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Abstract

Insects rely primarily on innate immune responses to fight pathogens. In Drosophila, antimicrobial peptides are key
contributors to host defense. Antimicrobial peptide gene expression is regulated by the IMD and Toll pathways. Bacterial
peptidoglycans trigger these pathways, through recognition by peptidoglycan recognition proteins (PGRPs). DAP-type
peptidoglycan triggers the IMD pathway via PGRP-LC and PGRP-LE, while lysine-type peptidoglycan is an agonist for the Toll
pathway through PGRP-SA and PGRP-SD. Recent work has shown that the intensity and duration of the immune responses
initiating with these receptors is tightly regulated at multiple levels, by a series of negative regulators. Through two-hybrid
screening with PGRP-LC, we identified Rudra, a new regulator of the IMD pathway, and demonstrate that it is a critical
feedback inhibitor of peptidoglycan receptor signaling. Following stimulation of the IMD pathway, rudra expression was
rapidly induced. In cells, RNAi targeting of rudra caused a marked up-regulation of antimicrobial peptide gene expression.
rudra mutant flies also hyper-activated antimicrobial peptide genes and were more resistant to infection with the insect
pathogen Erwinia carotovora carotovora. Molecularly, Rudra was found to bind and interfere with both PGRP-LC and PGRP-
LE, disrupting their signaling complex. These results show that Rudra is a critical component in a negative feedback loop,
whereby immune-induced gene expression rapidly produces a potent inhibitor that binds and inhibits pattern recognition
receptors.
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Introduction

Insects rely primarily on innate immune responses to fight

pathogens. The Drosophila immune response has proven to be an

experimentally powerful and conserved model system for the study

of innate immunity [1,2,3,4]. In particular, the insect immune

response relies on evolutionary conserved NF-kB signaling

cascades for the control of inducible antimicrobial peptide

(AMP) gene transcription. This antimicrobial peptide response is

critical for protection against many microbial pathogens [5,6].

In Drosophila, two signaling pathways regulate the production of

these antimicrobial peptides - the IMD and Toll pathways [7].

The Toll pathway responds to many Gram-positive bacterial and

fungal infections [8], while the IMD pathway is potently activated

by DAP-type peptidoglycan (PGN) from Gram-negative bacteria

and certain Gram-positive bacteria [9,10]. Two receptors, PGRP-

LC and PGRP-LE, are able to recognize DAP-type PGN at the

cell surface or in the cytosol, respectively, and trigger the IMD

pathway [11,12,13,14,15,16].

Upon binding DAP-type PGN, both PGRP-LC and PGRP-LE

multimerize and signal via a common motif in their N-terminal

domains, known as the RHIM-like domain [15,17,18]. The

RHIM-like domain is critical for signaling by either receptor, but

the mechanism(s) involved remain unclear [15]. Genetic experi-

ments suggest that the imd protein functions immediately

downstream of PGRP-LC and upstream of all other known

components of the pathway [19]. IMD associates with both

PGRP-LC and -LE, although the PGRP-LC RHIM-like motif is

not required for this interaction [15]. Nonetheless, the complexes

formed on these receptors are likely to be critical to trigger further

signal transduction.

Recent work has shown that the intensity and duration of the

immune response is tightly regulated in Drosophila. As in mammals,

over-exuberant immune responses can be detrimental, and the

proper down modulation of immunity is critical for health and

fecundity [20,21,22]. In order to keep the immune response

properly modulated, the Toll and IMD pathways are controlled at

multiple levels by a series of negative regulators. For example, the

amidases PGRP-LB and PGRP-SC reduce the immunostimula-

tory activity of PGN by digesting it [23,24]. Intracellularly, the

IMD signaling pathway is further down–regulated by Dnr1,

POSH, Caspar and the E3-ligase complex containing SkpA,

dCullin and Slimb [25,26,27,28]. Additionally, the JNK and

Relish branches of the IMD pathway are thought to mutually

inhibit each other [29,30,31].

In this study, we identify and characterize a negative feedback

regulator of the IMD pathway, dubbed rudra. Expression of rudra

was rapidly induced following immune challenge. Moreover, in

flies and cells, rudra is critical for controlling immune-induced gene

expression. Following infection, rudra mutant flies hyper-activated
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antimicrobial peptide gene expression resulting in increased

resistance to microbial infection. Using various biochemical and

genetic techniques, Rudra was found to interact with the receptors

PGRP-LC and PGRP-LE and disrupt the signaling complex

assembled on these receptors. Due to its ability to destroy this

receptor signaling complex and inhibit immune responses, rudra

was named for Shiva, the Indian god of destruction, who in his

Rudra phase of mind causes inhibition and destruction of all life

on earth.

Results

Isolation of Rudra
In order to identify potential partners and regulators of the IMD

pathway receptors, a yeast two-hybrid screen was performed with

the cytoplasmic domain of PGRP-LC as bait [32,33]. 25 strongly

interacting clones were further analyzed with a set of baits that

carried mutations in the RHIM-like domain of PGRP-LC (or

irrelevant control baits). One clone interacted strongly with the

wild-type cytoplasmic domain of PGRP-LC but weakly with the

RHIM-like mutant baits (Table 1). This clone encoded amino

acids 30–197 of CG15678, and will be referred to as rudra from

hereafter.

To confirm the yeast two-hybrid results, co-immunoprecipita-

tion experiments were performed. Using epitope tagged constructs

and transient transfection in Drosophila S2* cells, both PGRP-LE

and PGRP-LC were found to associate with Rudra (Figure 1A, E).

In a heterologous system (HEK cells), similar robust associations

were observed between Rudra and PGRP-LE or 2LC (Figure 1B,

C). The interaction between Rudra and PGRP-LE was also

readily detectable, by co-immunoprecipitation, when these

proteins were produced in a rabbit reticulocyte in vitro translation

system (Figure S1). These data demonstrate that Rudra interacts

directly with the receptors PGRP-LC and PGRP-LE.

In order to determine which domain(s) of the receptors interact

with Rudra, co-immunoprecipitation assays were performed with

various mutant versions of PGRP-LC or PGRP-LE. Consistent

with the yeast two-hybrid data, which indicated involvement of the

RHIM-like domain for interaction, a mutant form of PGRP-LE

lacking the RHIM motif (D98-113) showed little interaction with

Rudra (Figure 1A, B). Using a set of large deletions (Figure 1D),

the N-terminal cytoplasmic domain of PGRP-LC was found to be

essential for association with Rudra. Removal of the first 144

amino acids decreased Rudra interaction, while removal of nearly

the entire cytoplasmic (D1-253) domain abolished interaction. The

PGRP-LC extracellular domain was not involved in the

interaction (Figure 1E). We then attempted to map the PGRP-

LC interaction more finely with a set of mutants that span the

entire cytoplasmic domain with sequential 50 amino acid

deletions. However, Rudra co-immunoprecipitated with all of

these deletion mutants, suggesting some redundancy in the

interaction mechanism (Figure S2). The yeast two-hybrid data

suggest that some of the interacting activity involves the PGRP-LC

RHIM domain, while the larger deletions suggest another

interaction motif likely lies in the first 144 amino acids

(Figure 1D, E). Overall, we conclude that Rudra directly interacts

with the signaling domains of PGRP-LC and PGRP-LE. The

interaction with PGRP-LE is largely mediated by the RHIM motif

while the interaction with PGRP-LC appears to involve multiple,

partly redundant, mechanisms.

Induction of rudra expression
Previous microarray studies have suggested that rudra is a target

of the IMD signaling pathway [29,34,35]. In order to confirm and

extend these findings, the expression of rudra was analyzed at

various times after immune stimulation of S2* cells, by qRT-PCR.

rudra transcript was rapidly induced, peaking in 30–60 minutes

and returning to near baseline levels within 24 hours (Figure 2A).

The kinetics of rudra expression were markedly faster and more

transient than the expression of AMP genes. For example,

Diptericin mRNA levels, as measured by Northern blotting, did

not peak until 6 hours after PGN stimulation, and then remained

elevated for at least 24 hours (Figure 2A). Even though the

expression profiles of rudra and AMP genes are distinct, they both

require the NF-kB factor Relish [35,36].

Rudra is a negative regulator of IMD signaling
Next, RNAi was used to characterize the function of rudra in the

IMD pathway. S2* cells were transfected with dsRNA for rudra,

and then stimulated with PGN for various times. As monitored by

Northern blotting, antimicrobial peptide genes Diptericin (Dpt),

Attacin (Att) and Cecropin (Cec) were induced to markedly higher

Table 1. Rudra interacts with cytoplasmic domain of PGRP-LC by yeast two-hybrid.

Baits LC WT LC D172-212 LC D213-242 LC F218A DmIKK Empty vector

Prey: Rudra aa 30–197 ++++ ++ ++ ++ 2 2

The cytoplasmic domain of PGRP-LC was used as bait and Rudra was used as the prey in yeast two-hybrid assays. Rudra interacted well with the full cytoplasmic domain
of PGRP-LC and the yeast cells grew robustly on Ade selection plates. However, Rudra interacted weakly with several deletion and point mutants that alter the RHIM-like
domain of PGRP-LCx. ++++, robust growth; ++, slow growth, 2 no growth.
doi:10.1371/journal.ppat.1000120.t001

Author Summary

The innate immune system controls the immediate
response to infection. Innate immunity relies on germline
encoded receptors, receptors that are present at birth, to
recognize germs and trigger a protective response.
Invertebrates (i.e., insects) rely on innate immunity to
survive in microbial-rich environments, such as rotting
fruit. However, uncontrolled innate immune responses are
dangerous, leading to severe pathologies like sepsis,
inflammatory bowel diseases, and lupus. Therefore, the
intensity and duration of the innate immune response is
kept in-check by multiple regulatory mechanisms. Here,
we have identified a new feedback regulator of the
Drosophila (the fruit fly) immune response, which we call
Rudra. Using various approaches, we show that in the
absence of Rudra the innate immune system is hyper-
activated. This elevated immune response leads to better
protection against bacterial infection. On the other hand,
when present in excess, Rudra prevents the activation of
the immune response. Furthermore, we show that Rudra
turns off the immune response by binding to the receptors
that are responsible for detecting bacteria, thereby
preventing downstream responses.

Rudra, Negative Feedback Regulator of IMD Pathway
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levels in cells treated with rudra RNAi, compared to cells

transfected with a control lacZ dsRNA (Figure 2B). These data

suggest that rudra is a negative regulator of IMD signaling.

To further test if rudra is a negative regulator of the IMD

pathway, stable cell lines expressing rudra from a copper-inducible

promoter were selected. These cell lines were treated with copper

for 1.5 hours, to induce rudra expression, and then stimulated with

PGN for 5 hours, to stimulate the IMD pathway. rudra over-

expression potently inhibited the induction of Dpt (Figure 3A).

Also, to test if rudra negatively regulates the Toll pathway, stable

cell lines expressing rudra from the actin promoter were selected.

These cell lines were treated with SPZ-C106 for 18 hours to

stimulate the Toll pathway. rudra over-expression did not robustly

inhibit the induction of Drosomycin, as compared to its ability to

inhibit PGN-induced Diptericin expression (Figure S3). These data

demonstrate that rudra is potent inhibitor of the IMD pathway but

has little effect on Toll signaling.

Using the UAS system and a heat shock Gal4 ‘driver’,

transgenic flies that ectopically express rudra were also character-

ized. rudra expression was induced with a 1.5 hour heat shock and

then flies were challenged with E.coli. In two independent UAS-

rudra lines, IMD signaling was strongly inhibited by rudra

expression, as monitored by Northern blotting for Dpt induction

(Figure 3A). These results are consistent with the data from

cultured cells, and argue that rudra is a potent negative regulator of

the IMD pathway in vivo.

In order to phenotypically characterize the loss of rudra, a strain

carrying a P-element at position 123 in the 59 UTR of rudra

(EY00723) was analyzed [37,38,39]. First, the level of rudra

transcript in this strain was compared to an isogenic white strain, by

qRT-PCR (Figure 4A). [To isogenize mutant and wild-type

strains, EY00723 was backcrossed with the white strain for six

generations prior to these analyses]. Similar to the cell culture

data, rudra transcription was rapidly induced following infection in

wild-type flies. Again, the induction of rudra expression occurs

more rapidly, and is resolved more quickly, than does AMP gene

expression (compare Figure 4A to 4B). The transposon insertion in

the 59 UTR markedly inhibited rudra expression, with nearly

undetectable levels at all time points, demonstrating that this allele

of rudra is a strong hypomorph. Also, a transgenic rescue strain was

constructed, using a 4.5 Kbp genomic fragment (rudrarescue). This

genomic rescue construct partially restored immune-inducible

expression of rudra, but it did not completely return to wild-type

levels (Figure 4A).

Next, the immune response of wild-type, rudraEY00723, and the

rudrarescue strains were compared. Diptericin expression, as monitored

by Northern blotting at various times following septic E. coli

infection, was elevated at all time points in rudraEY00723 compared

to the isogenic wild-type strain (Figure 4B). The rudrarescue

transgenic line restored Diptericin to levels between that observed

in the wild-type and rudra mutant flies, consistent with partially

restored levels of rudra expression observed in this line. rudra

heterozygotes also displayed elevated AMP gene expression (data

not shown). These results, together with the data from ectopic

expression, demonstrate that rudra is a potent negative regulator of

the IMD pathway in flies, as well as in cultured cell lines.

We then asked what consequence these elevated AMP levels

might have during an infection. To this end, wild-type and

rudraEY00723 flies were infected with the Gram-negative pathogen

Erwinia carotovora carotovora (Ecc). As reported previously, Ecc is a

mildly pathogenic infection in wild-type animals, such that most

flies succumb over the course ,10 days (Figure 4C) [27,40]. As

expected, PGRP-LE; PGRP-LC double mutant flies, which lack both

receptors involved in detecting DAP-type PGN, were rapidly killed

by this infection (P = 0.0252, compared to wild-type animals). On

the other hand, rudra mutants showed significantly improved

survival compared to wild-type flies (P = 0.0052). These results

show that loss of rudra, and the ensuing increase in AMP levels,

enhances resistance to this Gram-negative pathogen.

Figure 2. rudra, a negative feedback regulator of IMD signaling
in cells. (A) Real-time RT-PCR analysis of rudra transcript from S2* cells
which were stimulated with PGN for various times. Diptericin expression
was quantified, by Northern blot, from these same cells. (B) Northern
blot of Diptericn, Attacin, Cecropin and rp49 expression in S2* cells
treated with lacZ dsRNA or Rudra dsRNA, and then stimulated with PGN
for various times. Data are representative of at least three independent
assays. Error bars in (A) represent standard deviation on 3 technical
repeats.
doi:10.1371/journal.ppat.1000120.g002

Figure 1. Rudra interacts with the receptors PGRP-LE and PGRP-LC. (A, B) Immunoprecipitation (IP) and immunoblot (IB) analysis of lysates
from S2* or HEK cells transiently transfected with expression plasmids for FLAG-tagged PGRP-LE and/or T7-tagged rudra. In the Drosophila S2* cells,
the copper inducible metallothionein promoter was used for expression and cells were treated with CuSO4 or left untreated, as indicated. (C) Similar
co-immunoprecipitation experiments from lysates of HEK cells transiently co-transfected with T7-tagged PGRP-LCx and FLAG-tagged rudra expression
plasmids. (D) Schematic representation of the PGRP-LCx deletions mutants used in (E). (E) IP-IB analysis of lysates from S2* cells transiently
transfected with metallothionein promoter expression plasmids encoding wild-type and deletion mutants of V5-tagged PGRP-LCx and FLAG-tagged
rudra, with or without CuSO4treatment, as indicated. Data are representative of at least three independent assays.
doi:10.1371/journal.ppat.1000120.g001

Rudra, Negative Feedback Regulator of IMD Pathway
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Rudra inhibits signaling at the receptor
We next sought to determine the molecular mechanism(s) used

by Rudra to control signal transduction. Relish, the NF-kB

precursor protein essential for IMD triggered gene expression, is

regulated by immune-induced cleavage and phosphorylation

([41,42], unpublished data D.E-H. and N.S). Rudra expression

prevented both the cleavage and phosphorylation of Relish

(Figure 5A). Recently, we also discovered that imd protein is

rapidly cleaved following immune stimulation (unpublished data,

N.P. and N.S) and expression of rudra potently inhibits this

cleavage (Figure 5A). These results suggest that Rudra functions

upstream of Relish activation and IMD cleavage.

AMP gene expression can be triggered by ectopically expressing

certain components of the IMD pathway. In particular, over-

expression of either of the receptors, PGRP-LC or PGRP-LE, or imd is

sufficient to drive AMP gene expression. Likewise, over-expression

of the caspase Dredd is sufficient to drive Relish cleavage. To further

analyze the position that Rudra acts in the IMD pathway, it was

over-expressed with these signaling components in doubly selected

stable cell lines. Rudra potently inhibited signaling induced by over-

expression of the receptors PGRP-LC or PGRP-LE, but had no

effect on the induction of Diptericin expression caused by IMD over-

expression (Figure 5B). Likewise, Rudra did not inhibit Relish

cleavage caused by over-expressing the caspase Dredd (Figure 5C).

These results suggest that Rudra functions upstream of Dredd and

IMD, but downstream of the receptors, and is consistent with

binding data demonstrating an association between Rudra and

either PGRP-LC or PGRP-LE.

Figure 3. Over-expression of rudra blocks IMD signaling in both cells and flies. (A) Northern blot of Dpt and rp49 expression in S2* cells
stably transfected with a metallothionein promoter–driven transgene expressing rudra. Cells were treated with CuSO4 for 1.5 hours and then
stimulated with PGN for 5 hours, as indicated. (B) Northern blot of Diptericin and rp49 expression in adult flies carrying UAS promoter–driven
transgenes expressing rudra (two independent transgenic lines). Flies were heat shocked for 1.5 hours and then RNA was isolated 8 hours after septic
infection with E.coli. Data are representative of at least three independent assays.
doi:10.1371/journal.ppat.1000120.g003

Rudra, Negative Feedback Regulator of IMD Pathway
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In addition to interacting with the receptors, Rudra avidly bound

to IMD. The IMD association was detected by transient transfection/

co-immunoprecipitation assays, in either S2* cells (data now shown)

or HEK cells (Figure 6A). On the other hand, Rudra did not associate

with dFADD, another factor known to interact with IMD. In all,

these data argue that Rudra directly interacts with both IMD and the

receptors PGRP-LC and PGRP-LE.

These results suggest two possible models for the inhibition of

IMD signaling by Rudra: (1) Rudra may associate with both the

receptor and its signaling adaptor (IMD), holding them together in

an inactive confirmation; or (2) Rudra may interact with both

PGRP-LC and IMD separately, disrupting the association

between the receptor and its adaptor. To probe these possibilities,

co-immunoprecipitation experiments were performed with lysates

from cells co-transfected with PGRP-LC (T7 tag), imd (FLAG

tagged) and/or rudra (also FLAG tagged). In assays with just the

receptor and either IMD or Rudra, PGRP-LC interacted with

either the adaptor or the inhibitor, in both Drosophila and human

cells (Figure 6B, C). However, when all three proteins were

simultaneously co-expressed, PGRP-LC and Rudra still robustly

co-precipitated, but the association between IMD and the receptor

was markedly reduced. These data suggest that Rudra interferes

with the interaction between PGRP-LC and IMD, and this

disruption provides a molecular mechanism explaining how Rudra

down-modulates IMD signaling at the level of the receptor,

consistent with the functional and binding data presented.

Discussion

Recent work has shown that the intensity and duration of the

immune response is tightly regulated in Drosophila

[23,24,25,27,28]. Over-exuberant immune responses can be

dangerous and the proper down modulation of immunity is

important for health and fecundity [20,22]. To keep the immune

response properly modulated, the Toll and IMD pathways are

controlled at multiple levels by multiple negative regulators. In this

study, we have characterized a new negative feedback regulator of

the IMD pathway. rudra transcript is rapidly induced following

septic infection, and rudra mutant flies or rudra knockdown cells

over-express antimicrobial peptides. In the case of Erwinia carotovora

carotovora infection, this elevated level of AMP production leads to

increased survival. A similar phenotype was reported for mutants

lacking Caspar, which is thought to inhibit downstream signaling

events [27]. The results presented here, in cells and flies,

demonstrate that rudra is a key component in a negative feedback

loop that keeps the IMD pathway in check.

In addition to these loss-of-function results, over-expression of

rudra potently blocked signaling through the IMD pathway, both in

cells and in flies. Moreover, we exploited this activity to analyze

which steps in the IMD pathway are inhibited by Rudra. Using

various molecular assays to monitor different PGN-induced events

in the IMD pathway, we found that Rudra interfered with

cleavage of IMD. Signaling mediated by receptor over-expression

was also inhibited by Rudra, but this was not the case for signaling

induced by over-expression of downstream components. Together,

these data strongly support the notion that Rudra interferes with

receptor function and is consistent with the association between

Rudra and the receptors PGRP-LC or PGRP-LE.

Using assays in yeast, Drosophila, human cells and in vitro, Rudra

was shown to interact directly with PGRP-LC and PGRP-LE. The

interaction between PGRP-LE and Rudra required the RHIM-

like domain of PGRP-LE, which is also critical for signaling by this

receptor. However, the region through which PGRP-LC interacts

with Rudra is less clear and likely involves multiple, partly

redundant interfaces. Rudra also interacted with the imd protein.

Moreover, Rudra interfered with the interaction between the

receptor PGRP-LC and IMD, destabilizing the receptor signaling

complex. From these results, we propose that Rudra is a negative

feedback regulator that down modulates the IMD pathway by

binding the receptors and interrupting the associations with their

cognate signaling adaptor IMD. This regulatory loop is critical to

properly regulate the immune response.

In agreement with the data presented here, Kleino et al. (2008)

recently reported that rudra/CG15678 is a negative regulator of

the IMD pathway, although they refer to this gene as poor Imd

response upon knock-in (pirk). They showed that rudra/pirk is rapidly

Figure 4. Characterization of rudra mutant flies. (A) Real-time RT-
PCR analysis of rudra transcript from w1118, rudraEY00723, and rdrrescue flies
that were infected with E.coli for various times. (B) Quantified Northern
blotting data of Diptericin and rp49 expression in w1118, rudraEY00723 and
rudrarescue flies following infection with E.coli. (C) Survival assays were
performed following infection of w1118, rudraEY00723 and LE112;LCDE flies
with E. carotovora carotovora. Infected animals were incubated at 29uC
and the number of surviving flies were counted every 24 hours. Survival
data is presented in Kaplan-Meier plots and significance was analyzed
by log-rank test. (A) and (B) are representative of at least 3 independent
experiments, while (C) is representative of 2 independent trials, with 60
or 100 animals.
doi:10.1371/journal.ppat.1000120.g004

Rudra, Negative Feedback Regulator of IMD Pathway
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Figure 5. Rudra functions upstream of IMD, Dredd and Relish. (A) Analysis of lysates from S2* cells stably transfected with a metallothionein
promoter plasmid expressing T7-tagged rudra, with or without treatment with CuSO4 and PGN, as indicated. IMD cleavage was analyzed by IP-IB
(upper panel), while Relish phosphorylation and cleavage were analyzed by immunoblotting (in the middle two panels). The asterisk marks heavy
chain detected by the secondary antibody. The lowest panel confirms Rudra expression with anti-T7 IB. (B) Northern blot of Diptericin and rp49
expression levels in S2* cells stably transfected with metallothionein promoter–driven transgenes expressing PGRP-LCx, PGRP-LE, or imd, with or
without concurrent expression of rudra. Cells were treated with CuSO4 (+) or left untreated (2), and RNA was extracted after 6 hours. (C) Immunoblot
analysis of Relish cleavage from S2* cells stably transfected with metallothionein promoter expression plasmid for Dredd, with or without concurrent
expression of FLAG-tagged rudra. CuSO4 was added, for 5 hours, to induce transgene expression, as indicated. Data are representative of at least
three independent assays.
doi:10.1371/journal.ppat.1000120.g005

Rudra, Negative Feedback Regulator of IMD Pathway
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Figure 6. Rudra disrupts the interaction between PGRP-LCx and IMD. (A) IP-IB analysis of lysates of HEK cells transiently transfected with
expression plasmids for FLAG-tagged imd or FLAG-tagged dFADD and T7-tagged rudra. Rudra interacted with IMD but not dFADD. (B, C) Similar co-
immunoprecipitation experiments from lysates of HEK cells (B) or S2* cells (C) simultaneously co-transfected with T7 tagged PGRP-LCx, FLAG tagged
IMD and/or FLAG-tagged rudra. Rudra interfered with the association between PGRP-LC and IMD. Data are representative of at least three
independent assays. Data are representative of 3 independent experiments.
doi:10.1371/journal.ppat.1000120.g006

Rudra, Negative Feedback Regulator of IMD Pathway
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induced following infection, similar to the data presented here, and

further demonstrated that rudra induction is dependent on Relish,

both in cells and in flies. Using reporter assays in S2 cells, they

found that Pirk inhibits IMD signaling but not the Toll pathway.

With transgenic RNAi fly lines, they also found that knockdown of

pirk caused the hyper-expression of the antimicrobial peptide

genes. Also, flies over-expressing Pirk blocked the activation of the

IMD pathway and were more susceptible infection. These results

are consistent with the data presented here, although we have

characterized a mutant allele of rudra and additionally show that

this mutant exhibits enhanced protection against Erwinia infection.

The data presented here also expand on the findings of Kleino et

al. (2008) by showing that Rudra not only interacts with both

PGRP-LC and IMD, but also that these interactions with Rudra

disrupt the direct association between PGRP-LC and IMD.

Kleino et al. (2008) reported that central portion of Rudra consists

of two repetitive amino acid elements of unknown function and

structure, which they named the Pirk domain. The Pirk domain is

required for the interaction with IMD, but not with PGRP-LC.

Rudra does not contain obvious homology to any other protein

motifs, and no mammalian homologs are readily detected. [36].

Recently, multiple mechanisms involved in regulating the

Drosophila immune response have come to light. Given that it is

well-established that immune activation in flies has a cost, such as

reduced fecundity [20,22] and hypersensitivity to infection

[23,24,27,43,44], it is not surprising that multiple negative

regulatory circuits control the immune response. Similarly, in

mammals, innate and adaptive immune responses are held in

check by multiple mechanisms, in order to prevent inflammatory

and autoimmune diseases while at the same time allowing an

effective response to infection. Future studies will address the

possible negative consequences of the lack of proper IMD

regulation observed in the rudra mutant animals.

Materials and Methods

Reagents
Insoluble PGN from E. coli was purchased from Invivogen.

Fly stocks and survival experiment
rudra mutant line, EY00723, was originally isolated by the

Drosophila Genome Project gene disruption consortium and

provided by the Bloomington Drosophila Stock Center. The flies

were backcrossed for six generations to a w1118 strain in order to

isogenize. In all experiments, rudraEY00723 mutants were compared

to isogenic w1118 animals. PGRP-LE112;;PGRP-LCDE, double

mutant flies were reported previously [45]. Survival experiments

were performed with 60 flies at 29uC, following infection by

pricking in the abdomen with a microsurgery needle dipped into a

concentrated pellet of Erwinia carotovora carotovora 15 [24]. Surviving

flies were transferred to fresh vials and counted daily, until all wild-

type flies died. Kaplan-Meier plots are presented and P-values

were calculated by log-rank test using GraphPad Sigma Plot.

RNA analysis and RT-PCR
Total RNA from flies or cultured cells was isolated with the

TRIzol reagent (Invitrogen) as described previously [33]. Expres-

sion of Diptericin, Attacin, Cecropin and the control rp49 (ribosomal

protein) was analyzed by Northern blotting [33]. Northern blots

were quantified with a phosphoimager (Fuji) and AMP gene

expression was normalized to rp49 levels. For qRT-PCR, RNA

was DNase treated and re-extracted with phenol-chloroform.

cDNA was synthesized using Superscript II (Invitrogen) and

quantitative PCR analysis was performed on a DNA engine

Opticon 2 cycler (MJ Research, Watertown MA) using SYBR

Green (Biorad). The specificity of amplification was assessed for

each sample by melting curve analysis and relative quantification

was performed using a standard curve with dilutions of a standard.

The quantified data was normalized to rp49 levels. In all S2*-based

cell experiments, cells were pre-treated with 1 mM 20-hydro-

xyecdysone for 24 to 40 hr before treatment with 500 mM

CuSO4 and/ or PGN (100 ng/ml).

RNAi experiments
dsRNA was generated and purified as reported previously [46].

Cells were split 24 hours after transfection to 1.06106/mL and

then were treated with 1 mM 20-hydroxyecdysone. After

24 hours, cells were treated (or left untreated) with PGN

(100 ng/ml) for various time, as indicated.

Co-immunoprecipitation and immunoblotting assays
In vitro translation was performed following the protocol of the

manufacturer (Promega). Immunoprecipitations were carried out

with rabbit anti-T7 (Bethyl labs) in lysis buffer (20 mM Tris at

pH 7.6, 150 mM NaCl, 2 mM EDTA, 10% Glycerol, 1% Triton

X-100, 1 mM DTT, NaVO4, glycerol 2-phosphate and protease

inhibitors). For immunoprecipitation from cells, Schneider S2*

cells were first transfected by calcium phosphate method with

appropriate expression plasmids. Cells were split 24 hours after

transfection to 1.06106/mL and 24 hours later, were treated with

500 mM copper sulphate for 5 hr, when necessary, for expression

from the metallothionein promoter. Immunoprecipitations were

performed in lysis buffer and analyzed by SDS-PAGE followed by

immunoblot analysis with anti-T7 MAb (Novagen), anti-V5

(Sigma), anti-IMD (gift of J.-M. Reichhardt) or anti-Flag (Sigma)

antibodies. Stable cell lines and immunoblotting were performed

as described previously [33]. The generation and characterization

of phospho-specific Relish antibody will be detailed elsewhere (D.

E.-H. and N.S., unpublished data).

Transgenesis and analysis of UAS-rudra and genomic
rescue strains

For the UAS transgenic, the rudra ORF was amplified by PCR

and subcloned into the EcoRI and BglII sites of pUAST. For

genomic rescue, a BAC clone (Drosophila Resource Center [47])

was used as a template to amplify a 4.5 Kbp genomic fragment

containing the complete rudra locus plus flanking sequences, which

was then cloned into the EcoRI and BamHI sites of pCaSpeR [48].

After sequence verification, standard techniques were used for P-

element–mediated transformation at the MGH Drosophila

transgenics facility. For immune stimulation assays, adults (males

and females in equal numbers), were infected by pricking in the

abdomen with a microsurgery needle dipped into a concentrated

pellet of E. coli (1106), RNA was extracted 8 h later, and assayed

by Northern blotting.

Stable cell lines
The rudra gene was cloned into pRmHa3 vector by standard

methods to create constructs expressed from the metallothionein

promoter. The constructs were then transfected into S2* cells in

conjunction with pHs-Neo at a ratio of 50:1; stable transfectants

were then selected with G418 (1 mg/ml). For double stable cell

lines, the rudra expression plasmid was transfected into S2* cell

lines that were previously selected to carry plasmids expressing

either PGRP-LC, PGRP-LE, IMD or Dredd. The rudra plasmid was

selected with a second selectable marker, either G418 (1 mg/ml)

or hygromycin (20 U/ml), as appropriate.
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Supporting Information

Figure S1 PGRP-LE and Rudra interact in vitro Co-immuno-

precipitation of in vitro co-translated PGRP-LE and Rudra. Co-

immunoprecipitation was performed using anti-FLAG antibodies

with 35S-methionine labeled in vitro translated T7-Rudra and

FLAG-PGRP-LE.

Found at: doi:10.1371/journal.ppat.1000120.s001 (3.77 MB TIF)

Figure S2 Rudra interacts with all the deletion mutants

spanning the cytoplasmic domain of PGRP-LCx. IP-IB analysis

of lysates from S2* cells transiently transfected with metallothio-

nein promoter expression plasmids encoding T7-tagged PGRP-LCx

(wild-type and deletion mutants) and FLAG-tagged rudra with or

without CuSO4 treatment, as indicated. Lower diagram indicates

the regions deleted in each mutant form of PGRP-LC.

Found at: doi:10.1371/journal.ppat.1000120.s002 (0.87 MB TIF)

Figure S3 Rudra inhibits IMD signaling but not the Toll

pathway. Northern blot of Drosomycin and Diptericin expression in

S2* cells stimulated with SPZ-C106 or PGN, respectively, with

rp49 as a loading control. Cells expressing rudra, from the actin

promoter, failed to respond to PGN but displayed robust SPZ-

induced Drosomycin expression. Stimulation time as indicated.

Found at: doi:10.1371/journal.ppat.1000120.s003 (4.55 MB TIF)
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