. 
MCI is also known as the stage between 
normal cognitive ageing and dementia and 
is often thought of as the prodromal stage 
of AD (Grassi et al., 2019). MCI patients can 
either remain stable at this stage of the 
disease or convert to AD. Approximatively 
20–40% of MCI patients convert to AD (MCI 
converters-MCIc; Grassi et al., 2019). Like any 
other disease, early diagnosis is important. 
Therefore, identifying subtle brain changes 
that occur during the MCI-to-AD conversion 
as early as possible could be the key to the 
development of more effective treatment 
plans.

The majority of current approaches aim to 
help patients manage behavioral symptoms 
and impede others such as memory loss 
and cognitive decline. Because of the 
complexity of the disease, one specific drug 
or treatment intervention appears unlikely to 
successfully treat the disease. Predicting the 
exact point when patients convert from the 
prodromal stage of the disease (MCI) to AD 
would be extremely beneficial in identifying 
novel mechanisms of disease prevention.

In the era of big data, analysis of large 
volumes of data requires progressive 
approaches. Advances in neuroimaging 
techniques such as magnetic resonance 
imaging (MRI)  and positron emission 
tomography (PET) scans enable scientists to 
search for AD patterns in the entire brain. 
Because of AD complexity, image analysis 
in combination with pre-existing in vivo 
biomarkers (amyloid-β (Aβ), tau, etc.) is a 

more reliable diagnostic tool (Westman et 
al., 2011). Machine learning methodologies 
are often util ized for the examination 
of said high dimensional data (Cuingnet 
et al., 2011). Models based on machine 
learning provide a promising opportunity 
for developing tools that can detect disease 
progression. A variety of methodologies have 
been suggested for patient classification 
(AD and/or MCI; Cuingnet et al., 2011). The 
majority of methods work by reducing the 
dimensionality of the feature space. This 
approach relies on the extraction of different 
features types, clustering and/or selection 
methods (Cuingnet et al., 2011). 

Machine learning techniques have been used 
for classification of MCI patients who convert 
to AD (MCIc) and MCI patients who remain 
stable at this stage (MCInc; Additional Table 1).

Our previous work was set  to create 
predictive models in order to identify any 
emerging patterns of conversion from 
MCI to AD (Skolariki et al.,  2020). For 
the establishment of such models, we 
relied on machine learning for analysis of 
multivariate data. The supervised machine 
learning algorithms that were utilized for 
classification tasks include: i) support vector 
machine (SVM) for which a linear C-SVM 
algorithm was applied, ii) decision trees, for 
which a Java open source implementation of 
the C4.5 algorithm (the J48 algorithm) was 
used and iii) the Naive Bayes (NB) classifier, 
which even though is considered a fairly 
simple approach oftentimes outperforms 
more complex classification methods. The 
aforementioned filters are available in the 
WEKA 3.9.2 software. 

Features based on cortical thickness (CTH) 
and hippocampal volumes (HCV) extracted 
from brain scans were used to train the 
learning algorithms. CTH was utilized as a 
classification feature seeing as literature 
shows that cortical thickness characterizes 
atrophy manifestation, making it a potential 
AD diagnostic biomarker (Thompson et al., 
2001). HCV was chosen as a feature because 
the hippocampus is a region of the brain 
found to be associated with early stages of 
AD making it an early AD marker (Schuff et 
al., 2008). 

Al l  data used to develop the models 
was obtained from Alzheimer ’s Disease 
Neuroimaging Initiative (ADNI) (http://www.
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adni-info.org). Participants consisted of AD 
patients, subjects in several stages of MCI, 
and healthy controls (55–90 years old). For 
this study, subjects were divided into healthy 
controls, MCI converters (MCIc), MCI non-
converters (MCInc) and AD.

Using the WEKA filter for random data 
division, a “train” file was produced that 
included data from the three diagnostic 
groups (AD, healthy control and MCIc) and 
a “test” file that included data from MCIc 
(Figure 1). Utilization of the “train” file 
resulted in the six predictive models for 
MCIc identification (Additional Table 2). 
The test set was used for the training of the 
algorithms and model development. 

As a result, six models were created CTH-
SVM, CTH-J48, CTH-NB, HCV-SVM, HCV-J48 
and HCV-NB (Additional Table 2). The best 
model, which is SVM trained by CTH-based 
features (CTH-SVM), accurately identified 
99% of MCI patients that converted to AD 
(Additional Table 2). Additionally, the CTH-
based models consistently outperformed 
the HCV-based models (Additional Table 2). 
Based on the study, evidence suggests that 
multivariate methods (SVM, J48 and NB) are 
highly promising for group differentiation 
(MCI vs. AD) that take into consideration 
the synchronized involvement of the input 
features.

The aforementioned predictive models could 
prove effective in the identification of MCI-
to-AD inhibitory mechanisms, leading, thus, 
to a prolonged MCI stage allowing patients 
to live an increasingly moderate life at the 
prodromal stage of the disease.

Our current work includes validating the 
previous predictive models using a larger 
data set to establish their accuracy and 
performance as precisely as possible. This 
research will also allow us to determine 
whether our predictions are more dependent 
on the feature, the sample size or the models 
themselves. Next steps involve the inclusion 
of additional classification features in order 
to create an all-inclusive predictive model. 
These features should contain but not be 
limited to: apolipoprotein-E, cerebrospinal 
fluid protein levels (tau, Aβ), neurofilament 
light chain (NFL), plasma protein levels (tau, 
Αβ, NFL), electroencephalograph markers 
and volumetric differences in mapped 
hippocampal regions, MRI (used to analyze 
certain regions of interest), structural MRI 
(used to classify brain regions affected by 
AD at a voxel scale) and PET scans (Gupta 
et al., 2019). These features are established 
AD markers. Therefore, inclusion of a wider 
combination of AD indicators would increase 
model accuracy. Future research will utilize 
more sophist icated machine learning 
approaches, such as ensemble selection that 
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would allow for the combination of several 
different classifiers in order to accomplish 
higher decision boundaries (Aguilar et al, 
2013).

Healthy control data were included in this 
study and the sample size for all three 
groups (healthy control, MCI and AD) was 
proportionate in order to represent the 
broader population. Future work should 
focus on exploring a similar research aim 
with the inclusion of additional features that 
would be obtained from the same subjects. 
The utilization of ADNI data encompasses 
a key restriction regarding sample subjects, 
seeing as it is still difficult to acquire data 
for all of the required features from the 
same participants. Therefore, the respective 
discriminative power of the different 
approaches could not be evaluated.

Based on the complexity and heterogeneity 
of AD, we conclude that an advanced 
machine learning predictive model that 
includes a panel of features would offer 
far greater insights into precise diagnostic 
and prognostic approaches in an unbiased 
manner. Thus, the overall aim of scientists 
i s  t o  d e v e l o p  t h e ra p e u t i c  m e t h o d s 
that incorporate all types of biological 
mechanisms (genetic, molecular, cellular, 
etc.) in order for AD to be prevented.
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Figure 1 ｜ Flow chart of subject inclusion.
AD: Alzheimer’s disease; CTH: cortical thickness; HC: healthy control; HCV: hippocampal volume; MCI: 
mild cognitive impairment; MCIc: MCI converters; MCInc: MCI non-converters. Reprinted from Skolariki 
et al. (2020).
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Additional Table 1 Machine learning techniques used for MCIc and MCInc classification
Feature Methods Number

of
subjects

Accuracy
(SEN, SPE)
%

Classifier Database Reference

Voxel-
segmented
probability
maps

Direct 509 -(0,100) Linear SVM ADNI Cuingnet et al.
(2011)

Direct VOI 509 - (0,100) Linear SVM ADNI Cuingnet et al.
(2011)

STAND-score 509 - (0,100) Linear SVM ADNI Cuingnet et al.
(2011)

Atlas 509 - (51,79) Linear SVM ADNI Cuingnet et al.
(2011)

COMPARE 509 - (54,78) Linear SVM ADNI Cuingnet et al.
(2011)

Cortical
Thickness

CTH-SVM* 504 75 (75,12) Linear SVM ADNI

CTH-J48* 504 70 (70,15) J48 ADNI
CTH-NB* 504 71 (71,14) Naive Bayes ADNI
Direct 509 - (32,91) Linear SVM ADNI Cuingnet et al.

(2011)
NTI 382 73 (75,68) Trees ADNI Querbes et al.

(2009)
Atlas 509 - (27,85) Linear SVM ADNI Cuingnet et al.

(2011)
ROI 509 - (24,82) Logistic

Regression
ADNI Cuingnet et al.

(2011)
Feature Vector 203 71(63,76) PCA ADNI Cho et al.

(2012)
Hippocampus HCV-SVM* 299 56 (56,56) Linear SVM ADNI

HCV-J48* 299 56 (56,52) J48 ADNI
HCV-NB* 299 55 (56,45) Naive Bayes ADNI
Volume- SPM5
Volume-
FreeSurfer

509 - (62,69)
- (70,61)

Parzen ADNI Cuingnet et al.
(2011)

Volume- SPM5 605 64 (60,65) Incremental
learning

ADNI Chupin et al.
(2009)

Shape 509 0(0,100) Linear SVM ADNI Cuingnet et al.
(2011)

AD: Alzheimer’s disease; ADNI: Alzheimer's Disease Neuroimaging Initiative; CTH: cortical thickness; HCV: hippocampal volume;
J48: the C4.5 algorithm; MCI: mild cognitive impairment; MCIc: MCI converters; MCInc: MCI non-converters; NB: Naive Bayes;
NTI: normalized thickness index; PCA: principal component analysis; ROI: Region of interest; SEN: sensitivity; SPE: specificity;
SPM5: Statistical Parametric Mapping; STAND: STructural Abnormality iNDex; SVM: support vector machine; VOI: volume of
interest. The methods with the asterisk are the models from Skolariki et al. (2020).
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Additional Table 2 Predictions acquired using six different models

CTH-SVM
AD MCI

CTH-J48
AD MCI

CTH-NB
AD MCI

HCV-SVM
AD MCI

HCV-J48
AD MCI

HCV-NB
AD MCI

MCIc 99% 1% 99% 1% 99% 1% 0 100% 7% 93% 5% 95%
ACC 83% 84% 83% 6% 14% 9%

The data are presented as the percentage of MCIc that were correctly classified as AD vs. misclassifications of MCIc as MCI
(Skolariki et al., 2020). AD: Alzheimer’s disease; ACC: accuracy; MCI: mild cognitive impairment; CTH: cortical thickness; J48: the
C4.5 algorithm; MCIc: MCI converters; NB: Naive Bayes; SVM: support vector machine.


