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Laminins are major constituents of basement membranes. At
least 16 isoforms have now been described, each with distinct
spatio-temporal expression patterns and functions. The
laminin-511 heterotrimer (a5b1c1) is one of the more recent
isoforms to be identified and a potent adhesive and pro-
migratory substrate for a variety of normal and tumor cell lines
in vitro. As our understanding of its precise function in normal
tissues and in pathologies is rapidly unraveling, current
evidence suggests an important regulatory role in cancer.
This review describes published data on laminin-511 expres-
sion in several malignancies and experimental evidence from
both in vitro and in vivo studies supporting its functional role
during tumor progression. A particular emphasis is put on
more recent studies from our laboratory and that of others
indicating that laminin-511 contributes to tumor dissemina-
tion and metastasis in advanced breast carcinomas and other
tumor types. Collectively, the experimental evidence suggests
that high expression of laminin-511 has prognostic signific-
ance and that targeting tumor-laminin-511 interactions may
have therapeutic potential in advanced cancer patients.

Introduction

Laminins (LMs) are abundant extracellular matrix (ECM)
proteins present predominantly in basement membranes
(BM).1,2 At least 16 isoforms have been described and named
according to their specific trimeric combination of a, β and c
chains using the new nomenclature.3 The existence of a LM-511
trimer (a5β1c1, formerly LM-10) was first reported in 1997–
98,4-6 some 15 y after the original discovery of laminin (now
named LM-111, a1β1c1 trimer).7 Given the more recent
identification of LM-511, our understanding of its specific

function in normal tissues and in diseases has lagged on other LM
isoforms, in particular LM-111 and LM-332. Nevertheless, major
breakthroughs in the field have rapidly closed this gap. Notably,
the recognition of LMa5 as a distinct LM subunit8,9 and the
characterization of various antibodies against human LM
chains4-6,10 have clarified earlier discrepancies regarding the
distribution of LM-511 in normal human and mouse tissues
and in neoplasia. Genetic ablation of LMa5 in mouse11 marked
the beginning of its functional characterization during devel-
opment and later enabled investigations into the role of a5
laminins in specific organs.12-16 Functional studies in vitro and
identification of LM-511 receptors have been facilitated by the
triple cloning of recombinant human LM a5, β1 and c1 chains17

as a rich source of intact LM-511 and the development of
protocols for the purification of LM-511 from culture media.5,17-20

Together, these advances have contributed to the emerging view
that LM-511 and its receptors regulate cancer progression. Studies
documenting the high expression of LM-511 in several cancer
types are briefly reviewed below and discussed in relation to more
recent in vitro and in vivo experimental evidence indicating that
LM-511 and its receptors regulate tumor cell migration, invasion
and metastasis.

LM-511 Expression in Normal and Cancer Tissues

Establishing the precise tissue distribution of LM-511 has been
complicated by earlier studies assuming the existence of a single
LM isoform. Hence, many of the antibodies used for immuno-
histochemical (IHC) detection of LMs were raised against LM
preparations containing more than one isoform (e.g., human
placental laminin) or against LM subunits/fragments now known
to be present in multiple isoforms including LM-511 (e.g., β1 and
c1 chains).10,21,22 These problems were compounded by the fact
that the 4C7 antibody previously used for the detection of LMa1
chain23 actually recognizes the LMa5 chain.6 The latter study
helped reconcile the discrepancies between the relatively restricted
tissue expression reported for LMa1 mRNA and the broad LMa5
mRNA8 or protein distribution detected by the 4C7 antibody in
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human.23 Consequently, many of the earlier IHC studies need to
be re-interpreted as evidence for the presence of LM-511 (and in
some cases LM-521) rather than LM-111.23-25

Since the β1 and c1 subunits are present in multiple isoforms
and expressed in most tissues, the presence of LM-511 trimers in a
given organ is often assumed solely based on the detection of the a5
chain. Nevertheless, co-localization of all three subunits of LM-511
has been demonstrated more conclusively in many tissues by IHC
or co-immunoprecipitation. The results from these studies have
shown that LM-511 is abundant in the basement membrane of
most mature epithelia and endothelia and are consistent with LM-
511 being the most widely distributed LM isoform in normal
tissues and in carcinomas.24,26,27 Indeed, high expression of LM-511
subunits has been reported in many malignancies including
colorectal, mammary, lung, thyroid, ovarian, prostate and basal
cell carcinoma as well as in gliomas and melanomas.24,25,27-32

However, the precise pattern of LM-511 expression varies
significantly between tumor types, from a continuous BM
localization to a more diffuse stromal or tumor cell expression,
and its level in tumor cells or in the associated vasculature is
influenced by the stage of tumor progression.28-30,32,33

Many studies have shown that the expression of LM-511 is
often maintained or even increased in advanced tumors. For
example, Nagle et al.28,34 used a combination of antibodies to
analyze the expression of LM chains in normal prostate, prostatic
intraepithelial neoplasia and prostate carcinoma specimens. While
the authors could detect the presence of multiple isoforms in
normal prostate including a1, a3 and a5 LMs, they found a
gradual loss of a1 and a3 isoforms whereas high expression of
LMa5 (and therefore LM-511/521) was maintained in the
majority of high grade tumors. Similarly, high tumor cell
expression of all subunits of LM-511/521 has been reported in
metastatic melanomas.31 These observations raise the possibility
that high expression of a5 LMs may have prognostic significance
in some tumor types. Consistent with this, detection of LMa5 in
tumor cells of non-small cell lung carcinoma patients was found to
provide the strongest independent prognostic value to identify
patients with high risk of disease recurrence.35

A similar association is likely in breast carcinomas. Despite the
gradual loss of BM deposition often seen during breast cancer
progression,27,36 it is clear that some LM (unspecified isoform)
remains expressed in advanced tumors and in metastases.21,29,37

High to moderate levels of LM-511 subunits have been reported
in ductal carcinoma in situ, tubular carcinomas, fibroadenoma,
atypical medullary carcinomas and carcinomas of no specific
type.24,27 Our own investigation in a clinically relevant mouse
model of spontaneous breast cancer metastasis revealed a direct
correlation between tumor cell expression of LM-511 and
metastatic potential.29,38 In particular, bone metastatic 4T1.2
tumors showed widespread expression of LM-511 and this
phenotype was maintained in distant metastases.29 High tumor
cell expression of LM-511 was observed also in advanced human
breast cancers and bone metastases.29

This is in contrast to the downregulation of LM-111 and LM-332
expression that occurs in most (but not all)39,40 advanced breast
cancers due to a reduced number of laminin-producing myoepithelial

cells and/or decreased expression of these isoforms through promoter
methylation.36,41-44 Thus, we have argued that while the loss of LM-
111 and LM-332 may contribute to the initial disruption of BM
integrity and tissue organization, high levels of LM-511 (or LM-521)
in advanced breast tumors may be associated with increased risk of
developing metastases and could predict poor clinical outcome. A
more definitive demonstration of its prognostic value in breast cancer
patients however, will require IHC analysis of LM-511 subunits in a
large cohort of patients with known clinical outcome. Nevertheless, it
is noteworthy that lung, prostate and breast cancers, for which high
expression of LMa5 isoforms is most evident, have a high affinity for
bone.45,46 Future studies should explore whether LM-511 expression
has particular clinical relevance to tumors with a propensity to
metastasize to bone.

Whether LM-511 expression is associated with a specific
subtype of breast tumors has not been fully elucidated. Cell lines
derived from the 4T1 mouse model of metastasis discussed above
have a “basal-like” triple negative (TN) phenotype (lack
expression of estrogen receptor, progesterone receptor and
Her2/neu receptor) (ref. 47 and unpublished observations), a
notoriously aggressive subtype of breast tumors.48 Interestingly,
immunostaining of a small number of high grade human breast
cancer specimens showed that expression of LMa5 is not limited
to a specific breast tumor subtype but its expression is
considerably higher in TN tumors (Fig. 1). These observations
further support a potential association between high LM-511
expression and aggressive metastatic cancers. The predominance
of LM-511 in advanced breast tumors however does not preclude
a contribution by other LM isoforms during the early stage of
tumor progression. For instance, the presence of LM-332-
producing myofibroblasts at the tumor-stromal interface has been
demonstrated in some invasive breast tumors.49,50 LM-332 is
expressed also in TN tumors39 but it is not clear whether these
represent a subset of breast cancer patients distinct from those
with LM-511-expressing tumors.

LM-511 Promotes Integrin-Dependent Tumor Cell
Migration and Invasion

Consistent with tissue expression studies, many tumor lines
synthesize, secrete and adhere to LM-511 in culture indicating
that LM-511 mediates its effects in tumors partly via autocrine
stimulation.5,18,29,31,51 LM-511 is a more potent adhesive and
migratory substrate than many other matrices in vitro including
several LM isoforms and generally shows potency similar to that
of LM-332.5,17,18,52 However, commercial preparations of placen-
tal LM-511 commonly used in earlier functional studies can be
contaminated by other isoforms and may be less active than LM-
511 purified from culture media due to proteolytic degrada-
tion.53,54 Thus, the results from these earlier studies need to be
interpreted with care. Nevertheless, it is clear that adhesion to
LM-511 elicits a variety of tumor-specific cellular responses that
are dictated in part by the repertoire and level of LM receptors
expressed in each cell type as described below.

Multiple receptors including integrins, Lutheran/basal cell
adhesion molecule (B-CAM) and a-dystroglycan, are known to
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bind LM-51155-59 but integrins have been by far the most
extensively documented in tumor cells. For example, Tani et al.51

reported that JAR choriocarcinoma cells adhere to LM-511 via
a6β1 integrin whereas PANC-1 pancreatic adenocarcinoma cells
utilize the a3β1 receptor even though both lines express both
receptors. Attachment of HuH-7 hepatocellular carcinoma cells to
LM-511 involves at least three integrins, a1β1, a3β1 and a6β1.60

In contrast, the human lung adenocarcinoma A549 cell line
adheres to LM-511 exclusively through the a3β1 integrin.5 While
BE and M21 melanoma cells attach and migrate on recombinant
LM-511 using both a3β1 and a6β1 integrins,31 we have shown
that LIM1215 colon cancer cells adhere and spread on LM-511
via multiple integrins including a2β1, a3β1 and a6β4,18 and their
migration on this substrate is mediated by a3β1 and a6β4.61

Simultaneous inhibition of all three receptors with function-
blocking antibodies in LIM1215 cells resulted in significant
death.18

Many of the functions of LMs in breast cancer progression and
metastasis have been inferred from receptor studies. In particular,
a3β1, a6β1 and a6β4 LM-binding integrins mediate the
migration and invasion of breast tumor cells and/or promote
their survival and proliferation at metastatic sites.62-69 Therefore,
LM-binding receptors represent attractive targets for anti-
metastatic therapies.66,67 However, the functions of these receptors
in vivo have been interpreted largely as evidence for the role of
LM-111 or LM-332 rather than LM-511 in metastasis owing to
its more recent identification. Interestingly, a study comparing the
ligand-binding specificity of these integrins to various LM
isoforms clearly showed that a3β1 and a6β1 bind to LM-511/
521 (purified from A549 lung carcinoma conditioned medium
and containing predominantly LM-5115) with higher affinity
than to LM-111 or LM-332.59 Integrin a6β4 was found to be
selective for both LM-332 and LM-511/521 and to bind these
isoforms with similar affinity. In light of these observations, it is
probable that some of the functions assigned to LM-binding
integrins in metastatic breast tumors are mediated through
attachment to LM-511.

Recent results from our laboratory are consistent with this
possibility. Specifically, we reported that metastatic breast tumor
lines adhere and migrate more efficiently on LM-511 than non-
metastatic lines.29 LM-511-induced haptotactic migration and
invasion of human MDA-MB-231 metastatic breast tumor cells
were inhibited strongly by lebein-1, a snake disintegrin targeting
LM-binding β1 integrins,70 or an anti-a3 integrin-blocking
antibody.29,71 Similar antibody perturbation experiments with

metastatic MDA-MB-435 breast tumor cells showed that these
cells utilize both a3β1 and a6β1 to migrate toward LM-511
(unpublished observations). Interestingly, migration of MDA-
MB-231 and MDA-MB-435 on LM-332 is β1-integrin depend-
ent but not inhibited by a a3 or a6 antibody.72 Together, these
data indicate that LM-511 may be a more relevant migratory
substrate than LM-332 in metastatic breast tumors expressing
a3β1 and a6β1 integrins. LM-511-dependent haptotaxis and
invasion of mouse mammary carcinoma lines were similarly
inhibited by a β1 integrin-blocking antibody or by treatment with
lebein-1.29,71 Consistent with the pro-migratory/invasive prop-
erties of LM-511, we found that soluble or coated LM-511
induces matrix metalloproteinase-9 expression in bone metastatic
4T1.2 cells and this activity could be blocked in vitro using the
inhibitory LMa5-derived A5G27 peptide.73

To further demonstrate the relevance of these LM-511-tumor
interactions to metastasis in vivo, we showed that selection of
subsets of cells that migrate rapidly in response to LM-511
allowed the isolation of tumor variants more metastatic to
multiple sites, particularly to bone.71 Importantly, enhanced
metastasis was accompanied by a small increase in cell surface
expression of β1 integrin and a more significant upregulation of
β4 integrin. This finding is likely to be highly clinically relevant
given that a6β4 integrin associates most significantly with the
aggressive basal-like subtype of breast cancer and predicts shorter
time to recurrence and decreased survival.74 The prognostic
significance of LM and a6β4 integrin receptor expression in
breast cancer patients was investigated in an earlier study by
Tagliabue et al.22 They determined that the worst disease outcome
was for patients with tumors co-expressing LM and a6β4,
suggesting the involvement of a LM-integrin autocrine loop in
invasive breast tumors. The precise isoform could not be
identified in that study due to the use of polyclonal antibodies.
However, the authors noted that the LM antiserum used stained
throughout the tumor areas in a manner analogous to the
widespread LM-511 staining observed in mouse29 and human TN
tumors (Fig. 1).

If correct, blocking the production of LM-511 or the function/
expression of its receptors would be expected to impact on
metastatic potential. To begin to address this, we have generated
variants of the 4T1.2 bone metastatic mammary carcinoma line
with reduced LM-511 by stable retroviral expression of a short
hairpin RNA targeting the LMa5 chain (unpublished, manuscript
in preparation). IHC examination of LMa5 in primary tumors
35 d post-implantation confirmed the sustained downregulation

Figure 1. Representative IHC staining of LMa5 in grade 3 luminal A, luminal B, Her2+ve and TN human breast tumors showing highest expression (brown)
in TN tumors. Blue, nuclear hematoxylin counterstain. Scale bar, 50 mm.
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of LMa5 compared with control tumors expressing a non-
targeting construct (Fig. 2). As expected, LMa5 suppression was
evident in the tumor cells but not in the vasculature. Preliminary
characterization of metastatic spread in these mice revealed a
reduction in bone metastasis (Pouliot et al., manuscript in
preparation). Taken together, these observations strongly support
a direct functional contribution of LM-511 to breast cancer
metastasis. Whether targeting LMa5 also impact on the metastasis
of other LM-511-expressing tumor types such as prostate or lung
tumors is currently under investigation.

Conclusions and Future Perspectives

The increasing experimental evidence linking LM-511 to cancer
progression supports the notion that LM-511 has a much broader
role in tumor invasion and metastasis than previously appreciated.
However, major questions remain regarding its prognostic
significance, precise mechanism of action and potential as
therapeutic target. Evidently, many advanced tumors express
LM-511 and studies so far point to a possible association with
bone metastasis and/or the basal-like/TN phenotype. Whether
LM-332 and LM-511-expressing tumors represent overlapping or
distinct TN subsets also needs to be addressed. A definitive answer
to these questions will require a more in depth IHC analysis of
larger cohorts of patients with known clinical outcome. However,
the 4C7 anti-LMa5 antibody commonly used for this application
does not work well on formalin-fixed paraffin embedded tissues,
most likely because the 3D conformation of the epitope
recognized by the 4C7 antibody in the LG1–3 modules of the
LMa5 chain75 is destroyed by tissue fixation and processing.
Thus, the generation of more robust antibodies for staining of
archival material should be a priority.

Future studies will need also to clarify the precise contribution of
LM-511 to the metastatic process and its relationship to LM-332.
Both isoforms have been implicated in tumor invasion and
metastasis and share many of their receptors suggesting redundant
functions. Yet, observations in various normal physiological
processes indicate that LM-511 and LM-332 also have distinct,
non-overlapping and sometimes opposing functions. For instance,

LM-511 stimulates hair growth whereas LM-332 antagonizes this
LM-511 response.58 Moreover, LM-511 promotes long-term
proliferation and maintenance of pluripotency in stem cell cultures,
whereas LM-332 enables proliferation but not pluripotency.76,77

These properties could be relevant to metastasis and may be
utilized by tumor cells at distinct stages of the metastatic cascade,
including the epithelial to mesenchymal transition (EMT)
required for tumor cell invasion. For example, downregulation
of LM-511 and LM-332 occurring in cells undergoing EMT78,79

may be necessary to decrease the strength of adhesion and
facilitate the early acquisition of a mesenchymal phenotype. Cells
migrating away from the primary tumor, could utilize myofibro-
blast-derived LM-332 at the tumor-stroma interface.50

Conversely, re-expression of LM-511 at late stage of metastasis
may provide the plasticity required for the reverse process of MET
and facilitate the re-establishment of a proliferative epithelial
phenotype at metastatic sites. This would be consistent with the
recent demonstration that LM-511 promotes proliferation and
partially blocks EMT in human β cells.80 An interesting possibility
is that these distinct LM-511 and LM-332-dependent adhesive
responses during EMT and MET may be differentially regulated
by CD151, an important modulator of LM-binding integ-
rins.66,81,82 CD151 overexpression was shown recently to be an
independent prognostic marker of poor overall survival in invasive
breast cancer, particularly in quintuple negative breast cancer, a
subtype of TN breast cancer.83 A proposed model integrating
these multiple LM-511 functions during metastasis is presented
in Figure 3.

While current evidence supports the role of tumor-derived LM-
511 in metastasis, the contribution (if any) of stromal/vascular
LM-511 to metastasis is incompletely understood. The availability
of various animal models of metastasis (e.g., MMTV-PyMT or
4T1 model) in combination with conditional Lama5−/− knockout
mice could provide a useful in vivo platform to address this and
guide future research.

The widespread expression of LM-511 in vivo makes direct
targeting of this LM isoform impractical for cancer therapy. Hence,
preclinical studies in animals have so far focused on targeting its
receptors.66,67 For instance, many studies have employed inhibitory

Figure 2. Representative 4T1.2 primary tumors expressing a non-targeting shRNA (A) or a LMa5-targeting shRNA (B). Note the loss of LMa5 in the tumor
regions but not in the vasculature (arrow). Scale bar, 50 mm.
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peptides derived from LMs, including all LM-511 subunits, to
demonstrate the clinical relevance of targeting LM-511 in vivo for
anti-metastatic therapies. Some of these peptides were shown to
exert either potent anti-metastatic activity in experimental models
of melanoma metastasis to lung or bone84-86 or anti-angiogenic
effects on MDA-MB-231 mammary tumors in nude mice.87

Peptides may block metastasis by interfering with the function of
tumor or host-derived LM-511 since LM-511 is also abundant in
blood vessels, lung and bone sinusoids.29 While peptides are
unlikely to be useful for long-term therapy due to their short half-
life in vivo, the above studies nevertheless provide proof of principle
that targeting LM receptors could have therapeutic benefits.

Disintegrin are a class of inhibitors increasingly investigated
for their anti-tumor/metastatic activity. Lebein-1, unlike most
other disintegrins that target β3-type integrins via RGD
sequences, has the unusual characteristic of being selective for
laminin-type integrins, inhibiting the a3β1, a6β1 and a7β1
integrins (but not a1β1 and a2β1 collagen receptors) in an
RGD-independent manner.70,71,88 Our recent demonstration of
its potent inhibitory properties against LM-511-mediated
adhesion, migration and invasion in vitro provides the rationale
for further testing in vivo.71 Consistent with this, pre-treatment
of tumor cells with lebein-1 in vitro inhibits subsequent

attachment to sinusoids and homing to the liver in vivo.89

Understanding the molecular mechanisms by which lebein-1
interacts with LM-511 receptors and inhibits LM-511-
mediated responses in tumor cells could facilitate the design
of specific and potent inhibitors of LM-511 receptors.
Metastasis is responsible for the majority of cancer-related
death and remains a major clinical challenge despite extensive
efforts over the past decades aimed at understanding and
targeting cancer. While much remains to be done, continuing
research in the field of laminins could provide additional
weapons to tackle this devastating disease and lead to the
development of alternative strategies to prevent or delay
metastatic progression.
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Figure 3. Proposed model of LM-511 expression and function during cancer progression and metastasis. The model depicted above is based primarily on
observations made in breast cancer metastasis models but incorporates also findings from studies in other tumor types as referenced below and in the
text. (1) Uncontrolled growth of the primary tumor and the loss of myoepithelial-derived LM-111 and LM-332 contribute to the initial disruption of tissue
organization.36,41,44 Sustained expression of LM-511 further enhances the breakdown of the surrounding basement membrane through induction of
MMP-2/9 gelatinases73,90 resulting in exposure of tumor cells to the surrounding stroma. (2) Under the influence of stromal factors, tumor cells undergo
EMT and loss of cell-cell contacts. Snail-dependent downregulation of LMa3 and LMa578,79 may be required to reduce the strength of adhesive
interactions and enhance a3b1, a6b1 or a6b4 integrin-dependent cell motility. Subsequent stromal invasion may be achieved by interaction of tumor
cells with low level of tumor-derived LM-511 and/or LM-332 derived from myofibrobalsts present at the tumor-stromal interface.49 (3) Changes in the
composition of LM isoforms in the tumor vasculature and the abundance of LM-511 are likely to contribute to tumor cell attachment and
intravasation.24,29,30 (4) Homing of circulating tumor cells (CTC) and invasion into metastatic sites is mediated through a3b1 integrin interaction with
vascular LMs (including LM-511) and MMP-9 proteolytic activity.64,73,91 Binding of integrin a6b1 or a6b4 to endogenous LM-332 or LM-511 (in organs rich
in these isoforms) promotes survival and growth of disseminated tumor cells (DTC).62,68,69 Alternatively, enhanced expression of LM-511 and autocrine
stimulation may be required in bone where LM-332 or LM-511 expression is more restricted29 to promote strong adhesion and a6b1/a6b4-dependent
tumor cell survival. In addition, adhesion to LM-511 may provide the plasticity required for the process of MET and the acquisition of a proliferative
epithelial phenotype at metastatic sites.
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