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    Chronic myeloid leukemia (CML) is a clonal, 
multistep, multilineage myeloproliferative disor-
der. It is initiated and propagated by a rare pop-
ulation of CML stem cells that have acquired 
a  BCR-ABL  fusion gene ( 1, 2 ). The  BCR-ABL  
fusion gene encodes a chimeric oncoprotein that 
displays constitutively elevated tyrosine kinase 
activity that drives CML pathogenesis ( 3, 4 ). 
These features deregulate cellular proliferation 
and apoptosis control through eff ects on multi-
ple intracellular signaling pathways, including the 
Ras, phosphatidylinositol 3-kinase (PI3K), JAK –
 STAT, and NF- � B pathways ( 5, 6 ). Recently, 

imatinib mesylate (IM), which is an inhibitor 
of the BCR-ABL tyrosine kinase ( 4 ), has shown 
promise in treating CML patients ( 7 – 9 ). How-
ever, early relapses and IM-resistant disease have 
emerged as signifi cant clinical problems in some 
IM-treated CML patients ( 10, 11 ). Relapses are 
frequently associated with mutations in the BCR-
ABL kinase domain ( 10, 12, 13 ), accounting for 
60 – 90% of relapses ( 11 ). Dasatinib (DS) and ni-
lotinib (NL) are more recently produced small 
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 Chronic myeloid leukemia (CML) represents the fi rst human malignancy successfully 

treated with a tyrosine kinase inhibitor (TKI; imatinib). However, early relapses and the 

emergence of imatinib-resistant disease are problematic. Evidence suggests that imatinib 

and other inhibitors may not effectively eradicate leukemic stem/progenitor cells, and 

that combination therapy directed to complimentary targets may improve treatment. 

 Abelson helper integration site  1 ( Ahi-1)/AHI-1  is a novel oncogene that is highly de-

regulated in CML stem/progenitor cells where levels of  BCR-ABL  transcripts are also 

elevated. Here, we demonstrate that overexpression of  Ahi-1/AHI-1  in murine and human 

hematopoietic cells confer growth advantages in vitro and induce leukemia in vivo, 

enhancing effects of  BCR-ABL . Conversely, RNAi-mediated suppression of  AHI-1  in  BCR-

ABL  – transduced lin  �  CD34 +  human cord blood cells and primary CML stem/progenitor 

cells reduces their growth autonomy in vitro. Interestingly, coexpression of  Ahi-1  in  BCR-

ABL  – inducible cells reverses growth defi ciencies exhibited by  BCR-ABL  down-regulation 

and is associated with sustained phosphorylation of BCR-ABL and enhanced activation of 

JAK2 – STAT5. Moreover, we identifi ed an AHI-1 – BCR-ABL – JAK2 interaction complex and 

found that modulation of AHI-1 expression regulates phosphorylation of BCR-ABL and 

JAK2 – STAT5 in CML cells. Importantly, this complex mediates TKI response/resistance of 

CML stem/progenitor cells. These studies implicate  AHI-1  as a potential therapeutic 

target downstream of BCR-ABL in CML. 
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tion–Noncommercial–Share Alike–No Mirror Sites license for the fi rst six months 
after the publication date (see http://www.jem.org/misc/terms.shtml). After six 
months it is available under a Creative Commons License (Attribution–Noncom-
mercial–Share Alike 3.0 Unported license, as described at http://creativecommons
.org/licenses/by-nc-sa/3.0/).
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in vitro. The regulatory role of Ahi-1/AHI-1 in mediating 
BCR-ABL transforming activities can be further explained 
by demonstration of a direct physical interaction between 
AHI-1 and BCR-ABL at endogenous levels in CML cells. 
This is associated with JAK2 and results in modulation of 
sensitivity to TKIs and diff ering levels of BCR-ABL tyrosine 
phosphorylation and JAK2 – STAT5 activity in BCR-ABL +  
CML cells where  Ahi-1/AHI-1  expression is either coexpressed 
or inhibited. 

  RESULTS  

 Overexpression of  Ahi-1  alone can transform IL-3 –

 dependent BaF3 cells in vitro and in vivo, and these effects 

can be enhanced by  BCR-ABL  

 To investigate the transforming potential of  Ahi-1  in he-
matopoietic cells, we cloned full-length  Ahi-1  cDNA into 
a MSCV-internal ribosomal entry site (IRES)-YFP (MIY) 
vector and overexpressed it in an IL-3 – dependent cell line 
(BaF3). Quantitative real-time RT-PCR analysis (Q-RT-
PCR) showed that  Ahi-1  transcript levels were greatly in-
creased in  Ahi-1  – transduced BaF3 clonal cell lines compared 
with control cells (Fig. S1 A available at http://www.jem
.org/cgi/content/full/jem.20072316/DC1).  Ahi-1  – trans-
duced cells have increased proliferative activity in the presence 
of IL-3, and this eff ect was markedly enhanced when IL-3 
was not added (3 – 4-fold; P  <  0.01; Fig. S1 C).  Ahi-1  – trans-
duced cells also had greater cell viability in the presence of a 
low concentration of IL-3 (2 ng/ml) compared with control 
cells (twofold; Fig. S1 D). Interestingly, overexpressing both 
 Ahi-1  and  BCR-ABL  in BaF3 cells further enhanced these 
perturbations, compared with cells transduced with either 
 BCR-ABL  or  Ahi-1  alone (1.5 – 3.5-fold in the absence or 
presence of IL-3; P  <  0.05; Fig. S1, C and D). Western blot 
analysis of protein from two individual clonal lines revealed 
that both protein expression and tyrosine kinase activity of 
p210 BCR-ABL  were highly increased in cells cotransduced with 
 Ahi-1  and  BCR-ABL , compared with  BCR-ABL  – transduced 
cells (Fig. S1 E). We also detected higher levels of Ahi-1 pro-
tein expression in the same dually transduced cells than in those 
transduced with Ahi-1 alone. More interestingly, endogenous 
Ahi-1 expression is increased in cells transduced with BCR-
ABL alone compared with control cells with expression lev-
els being similar to those detected in Ahi-1 – transduced BaF3 
cells (Fig. S1 E). 

 To investigate eff ects of overexpression of  Ahi-1  on the 
ability of transduced cells to induce leukemias in vivo, we 
injected transduced cells into sublethally irradiated NOD/
SCID –  � 2 microglobulin ( � 2m) �/�  mice. Strikingly, mice 
injected intravenously with  Ahi-1  – transduced BaF3 cells had 
a lethal leukemia within 70 d (5  ×  10 6  cells/per mouse;  
Fig. 1 A ).  Disease latency was shortened to 40 d with  BCR-
ABL  – transduced cells alone. Leukemogenic activity was further 
increased by introduction of cotransduced  Ahi-1  and  BCR-
ABL  cells, producing a latency of 26 d (P  <  0.05;  Fig. 1 A ). 
Mice injected with either parental BaF3 cells or vector control 
cells had no evidence of disease after 120 d. Leukemic mice 

molecule inhibitors of the BCR-ABL – encoded kinase with 
greater potencies than IM and predicted broader eff ective-
ness in patients with IM-resistant disease ( 14, 15 ). Recent 
studies have indicated that CML stem/progenitor cells in 
chronic phase patients are less responsive to IM and other 
 tyrosine kinase inhibitors (TKIs), and that they are a critical 
target population for IM resistance ( 16 – 18 ). In addition, 
CML stem cells are genetically unstable and rapidly generate 
IM-resistant mutants in vitro ( 19 ). Thus, it is critical to iden-
tify other therapies targeting CML stem/progenitor cells to 
prevent acquisition of resistance. There is also an emerging 
imperative to develop complementary therapies that target 
downstream molecular events in the CML stem/progenitor 
cells of those patients who fail to achieve lasting remission 
with current treatments. 

  Abelson helper integration site 1  ( Ahi-1 ) is a novel gene that 
was identifi ed by provirus insertional mutagenesis in v-abl –
 induced mouse pre – B cell lymphoma as a candidate cooperate 
oncogene ( 20 ). Mouse  Ahi-1  encodes a unique protein with 
a SH3 domain, multiple SH3 binding sites, and a WD40-re-
peat domain, which are all known to be important mediators 
of protein – protein interactions, suggesting that the normal 
Ahi-1 protein has novel signaling activities and that its deregu-
lation could aff ect specifi c cellular signaling pathways. Inter-
estingly, the conserved human homologue ( AHI-1)  has an 
additional coiled – coil domain in its N-terminal region. In-
volvement of  Ahi-1  in leukemogenesis is suggested by the 
high frequency of  Ahi-1  mutations seen in certain virus-
 induced mouse leukemias and lymphomas ( 20, 21 ). We recently 
demonstrated that  Ahi-1/AHI-1  expression is regulated at 
multiple stages of hematopoiesis in a fashion that is highly 
conserved between mice and humans ( 22 ).  Ahi-1/AHI-1  is 
expressed at its highest level in the most primitive hematopoietic 
cells and is rapidly down-regulated as cells begin to diff erenti-
ate. Interestingly, marked deregulation of  AHI-1  expression is 
seen in several human leukemic cell lines ( 22, 23 ), particularly 
in a CML cell line (K562) and in Philadelphia chromosome –
 positive (Ph +  BCR-ABL + ) primary leukemic cells, but not Ph  �   
cells, especially in highly enriched leukemic stem cells from 
patients with CML. In addition, levels of  BCR-ABL  transcripts 
are highly elevated in the same CML stem cell population 
( 18, 24 ), suggesting that it may be important to cooperative 
activities of AHI-1 and BCR-ABL to generate a permanently 
expanding clone of deregulated stem cells at the early stage of 
leukemia development. 

 In this study, biological and molecular functions of  Ahi-
1/AHI-1  and its cooperative activities with  BCR-ABL  were 
extensively investigated in primitive mouse and human he-
matopoietic cells using several overexpression, suppression, 
and inducible model systems. We found that overexpression of 
 Ahi-1  alone in primitive hematopoietic cells confers a prolif-
erative advantage in vitro and induces a lethal leukemia in vivo; 
these eff ects are enhanced by  BCR-ABL . Stable suppression 
of  AHI-1  by small interfering RNA in  BCR-ABL  – transduced 
primitive human cord blood (CB) cells and primitive leuke-
mic cells from CML patients reduces their growth autonomy 
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eff ects were enhanced in Ahi-1 –  and BCR-ABL – cotransduced 
cells (Fig. S2 available at http://www.jem.org/cgi/content/
full/jem.20072316/DC1). Thus, overexpression of  Ahi-1  
alone in IL-3 – dependent hematopoietic cells has strong trans-
forming activity in vitro and in vivo, and this is additive with 
the eff ects of  BCR-ABL . 

 Overexpression of  Ahi-1  alone confers a growth advantage 

on mouse hematopoietic stem/progenitor cells and enhances 

the effects of  BCR-ABL  

 To further investigate the role of  Ahi-1  as a potential cooper-
ating oncogene relevant to  BCR-ABL  – mediated transforma-
tion in primitive primary hematopoietic cells, we compared 
the biological behavior of primitive mouse hematopoietic 
cells from the BM of 5-FU – treated adult C57BL/6 mice 
after transduction with MSCV-Ahi-1-IRES-YFP and MSCV-
BCR-ABL-IRES-GFP retroviruses, alone or in combination. 
Q-RT-PCR analysis of RNA from FACS-purifi ed primitive 

injected with either  Ahi-1  or  BCR-ABL  – transduced cells 
developed splenomegaly and hepatomegaly, with 50 – 90% of 
YFP + /Ahi-1 + , GFP + /BCR-ABL + , or both YFP + GFP +  cells 
detectable in these tissues ( Fig. 1 B ). As expected, larger spleens 
and livers were observed in mice injected with both  Ahi-1  
and  BCR-ABL  – transduced cells ( Fig. 1 B  and  Table I ).  Inter-
estingly, despite the apparently homogeneous pro – B cell 
phenotype of BaF3 cells transplanted, the leukemias gener-
ated from  Ahi-1  – transduced cells revealed multilineage fea-
tures that included the production of Gr-1 + Mac-1 +  (myeloid), 
Ter119 +  (erythroid), B220 +  (B-lineage), and CD4 + CD8 +  
(T-lineage;  Fig. 1 C ), suggesting that overexpression of  Ahi-1  
induces abnormal diff erentiation (including lineage switching) 
in hematopoietic cells. This was also observed in mice in-
jected with  Ahi-1  and  BCR-ABL  cotransduced cells. In addi-
tion, YFP + /Ahi-1 +  or GFP + /BCR-ABL +  cells purifi ed from 
BM cells of diseased mice showed increased proliferation and 
reduced apoptosis compared with control BaF3 cells; these 

 Figure 1.    Overexpression of  Ahi-1  induces a lethal leukemia in vivo and these effects can be enhanced by cotransduction of  BCR-ABL .  

(A) Survival curves of NOD/SCID- � 2M  � / �   mice injected with 5  ×  10 6  BaF3 cells transduced with MIY,  Ahi-1 ,  BCR-ABL , and  Ahi-1  plus  BCR-ABL . 8 – 10 

mice were used per each group. (B) Spleen (top) and liver (bottom) weight of mice injected with MIY control cells,  Ahi-1  – transduced cells,  BCR-ABL  –

 transduced cells, and cells cotransduced with  Ahi-1  and  BCR - ABL.  (C) FACS profi les of YFP +  BM cells isolated from a representative moribund mouse 

with leukemia, after injection of  Ahi-1  – transduced cells and showing expression by the YFP +  cells of Gr-1/Mac-1, B220, CD4/CD8, Ter119, Sac-1, 

and c-kit.   
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Ahi-1  – transduced Sca-1 + lin  �   cells produced a slightly greater 
number of colony-forming cells (CFCs) than MIY-trans-
duced control cells in semisolid cultures in the presence 
of growth factors (GFs), and some of the Ahi-1 +  CFCs 
( � 15%) were already GF independent ( Fig. 2, C and D ). 
After 4 wk in long-term culture-initiating cell (LTC-IC) 
 assays, which are used to measure stem cell activities in vitro, 
the Sca-1 + lin  �  Ahi-1 +  cells produced 3-fold more CFCs 
than control cells (P  <  0.01;  Fig. 2 E ). All of these endpoints 
(proliferative activity, GF dependence, and CFC output in 
LTC-IC assays) are also perturbed by  BCR-ABL  transduc-
tion. In cells cotransduced with  Ahi-1  and  BCR-ABL , all 
of these eff ects were further enhanced compared with cells 
transduced with either  BCR-ABL  alone (2 – 4-fold) or  Ahi-1  
alone (3 – 6-fold; P  <  0.01;  Fig. 2 ). Thus, overexpression of 
 Ahi-1  alone deregulates proliferative control of primitive 
mouse hematopoietic cells, and these eff ects can be enhanced 
by  BCR-ABL . 

 Suppression or overexpression of  AHI-1  mediates 

transforming activity of K562 CML cells in vitro and in vivo 

 To investigate directly whether deregulated expression of  AHI-1  
contributes to BCR-ABL – mediated transformation of human 
CML, knockdown or overexpression of  AHI-1  in K562 cells, 
a cell line derived from a patient with CML and characterized 
by highly increased expression of  AHI-1  ( 22 ), was performed, 
with confi rmed down-regulation of AHI-1 in suppressed cells 
(AHI/sh4) and overexpression of AHI-1 in overexpressed 
cells (P  <  0.01;  Fig. 3 A ).  Interestingly, suppression of  AHI-1  
expression reduced GF independence in semisolid cultures 
(up to 5-fold; P  <  0.01;  Fig. 3 B ) compared with cells trans-
duced with control vector (RPG). Colonies formed by  AHI-1  –
 suppressed cells were much smaller than those of control cells 
( Fig. 3 C ). Also, the ability to form a clone from a single cell 
was 2-fold less than that of the controls without GFs in liquid 
suspension cultures (P  <  0.05;  Fig. 3 D ). In contrast, overexpres-
sion of human  AHI-1  by transduction of EF1 � -AHI-1-IRES-
YFP lentivirus in K562 cells resulted in sharply increased 
colony-forming ability compared with control cells (1.5 – 2-
fold; P  <  0.05;  Fig. 3, B and C ). Importantly, restored ex-
pression of AHI-1 both at RNA and protein levels in AHI/sh4 
cells reversed growth defi ciencies exhibited by suppression of 
 AHI-1  ( Fig. 3, A – C ). 

 To determine if in vitro eff ects could be replicated in vivo, 
NOD/SCID- � 2m �/�  mice were injected subcutaneously with 

Sca-1 + lin  �  YFP +  (Ahi-1 + ), Sca-1 + lin  �  GFP +  (BCR-ABL + ), and 
Sca-1 + lin  �  YFP + GFP +  (Ahi-1 + BCR-ABL + ) – transduced BM 
cells showed that  Ahi-1  transcripts were 40-fold higher in 
 Ahi-1  – transduced cells compared with cells transduced with 
control vector (MIY). Elevated endogenous  Ahi-1  expression 
was also observed in cells transduced with  BCR-ABL  alone 
as compared with control cells (8-fold; P  <  0.01;  Fig. 2 A ).  5 d 
after transduction, the rate of expansion of the Sca-1 + lin  �  YFP +  
(Ahi-1 + ) cells in liquid cultures was approximately twofold 
higher than in cultures initiated with control cells ( Fig. 2 B  ). 

 Table I.   Pathological parameters of leukemic mice injected with transduced cells in vivo 

Cells injected Leukemia/mice Disease latency  a  Spleen weight Liver weight

 g  g 

MIY control 0/10 No disease 0.035  ±  0.006 0.5  ±  0.09

Ahi-1 8/8 70  ±  9.5 0.12  ±  0.04 1.1  ±  0.18

BCR-ABL 8/8 41  ±  5.6 0.25  ±  0.05 1.6  ±  0.25

Ahi-1 + BCR-ABL 8/8 26  ±  4 0.41  ±  0.08 2.1  ±  0.3

 a Time (in days) to death caused by leukemia.

 Figure 2.    Overexpression of  Ahi-1  in Sca-1 + lin   �    mouse   stem/

progenitor BM cells perturbs their in vitro proliferative activity 

and enhances the effects of  BCR-ABL   .  (A) The levels of  Ahi-1  tran-

scripts relative to  GAPDH  from FACS-purifi ed MIY (Sca-1 + lin  �  YFP + ),  Ahi-1  

(Sca-1 + lin  �  YFP + ),  BCR-ABL  (Sca-1 + lin  �  GFP + ), and  Ahi-1  plus  BCR-ABL  

(Sca-1 + lin  �  YFP + GFP + ) transduced primary mouse BM cells. (B) Growth 

of each FACS-purifi ed population with GFs. Viable cell numbers were 

determined by hematocytometer counts of trypan blue – excluding cells. 

(C) Number of CFC colonies produced in semisolid cultures  ±  GF from 

the same FACS-purifi ed mouse BM cells. (D) The appearance of GF-inde-

pendent CFC colonies is shown. Bar, 250  μ m. (E) The numbers of LTC-IC –

 derived CFCs produced from the same cells  ±  GF. Values shown are the 

mean  ±  SEM of triplicate measurements. * indicates signifi cantly differ-

ent from MIY control cells.   
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 Suppression of  AHI-1  expression in primitive  BCR-ABL  –

 transduced human CB cells and primary CML stem/

progenitor cells reduces their growth autonomy 

 We next evaluated the eff ects of down-regulation of  AHI-1  in 
 BCR-ABL  – transduced primitive human CB stem/progenitor 
cells (Lin  �  CD34 + ) using lentiviral-mediated RNA interfer-
ence. Q-RT-PCR analysis indicated that endogenous  AHI-1  
expression was suppressed by 40 – 50% when the shRNA con-
struct (AHI/sh4) was introduced ( Fig. 4 A ).  Interestingly, 
 BCR-ABL  – transduced CB cells expanded rapidly in the pres-
ence or absence of GFs as expected, but the growth of the 

transduced cells to determine their ability to form tumors in 
vivo. Cells with suppression of  AHI-1  failed or had signifi -
cantly reduced ability to form tumors compared with control 
K562 cells ( Fig. 3, E and F ). In contrast,  AHI-1  overexpressed 
cells rapidly generated larger tumors than the control cells 
within 3 wk (3-fold; P  <  0.01). Strikingly, AHI/sh4 cells co-
transduced with the AHI-1 construct could reverse in vivo 
growth defi ciencies resulting from knockdown of  AHI-1 . 
These results demonstrate that modulation of expression levels 
of  AHI-1  in human CML cells regulates their transforming ac-
tivity in vitro and in vivo. 

 Figure 3.    Knockdown or overexpression of  AHI-1  in human K562 cells mediates their transforming activity in vitro and in vivo.  (A) Q-RT-PCR 

analysis of the levels of  AHI-1  transcripts relative to  GAPDH  in FACS-purifi ed RPG vector – transduced K562 cells, AHI-1/sh4 cells (with suppression of 

 AHI-1 ), AHI/sh4 + AHI-1 cells (coexpression of  AHI-1  in AHI-1/sh4 cells), and AHI-1 cells ( AHI- 1 overexpressed cells, top). Western analysis (bottom) of 

AHI-1 expression in the same transduced cells with an anti – AHI-1 antibody. (B) The numbers of CFC colonies produced in semisolid cultures  ±  GF (IL-3, 

GM-CSF, SF) in the same transduced cells. (C) The appearance of CFC colonies produced in semisolid cultures  ±  GF as shown in B. Bar, 250  μ m. (D) Per-

centage of single control K562 cells or AHI/sh4 cells generating clones (top) and clone size distributions obtained from these cells after being cultured for 

7 d (bottom). (E) NOD/SCID- � 2M  � / �   mice were injected subcutaneously with 10 7  control K562 and transduced cells. Tumor volume is expressed as mean  ±  

SEM areas of each group ( n  = 4). (F) The appearance of tumors generated by the same cells as shown in E. Values shown are the mean  ±  SEM of triplicate 

measurements. * indicates signifi cantly different from K562 or RPG control cells.   
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Interestingly, lin  �  CD34 +  cells from IM nonresponders expressed 
higher levels of  AHI-1  transcripts compared with the same cells 
isolated from IM responders (P = 0.03;  Fig. 5 A ). Lin  �  CD34 +  
cells from blast crisis patients also expressed relatively higher levels 
of  AHI-1  transcripts (P  <  0.03, compared with IM responders). A 
lentiviral-mediated  AHI-1  shRNA construct was directly trans-
duced into lin  �  CD34 +  stem/progenitor cells isolated from three 
IM responders, three IM nonresponders, and three blast crisis 
patients. Lentiviral-mediated suppression of  AHI-1  expression re-
sulted in a reduction in CFC output by  � 28 – 60% in lin  �  CD34 +  
CML cells from all patient samples studied (with  AHI-1  expression 
partially suppressed ( � 40 – 55%;  Fig. 5, B and C ). CFC colonies 
formed by CML cells with suppression of  AHI-1  were found to 
be smaller than those resulting from cells transduced with a control 
vector ( Fig. 5 D ). It was interesting that more signifi cant reduction 

 BCR-ABL  – transduced cells with suppression of  AHI-1  was sig-
nifi cantly suppressed (2.2  ×  10 6  versus 4.8  ×  10 5  cells with GF; 
10 6  versus 5  ×  10 3  cells without GF; P  <  0.01;  n  = 3;  Fig. 4 B ). 
Similarly,  BCR-ABL  – transduced CB cells with suppression of 
 AHI-1  had up to 10-fold less CFC output compared with 
 BCR-ABL  – transduced CB cells (P  <  0.01;  Fig. 4 C ). A similar 
reduction of CFC output was observed in the absence of GFs 
(data not shown). Notably, burst-forming-units-erythroids 
(BFU-Es) were especially increased in  BCR-ABL  – transduced 
CB cells compared with control cells, which remained pre-
dominantly myeloid as previously reported (110  ±  8 versus 
18  ±  3; P  <  0.01;  Fig. 4 C ) ( 25 ). Suppression of  AHI-1  expression 
in  BCR-ABL -transduced CB cells signifi cantly reduced mye-
loid CFC (BFU-E and colony-forming units-granulocyte-
macrophage [CFU-GM]) output, as well as primitive myeloid 
progenitors (colony-forming units-granulocyte-erythrocite-
monocyte-megakaryocyte [CFU-GEMM]), suggesting that 
AHI-1 may play a role in regulation of overproduction of mye-
loid cells in CML. 

 To further elucidate the role of  AHI-1  in primary CML stem/
progenitor cells,  AHI-1  transcript levels were evaluated in pre-
treatment lin  �  CD34 +  cells from 16 chronic phase patients with 
subsequent clinical responses to IM therapy (6 responders and 10 
nonresponders) and from 7 patients in blast crisis. Increased levels 
of  AHI-1  expression were observed in lin  �  CD34 +  CML stem/
progenitor cells from all patient samples studies (2.5 – 18-fold; 
P  <  0.04;  Fig. 5 A ), compared with lin  �  CD34 +  normal BM cells.  

 Figure 4.    Lentiviral-mediated suppression of  AHI-1  expression 

causes reduced proliferative activity and GF independence of  BCR-

ABL  – transduced human CB cells.  (A) Q-RT-PCR analysis of the levels 

of human  AHI-1  transcripts relative to  GAPDH  in transduced lin  �  CD34 +  

CB cells, including cells transduced with a control vector (Ctrl), AHI/sh4 

cells (with suppression of  AHI-1 ),  BCR-ABL  (B/A), and AHI/sh4 cotrans-

duced cells (B/A + AHI/sh4). (B) Growth of each transduced population 

in suspension cultures  ±  GF for 12 d. Viable cell numbers were deter-

mined by hematocytometer counts of trypan blue-excluding cells. 

(C) Number of BFU-E, CFU-GM, and CFU-GEMM colonies produced in 

semisolid cultures from the same cells as shown in B. Values shown are 

the mean  ±  SEM of triplicate measurements. * indicates signifi cant dif-

ference between  BCR-ABL  – transduced cells alone and cells cotrans-

duced with  BCR-ABL  and AHI/sh4.   

 Figure 5.    Elevated  AHI-1  transcript levels in CML stem/progenitor 

cells and reduced CFC production in the same cells when  AHI-1  

expression is suppressed.  (A) Q-RT-PCR analysis of the levels of human 

 AHI-1  transcripts relative to  GAPDH  in lin  �  CD34 +  normal bone marrow 

(NBM) and lin  �  CD34 +  CML cells from IM responders, nonresponders, and 

blast crisis patients. (B) Q-RT-PCR analysis of the levels of human  AHI-1  

transcripts relative to  GAPDH  in transduced lin  �  CD34 +  normal BM and 

CML cells (three IM responders, three nonresponders, and three blast crisis 

patients)  ±  suppression of  AHI-1  expression, including cells transduced 

with a control vector (Ctrl) or a AHI/sh4 vector. (C) The yield of BFU-E, 

CFU-GM, and CFU-GEMM colonies from primary CD34 + lin  �   CML cells 

transduced with a control vector or AHI/sh4 vector. (D) The appearance of 

CFC colonies produced in semisolid cultures from control and AHI/sh4-

transduced cells from an IM nonresponder patient. Bar, 100  μ m. Values 

shown are the mean  ±  SEM of triplicate measurements. * indicates sig-

nifi cant difference between transduced control cells and cells transduced 

with AHI/sh4 vector.   
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cooperative eff ects of  Ahi-1  in a  BCR-ABL  – transduced BaF3 
cell line in which the level of expression of p210 BCR-ABL  can 
be variably down-regulated by exposure to doxycycline (Dox) 
( 26 ). Reduction in BCR-ABL protein expression in the pres-
ence of Dox results in a corresponding decrease in GF inde-
pendence of BaF3 cells both in liquid suspension cultures 
and in semisolid cultures in vitro ( Fig. 6 ).  As shown in  Fig. 6 
(A and B) , cell growth and survival was dramatically reduced 

in CFC numbers was observed in transduced primary CML cells 
from IM nonresponders and blast crisis compared with IM re-
sponders ( Fig. 5 C ). 

 Coexpression of  Ahi-1  in  BCR-ABL  – inducible cells regulates 

transforming activities of  BCR-ABL  +  cells 

 To further investigate potential regulatory roles of  Ahi-1  in 
mediating  BCR-ABL  – transforming activities, we evaluated 

 Figure 6.    Overexpression of  Ahi-1  rescues growth suppression induced by the inhibition of  BCR-ABL  expression in BCR-ABL – inducible BaF3 

cells.  (A) Growth of control BaF3,  BCR-ABL  – inducible cells, and two  Ahi-1  – transduced,  BCR-ABL  – inducible clonal lines without IL-3  ±  Dox (+Dox = sup-

pression of  BCR-ABL  expression). Viable cell numbers were determined by hematocytometer counts of trypan blue – excluding cells. (B) Annexin V-PE/7-

AAD staining of  BCR-ABL  – inducible cells and  Ahi-1  – transduced  BCR-ABL  – inducible cells (Ahi-1 + B/A-2) after culture without IL-3  ±  Dox for 24 and 48 h. 

Percentages of Annexin V +  cells are indicated. (C) CFC colonies produced in semisolid media  ±  IL-3 and Dox from the same cells as shown in A. (D) The 

appearance of GF-independent CFC colonies in  Ahi-1  and  BCR-ABL  – cotransduced cells without IL-3  ±  Dox. Bar, 250  μ m. Values shown are the mean  ±  

SEM of triplicate measurements. * indicates signifi cant difference between  BCR-ABL  inducible cells alone and inducible cells cotransduced with  Ahi-1 .   
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caused by suppression of  BCR-ABL  expression. This can be 
enhanced signifi cantly by cotransduction of  Ahi-1  (10 – 15-
fold; P  <  0.01;  Fig. 6 C ). Collectively, these results demon-
strate the ability of  Ahi-1  to immediately reverse in vitro 
growth defi ciencies resulting from down-regulation of  BCR-
ABL  in vitro, and provide direct evidence of the regulatory 
role of  Ahi-1  in  BCR-ABL  – mediated transformation. 

 Coexpression of  Ahi-1  in  BCR-ABL  – inducible cells sustains 

tyrosine phosphorylation of BCR-ABL and enhances 

activation of JAK2 and STAT5 

 To determine whether coexpression of  Ahi-1  in  BCR-ABL  –
 inducible BaF3 cells infl uences protein expression and tyro-
sine kinase activity of BCR-ABL, and candidate downstream 
signaling that refl ects enhanced transforming phenotypes ob-
served, we performed Q-RT-PCR and Western blot anal-
yses in these cells in the presence and absence of Dox. As 
expected,  BCR-ABL  transcripts were highly expressed with-
out Dox and down-regulated in the presence of Dox in the 
 BCR-ABL  – inducible cells after 24 – 48 h in culture ( Fig. 7 A ).  
Elevated  BCR-ABL  transcript levels were again observed in 
 BCR-ABL –   and  Ahi-1  – cotransduced cells generated from two 
individual cells lines (3 – 6-fold; P  <  0.01). As expected,  Ahi-1  
transcripts were highly elevated in cotransduced cells when 
compared with control BaF3 cells ( > 50-fold; P  <  0.01;  Fig. 
7 A ). Strikingly, tyrosine phosphorylation of p210 BCR-ABL  could 
not sufficiently be suppressed in  Ahi-1 - and  BCR-ABL  – 
cotransduced cells, as compared with  BCR-ABL  – transduced 
cells alone in the presence of the same amount of Dox (30 –
 40% inhibition versus  � 80% inhibition; P  <  0.01;  Fig. 7, 
B and C ). In all cases, BCR-ABL phosphorylation was not 
completely suppressed after 24 h in culture with addition of 
Dox. These results were consistently observed in two individ-
ual cotransduced cell lines. Similarly, BCR-ABL protein ex-
pression was also suppressed to a lesser degree in cotransduced 
cells than in cells transduced with  BCR-ABL  only, and Ahi-1 
protein expression was found to be higher in cotransduced 
cells than in cells transduced with  BCR-ABL  only. 

 We next evaluated the eff ect of increased BCR-ABL ex-
pression and tyrosine phosphorylation of cotransduced cells 
on the activity of candidate signaling mechanisms. We ob-
served increased levels of phosphorylation of JAK2, STAT5, 
NF- � B p65 (at Ser 563 and Ser 468), and Src (at Tyr 416) in 
 BCR-ABL  – inducible cells and  Ahi-1  – cotransduced  BCR-
ABL  – inducible cells compared with control BaF3 cells ( Fig. 
8, A and B ).  Interestingly, phosphorylation of most down-
stream proteins was down-regulated when BCR-ABL ex-
pression was inhibited by Dox, but sustained phosphorylation 
of JAK2 and STAT5 was consistently observed in cotrans-
duced cells in the presence of IL-3 and Dox ( Fig. 8 A , lanes 
6 and 8 compared with lane 4). In the absence of IL-3, phos-
phorylation of JAK2 and STAT5 was reduced in cotrans-
duced cells when BCR-ABL expression was suppressed. A 
similar, albeit less pronounced, fi nding of sustained phosphory-
lation of Src was also observed, particularly in Ahi-1 + BCR-
ABL-1 cells in the presence of IL-3. These results suggest 

when Dox was added to culture at 48 h ( > 90% inhibition 
of proliferation,  Fig. 6 A,  right;  � 50% detectable Annexin V +  
apoptotic cells,  Fig. 6 B,  top right), while the same cells 
showed a marked increase in cell expansion in the absence 
of both IL-3 and Dox (no down-regulation of BCR-ABL, 
 Fig. 6 A , left). Similarly, down-regulation of  BCR-ABL  ex-
pression completely inhibited CFC generation in semisolid 
cultures in the absence of IL-3 ( Fig. 6, C and D ). Interest-
ingly, introduction of  Ahi-1  into cells with inhibited  BCR-
ABL  expression under these stringent conditions enabled them 
to grow continuously in liquid suspension culture, to have 
less Annexin V +  apoptotic cells, and to produce more factor-
independent CFCs than cells transduced with  BCR-ABL  
alone ( � 4  ×  10 5  versus 10 3  cells after 48 h in liquid culture 
and  � 100 CFCs versus 0 in the CFC assay; P  <  0.01;  Fig. 6 ). 
These results were consistently observed in two individual clonal 
cell lines. In the presence of IL-3 and Dox,  BCR-ABL  – trans-
duced BaF3 cells showed a signifi cant reduction in CFC pro-
duction; addition of IL-3 cannot rescue inhibitory effects 

 Figure 7.    Sustained tyrosine phosphorylation and protein expres-

sion of P210 BCR-ABL  in  BCR-ABL  – inducible BaF3 cells cotransduced 

with  Ahi-1 .  (A) Q-RT-PCR analysis of the levels of  BCR-ABL  (left) and 

 Ahi-1  (right) transcripts relative to  GAPDH  in control BaF3,  BCR-ABL  in-

ducible cells and two  Ahi-1- transduced  BCR-ABL  inducible clonal lines 

cultured without IL-3  ±  Dox for 24 h. (B) Western analyses of cell lysates 

from the same cells for 24 h. Antibodies used are indicated. (C) Tyrosine 

phosphorylation and protein expression of p210 BCR-ABL  and Ahi-1 relative 

to actin, as compared with  BCR-ABL  – transduced cells alone. Values 

shown are the mean  ±  SEM of triplicate measurements. * indicates sig-

nifi cant difference between  BCR-ABL  – inducible cells alone and the induc-

ible cells cotransduced with  Ahi-1 .   
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lated p210 BCR-ABL  could be detected in K562 cells using an 
antiphosphotyrosine antibody (4G10) after IP with the AHI-1 
antibody ( Fig. 8 E ). Interestingly, this protein interaction 
complex is also associated with a 120-kD tyrosine-phosphor-
ylated protein ( Fig. 8 E ). To determine whether this 120-kD 
protein could be an AHI-1 isoform, the same membrane was 
washed and reprobed with an AHI-1 antibody. The full-length 
(150 kD) and a 100-kD isoform of AHI-1 protein (but not 
a 120-kD protein) were identifi ed by Western blot analyses 
( Fig. 8 F ). Using co-IP, we examined several candidate 120-kD 
tyrosine-phosphorylated proteins known to interact with BCR-
ABL, including CBL and JAK2. We determined that JAK2 
was associated with this protein interaction complex, as AHI-1 
could be detected by an anti – AHI-1 antibody in K562 cells 
after IP with a specifi c antibody to JAK2 ( Fig. 8 G ); this in-
teraction was further confi rmed by reverse detection of JAK2 
after IP with the anti-AHI-1 antibody (not depicted). In ad-
dition, the antigenic peptide derived from the sequence of 
AHI-1 specifi cally blocked the ability of the AHI-1 antibody 
to precipitate both tyrosine-phosphorylated BCR-ABL and 
the 120-kD protein, whereas an unrelated peptide had no 
eff ect ( Fig. 8 H , lane 3). Interestingly, this interaction com-
plex was found to be modulated by tyrosine kinase activity 
of BCR-ABL, as IM treatment (5  μ M) of K562 cells for 6 h 
resulted in inability to detect both tyrosine-phosphorylated 
BCR-ABL and JAK2 ( Fig. 8 H , lane 4). These results indicate 
that AHI-1 and BCR-ABL can interact and form a complex 
involving tyrosine-phosphorylated JAK2. 

 AHI-1 regulates response of BCR-ABL +  primitive CML 

cells to TKIs 

 To determine whether AHI-1 – BCR-ABL – JAK2 interaction 
complex may mediate IM sensitivity/resistance of BCR-
ABL +  cells,  BCR-ABL  – transduced inducible BaF3 cells and 
cells cotransduced with  Ahi-1  were treated with various doses 
of IM (0 – 10  μ m). As expected,  BCR-ABL  – transduced cells 
showed a signifi cant reduction in CFC output in response to IM 
treatment in the presence and absence of IL-3 ( � 90% inhibition 
with 5  μ M IM + IL-3 and 1  μ M IM � IL-3;  Fig. 9 A ).  Strik-
ingly, BaF3 cells cotransduced with  Ahi-1  and  BCR-ABL  
showed no response to IM and produced as many CFCs in 
the presence of IL-3 as were produced by the same cells with-
out IM treatment ( Fig. 9 A , left). Moreover, cotransduced 
cells also displayed greater resistance to IM in CFC output in 
the absence of IL-3, although these cells were more sensitive 
to IM treatment than those in the presence of IL-3 ( Fig. 9 A , 
right). These results indicate that  Ahi-1  is capable of over-
coming IM-induced growth suppression in BCR-ABL +  cells 
when IL-3 signaling is activated in these cells. 

 Similarly, overexpression of human  AHI-1  in K562 cells 
resulted in greater resistance to IM treatment, as assessed by 
the CFC assay, ( � 2-fold; P  <  0.01) in comparison to K562 
control cells ( Fig. 9 C ). Conversely, suppression of  AHI-1  
(AHI/sh4) resulted in increased sensitivity to IM, particularly 
in the presence of a low concentration of IM (1  μ M). Strik-
ingly, restored expression of  AHI-1  by overexpression of an 

that Ahi-1 may play a regulatory role in mediation of BCR-
ABL activity associated with enhanced activation of JAK2 and 
STAT5 through the IL-3 signaling pathway. 

 AHI-1 physically interacts with BCR-ABL 

 To detect a physical interaction between AHI-1 and BCR-
ABL in CML cells, coimmunoprecipitation (co-IP) experi-
ments were performed. We demonstrated a direct interaction 
between AHI-1 and BCR-ABL at endogenous levels by 
detection of BCR-ABL in human CML cells (K562) after 
IP with a human AHI-1 antibody ( Fig. 8 C ). This interac-
tion was not found in a BCR-ABL  �   T cell line (Hut 78;  Fig. 
8 C , lane 2) or in control antibody coimmunoprecipitated 
K562 cells (not depicted). The result was confi rmed by de-
tection of AHI-1 in the same cells after IP with a specifi c 
antibody to ABL ( Fig. 8 D ). Importantly, tyrosine phosphory-

 Figure 8.    Enhanced activation of JAK2 and STAT5 in  BCR-ABL  

inducible BaF3 cells cotransduced with  Ahi-1  and detection of a 

AHI-1 – BCR-ABL – JAK2 interaction complex in human K562 cells.  

(A and B) Western blot analyses of cell lysates from control BaF3, BCR-

ABL – inducible cells, and two  Ahi-1  – transduced  BCR-ABL  – inducible clonal 

lines cultured in the presence (A) and absence (B) of IL-3  ±  Dox for 24 h. 

Antibodies used are indicated. (C – H) Protein lysates of K562 cells (BCR-

ABL + ) and Hut 78 cells (BCR-ABL  �  ) were used to immunoprecipitate AHI-

1 (C, E-F, and H), ABL (D), and JAK2 (G), and proteins were detected by 

Western blotting with antibodies to ABL (C), AHI-1 (D, F, and G), JAK-2 (G), 

and phosphotyrosine (E and H) as indicated. In H, before immunoprecipi-

tation, lysates were incubated for 1 h with the indicated AHI-1 peptide; 

unrelated peptide (unr.), no peptide (-), and antigenic peptide (+) or cells 

were incubated  ±  IM (5  μ M) for 6 h before preparation of protein lysates.   
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 expression of AHI-1 not only modulates phosphorylation of 
BCR-ABL, JAK2, and STAT5 in BCR-ABL +  K562 cells, 
but also regulates protein expression of these genes, as dem-
onstrated by signifi cantly enhanced expression of these pro-
teins when  AHI-1  is overexpressed, reduced expression when 
 AHI-1  is suppressed, and restored expression in AHI-1 – sup-
pressed cells where  AHI-1  expression has been rescued by 
introduction of an AHI-1 construct ( Fig. 9 D ). These results 
further support our fi ndings in the BCR-ABL – inducible sys-
tem that AHI-1 plays a critical role in mediation of BCR-
ABL and JAK2 – STAT5 activities. 

 We next assessed sensitivity of lin  �  CD34 +  CML stem/
progenitor cells, with and without suppression of  AHI-1  ex-
pression, to the TKIs IM, DS, and NL. Cells were obtained 
from three IM responders, three IM nonresponders, and 
three blast crisis patients with partial suppression of  AHI-1  
expression in transduced CML cells ( � 40 – 50%) as shown in 
 Fig. 5 B . Interestingly, in all cases, lin  �  CD34 +  CML cells 
were more sensitive to DS treatment (100 nM) than to IM 
(5  μ M) or NL (5  μ M), as assessed by their ability to generate 
CFCs ( Fig. 9 E ), whereas lin  �  CD34 +  cells with suppression 
of  AHI-1  expression, particularly cells from the clinically IM-
resistant and blast crisis patients, were more sensitive to all 
three inhibitors ( � 2-fold; P  <  0.05). Collectively, these data 
suggest that  AHI-1  plays an important role in modulating sen-
sitivity to IM and other selective BCR-ABL TKIs in  BCR-
ABL +   CML cells. 

  DISCUSSION  

 In this study, we demonstrate for the fi rst time that  Ahi-1/
AHI-1  is a new oncogene that cooperates in transforming ac-
tivities with  BCR-ABL  both in vitro and in vivo through a 
direct physical interaction. First, in a mouse system, overex-
pression of mouse  Ahi-1  confers a proliferative advantage in 
vitro to IL-3 – dependent BaF3 cells and a stem cell – enriched 
Sca-1 + lin  �   population from 5-FU – treated mouse BM cells, 
and induces a lethal leukemia in vivo. This deregulated pro-
liferative activity, GF independence, and leukemogenic po-
tential is enhanced by introduction of  BCR-ABL . Thus, there 
is a direct biological correlation between  Ahi-1  and  BCR-
ABL  in regulating transforming activity of these cells. Sec-
ond, in a human system,  AHI-1  expression appears to regulate 
transforming activities of  BCR-ABL  – transduced human CB 
stem/progenitor cells (lin  �  CD34 + ), as indicated by their sig-
nifi cantly reduced autonomous growth when endogenous 
 AHI-1  expression is stably inhibited. These eff ects were fur-
ther demonstrated in CML patient samples; reduced autono-
mous growth was observed in primary CML stem/progenitor 
cells in all patient samples studied with knockdown of  AHI-1 . 
The eff ects were more signifi cant in CML stem/progenitor 
cells from IM-resistant patients and blast crisis patients who 
expressed relatively higher levels of  AHI-1  ( Fig. 5 ). Knock-
down of  AHI-1  expression in  BCR-ABL  – transduced human 
CB cells not only inhibited all diff erentiated myeloid cells 
(CFU-GM and CFU-GEMM) but also signifi cantly inhib-
ited diff erentiating erythroid cells (BFU-E;  Fig. 4 C ) that are 

AHI-1 construct in AHI/sh4 cells (suppression of  AHI-1 ) 
 restored IM resistance to AHI/sh4 cells ( Fig. 9 C ). Western 
analysis revealed increased tyrosine-phosphorylated BCR-
ABL, JAK2, and STAT5 in K562 cells with  AHI-1  overex-
pression and reduced levels of these phosphorylated proteins 
when  AHI-1  expression is suppressed ( Fig. 9 D ). Interest-
ingly, phosphorylated BCR-ABL, JAK2, and STAT5 levels 
could be restored in the AHI-1/sh4 cells when AHI-1 con-
struct was reintroduced into the same cells. Importantly, 

 Figure 9.     AHI-1  mediates response/resistance of TKIs as assessed 

by overexpression or suppression of  AHI-1  in  BCR-ABL +   primitive 

CML cells.  (A) Percentage of inhibition of CFC colonies generated in 

semisolid media  ±  IL-3 and IM (0 – 5  μ M) from control BaF3,  BCR-ABL  –

 inducible cells, and two  Ahi-1 –  transduced  BCR-ABL  – inducible clonal 

cell lines. (B) Model of AHI-1 – BCR-ABL – JAK2 complex regulation of 

constitutive activation of BCR-ABL and JAK2 – STAT5 pathway, resulting 

in increased proliferation and reduced TKI response of CML stem/pro-

genitor cells. (C) Percentage of inhibition of CFC generation in semisolid 

media with GF and IM (0 – 10  μ M) from control K562, AHI/sh4 – trans-

duced cells (suppression of  AHI-1 ), overexpression of  AHI-1  in AHI/sh4 

cells, and  AHI-1  – transduced K562 cells. * indicates signifi cantly different 

from K562 control cells. (D) Western analyses of cell lysates from the 

same cells  ±  IM (5  μ M) for 6 h. Antibodies used are indicated. 

(E) Inhibition of CFCs in semisolid media with IM (5  μ M), DS (100 nM), 

and NL (5  μ M) in lin  �  CD34 +  CML cells from IM responders ( n  = 3), non-

responders ( n  = 3), and blast crisis ( n  = 3) patient samples transduced 

with either a control vector or AHI-1/sh4 vector. Values shown are the 

mean  ±  SEM of triplicate measurements. * indicates signifi cantly differ-

ent between  BCR-ABL  – inducible cells and inducible cells cotransduced 

with  Ahi-1 , and between lin  �  CD34 +  cells transduced with a control 

vector or transduced with the AHI-1/sh4 vector.   
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ABL and JAK2 – STAT5 ( Fig. 9 D ). It is known that BCR-
ABL signaling closely mimics signaling pathways of cytokine 
receptors and that both IL-3/GM-CSF receptor activation and 
the BCR-ABL oncoprotein can induce a tyrosine phosphory-
lation cascade of which numerous proteins, including JAK2 
and STAT5, are common substrates ( 5, 6, 31 ). Interestingly, 
 BCR-ABL  – expressing cells have many similarities to cells in-
duced by IL-3 stimulation ( 32 ) or cells with forced  IL-3  over-
expression ( 33, 34 ). Early studies have shown that BCR-ABL 
can interact with the common  �  chain of IL-3/GM-CSF 
 receptor and constitutively activate JAK2 ( 35 ). In particular, 
increased phosphorylation of STAT5, which was previously 
thought to be an immediate function of the BCR-ABL on-
coprotein, has now been shown in primary CML CD34 +  
progenitor cells to occur largely as a consequence of BCR-
ABL – induced activation of IL-3 autostimulation, leading to 
activation of STAT5 ( 36 ). It has been reported that targeted 
disruption of the  STAT5A  and  STAT5B  genes reduces mye-
loid progenitor numbers, suggesting a nonredundant role for 
STAT5 in primitive normal hematopoiesis ( 37 ). Recent studies 
further suggest that autocrine production of GM-CSF may 
contribute to IM and NL-resistance in BCR-ABL +  progeni-
tors through activation of JAK2 and STAT5 pathway ( 38 ), 
and inhibition of  STAT5  expression by a shRNA approach 
signifi cantly reduced colony formation of CD34 +  CML pro-
genitor cells in vitro ( 39 ). In addition, JAK2 is known to interact 
with the C-terminal region of BCR-ABL, and recent studies 
further show that mouse hematopoietic cells transformed by 
the T315I mutant of  BCR-ABL  can be induced to undergo 
apoptosis by a JAK2 inhibitor (AG490) ( 40 – 42 ). Collectively, 
these results indicate that activation of the JAK2 – STAT5 
pathway in CML stem/progenitors is likely to be an impor-
tant mechanism contributing to responses to BCR-ABL – tar-
geted therapies and identifi cation of Ahi-1/AHI-1 as a novel 
mediator involved in this pathway suggests AHI-1 alone or in 
combination with JAK2 and STAT5, as potential additional 
therapeutic targets. 

 The most revealing result presented here is the fi nding that 
expression of  BCR-ABL  was consistently associated with an 
up-regulation of endogenous  Ahi-1/AHI-1  transcripts and an 
increase in Ahi-1/AHI-1 protein expression in several over-
expression and inducible experimental systems. Up-regulated 
 AHI-1  expression has been noted in K562 cells, a cell line de-
rived from a patient with CML in blast crisis ( 22 ). In particu-
lar, modulation of  AHI-1  expression in K562 cells regulates 
BCR-ABL and JAK2 – STAT5 activities, as described above. 
Importantly,  AHI-1  is highly deregulated in primary CML 
stem/progenitor cells where levels of  BCR-ABL  transcripts 
are also highly elevated, suggesting that deregulated expression 
of  BCR-ABL  and  AHI-1  may be clinically relevant to their 
cooperative activities that result in a permanently expanding 
clone of deregulated stem cells during leukemia development. 
Indeed, our study further demonstrates that highly elevated 
levels of  AHI-1  in CML stem/progenitor cells from IM non-
responders and blast crisis patients correlate with their rela-
tive resistance to TKIs. Similarly, a potential mechanism for a 

produced at a high frequency from  BCR-ABL  – transduced 
CD34 +  stem/progenitor cells independent of their apparent 
prior lineage commitment status caused by modulation of 
P210 BCR-ABL  activity ( 25 ). Interestingly, we also observed that 
overexpression of  Ahi-1  in pro – B BaF3 cells altered their 
 diff erentiation pattern in vivo ( Fig. 1 C ), suggesting that 
modulation of  Ahi-1/AHI-1  expression alters progenitor cell 
diff erentiation, including lineage switching, as previous re-
ports have suggested for other oncogenes ( 25, 27 – 30 ). Third, 
a regulatory role of  Ahi-1  in  BCR-ABL  – mediated transforma-
tion is evident as coexpression of  Ahi-1  in  BCR-ABL  – inducible 
cells can reverse growth defi ciencies induced by down-regu-
lation of  BCR-ABL . This biological eff ect is associated with 
sustained phosphorylation of BCR-ABL and enhanced activ-
ities of JAK2 – STAT5. Finally, an AHI-1 – BCR-ABL – -JAK2 
interaction complex has been identifi ed in human CML cells. 
This complex mediates sensitivity/resistance of primitive CML 
stem/progenitor cells to TKIs, as demonstrated by either co-
expression or inhibition of  Ahi-1/AHI-1  expression in  BCR-
ABL +   CML cells with a resulting modulation of CML cell 
sensitivity to these inhibitors. Collectively, these fi ndings pro-
vide strong evidence of the importance of persistent deregu-
lated expression of  Ahi-1/AHI-1  to the sustained in vitro and 
in vivo transforming activities associated with CML and in 
the modulation of  BCR-ABL -mediated malignant transfor-
mation and response of CML stem/progenitor cells to TKIs. 
This research has further identifi ed  Ahi-1/AHI-1  as a novel 
modulator of  BCR-ABL  that is specifi cally involved in the 
JAK2 – STAT5 pathway. 

 Identifi cation of an AHI-1 – BCR-ABL – JAK2 interaction 
complex raises many interesting questions about the nature of 
the interaction, how it is regulated, and how it contributes to 
malignant transformation, altered BCR-ABL signaling, and 
IM response/resistance of CML stem/progenitor cells. Par-
ticularly notable is the observation that coexpression of  Ahi-1  
in  BCR-ABL  – inducible cells can rescue GF-independent cell 
growth that is inhibited by down-regulation of  BCR-ABL . 
Interestingly, this renewed GF independence with introduc-
tion of  Ahi-1  appears to be regulated by sustained phosphory-
lation of BCR-ABL, rather than its continual expression, as 
these eff ects were observed in cotransduced cells where  BCR-
ABL  expression was inducibly suppressed in vitro ( Fig. 7 B ). 
These results suggest that physical interaction between Ahi-1 
and BCR-ABL may stabilize a protein – protein interaction 
complex that enables constitutively active BCR-ABL tyro-
sine kinase activity and further alters specifi c downstream 
BCR-ABL signaling pathways that deregulate cellular prolif-
eration and apoptosis control ( Fig. 9 B ). This is further sup-
ported by identifi cation of JAK2 as an associated protein in 
this interaction complex and observation of enhanced activity 
of the JAK2 – STAT5 pathway in  BCR-ABL  – inducible cells 
with cotransduction of  Ahi-1  in the presence of GF stimu-
lation with IL-3 ( Fig. 8 ). Interestingly, all these fi ndings can 
be replicated signifi cantly in a human CML cell line system 
in which changes in AHI-1 expression are found to modulate 
tyrosine phosphorylation and protein expression of BCR-
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Angeles, CA) through an EcoRI site. To generate human AHI-1 lentiviral 

vector, plasmid containing full-length  AHI-1  cDNA (AL136797, obtained 

from Resource Center Primary Database, Berlin, Germany) was subcloned 

into the EF1 � -IRES-YFP lentiviral vector (with substitution of eGFP with 

YFP from an EF1 � -IRES-eGFP lentiviral vector; P. Leboulch, Massachu-

setts Institute of Technology, Boston, MA) between AscI and PacI sites. To 

generate the AHI sh4 lentiviral construct, the H1 promoter-driven small 

hairpin against human  AHI-1  was released from a modifi ed pSUPER AHI 

sh4 construct ( 23 ) and inserted into an EF1 � -IRES-YFP lentiviral vector. 

A similar subcloning procedure was performed to insert only the H1 promoter 

into the BamHI site of the EF1 � -IRES-YFP lentiviral vector as control. 

All constructs were verifi ed by restriction enzyme digestion analysis and 

DNA sequencing. 

 Lentiviral production was performed after a previously described proce-

dure ( 47 ). The titers of these concentrated viruses were measured with HeLa 

cells as  � 1  ×  10 8  infectious U/ml for the BCR-ABL virus and 2  ×  10 8  infec-

tious U/ml for control, AHI sh4, and AHI-1 viruses. Helper-free retrovirus 

was obtained by transfecting ecotropic Phoenix packaging cells ( 48 ) cultured 

in DMEM plus 10% fetal calf serum using the calcium-phosphate precipita-

tion method, as previously described ( 46 ). 

 Human primary cells and FACS sorting.   Peripheral blood was obtained 

from 23 CML patients who had elevated white blood cell counts (105  ×  10 9  

cells/liter to 420  ×  10 9  cells/liter) and had not been treated with any inhibi-

tors, 10 of whom subsequently developed IM resistance. CB cells were ob-

tained from mothers undergoing cesarean delivery of healthy, full-term 

infants. In all cases, informed consent was obtained, and the procedures used, 

including the Declaration of Helsinki protocol, were approved by the Re-

search Ethics Board of the University of British Columbia (Vancouver). 

 Lin  �  CD34 +  CB cells from six individuals were isolated using the Easy-

Sep cell separation kit (Stem Cell Technologies) according to the manufac-

turer ’ s instruction. The purity of the enriched cells was measured by FACS 

as  > 95%. FACS isolation of BaF3 cells, Sca-1 + lin  �   mouse BM cells, and 

K562 cells transduced with GFP, YFP, or GFP and YFP using a FACStar 

Plus or FACSVantage (BD Biosciences) was previously described ( 46 ). 

 Transduction of murine and human hematopoetic cells.   BM cells 

from 6 – 10-wk-old C57BL/6 mice were harvested 4 d after injection of 

150 mg/kg 5-FU. Low-density cells were isolated and cultured for 48 h in 

serum-free medium (SFM) supplemented with BIT (StemCell Technologies), 

to which 100 ng/ml mouse Steel Factor (SF; STEMCELL Technologies), 

10 ng/ml mouse IL-3 (StemCell Technologies), and 10 ng/ml human IL-6 

(Cangene) were also added. The BM cells, as well as IL-3 – dependent BaF3 

cells, were then collected and resuspended at 5  ×  10 5  cells/ml in VCS di-

luted 1:3 in DMEM containing 15% FCS, protamine sulfate (5  μ g/ml), and 

SF, IL-3, and IL-6 at the same concentrations as described above. BaF3 cells 

were cultured with IL-3 only. The cells were then transferred to Petri dishes 

that had been precoated with fi bronectin (Sigma-Aldrich) and preloaded 

with virus as previously described ( 46 ). 

 CD34 +  CB cells were prestimulated with a cocktail of cytokines and 

transduced with virus as previously described ( 25 ).  BCR-ABL  – transduced 

cells were sorted for GFP +  cells after 3 d of culture and sorted GFP + BCR-

ABL +  cells were retransduced with either control or AHI/sh4 virus. Cells 

transduced with only control or AHI/sh4 were cultured for 6 d before 

FACS sorting. The GFP + YFP +  cells (BCR-ABL + AHI-1/sh4 + ) were FACS-

sorted after 3 d of expansion. Lin  �  CD34 +  CML cells were prestimulated and 

transduced with either control or AHI/sh4 virus in a similar manner to that 

described for CB cells. After 3 – 4 d of expansion, YFP + CD34 +  cells were 

FACS sorted. 

 Cell culture.   FACS-sorted cells were cultured in SFM with or without 

GFs. At various time points, viable cell numbers were determined by hemo-

cytometer counts of trypan blue-excluding cells. For single cells sorting, 

YFP +  – transduced K562 cells were sorted into the wells of a 96 well plate by 

FACS. Subsequent clone formation (presence of  ≥ 2 refractile cells) and clone 

physical interaction between Ahi-1/AHI-1 and BCR-ABL 
is revealed based on their molecular structures ( 20, 43 ), which 
are compatible with specifi c protein – protein interactions. Ahi-1 
may interact with BCR-ABL through its SH3 domain or its 
SH3 binding sites (i.e., the SH3 domain of one protein inter-
acting with the SH3 binding sites of the other) or through the 
SH2 domain of BCR-ABL if Ahi-1 is tyrosine phosphory-
lated (Ahi-1 contains two potential tyrosine phosphorylation 
sites). In addition, Ahi-1 may bind to a SH2-containing pro-
tein that is a substrate of BCR-ABL, thus forming a complex, 
as it is known that BCR-ABL is extensively tyrosine-phos-
phorylated, providing numerous, potential docking sites for 
SH2 domain-containing proteins ( 44 ). Moreover, Ahi-1 may 
interact with multiple domains of BCR-ABL, as demonstrated 
by other BCR-ABL – interacting proteins ( 45 ). Although more 
detailed structural mapping will be required to defi ne specifi c 
protein – protein interactions between Ahi-1 and BCR-ABL, 
in association with JAK2, our fi ndings that coexpression of 
 Ahi-1  in  BCR-ABL  – transduced cells can completely rescue 
IM-induced suppression of cell growth in the presence of IL-3 
suggests that Ahi-1 may not be a direct substrate of the BCR-
ABL tyrosine kinase, but rather a modular protein that forms 
a stable protein interaction complex with other tyrosine phos-
phorylated proteins to mediate IL-3 – dependent BCR-ABL 
and JAK2 – STAT5 activities. In addition, this protein interac-
tion complex seems to be disrupted by suppression of tyrosine 
phosphorylation of BCR-ABL by IM. Studies are underway 
to defi ne how AHI-1 specifi cally interacts with BCR-ABL 
and JAK2. It was interesting to note that enhanced phosphory-
lation of Src was observed in  Ahi-1  coexpressed  BCR-ABL  –
 inducible cells in the presence of IL-3 ( Fig. 8 ), suggesting that 
other kinases are also activated with stimulation of IL-3 when 
BCR-ABL and AHI-1 are coexpressed. This fi nding also ex-
plains the observation that CML progenitor cells with sup-
pression of  AHI-1  experienced greater inhibition of CFC 
generation in response to dasatinib, a more potent TKI that 
also inhibits Src activity ( 14 ). 

 In conclusion, our studies demonstrate that Ahi-1/AHI-1 
is a novel BCR-ABL interacting protein that is also physically 
associated with JAK2. This AHI-1 – BCR-ABL – AK2 com-
plex seems to modulate BCR-ABL – transforming activity and 
TKI response/resistance of CML stem/progenitor cells through 
the IL-3 – dependent BCR-ABL and JAK2 – STAT5 pathway. 
These results suggest that a more promising potential thera-
peutic approach would be the combined suppression of BCR-
ABL tyrosine kinase activity, Ahi-1/AHI-1 expression, and 
JAK2 – STAT5 signaling. 

  MATERIALS AND METHODS  
 Retroviral and lentiviral vectors and virus production.   An MSCV-

Ahi-1-IRES-YFP retroviral vector was constructed by ligating a 3.5-kb 

fragment containing full-length  Ahi-1  cDNA ( 20 ) to the upstream IRES of 

the MIY vector. The MSCV-BCR-ABL-IRES-GFP ( BCR-ABL ) retroviral 

vector was constructed as previously described ( 46 ). To generate a BCR-

ABL lentiviral vector, the full-length  BCR-ABL  cDNA (J. Griffi  n, Dana 

Farber Cancer Institute, Boston, MA) was cloned into the pMNDU3-pGK-

eGFP lentiviral vector (D. Kohn, University of Southern California, Los 
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C-terminal monoclonal anti – Ahi-1 antibody (C-mAhi-1 M5) generated by 

a standard procedure as previously described ( 50 ), and polyclonal N-terminal 

AHI-1 antibody, IMX-3395 (IMGENEX). Relative expression levels were 

normalized to expression levels of human actin (Sigma-Aldrich) after quan-

tifi cation with ImageQuant software. The peptide competition assay was 

completed as per an online protocol (http://www.rockland-inc.com/commerce/

misc/methods) by Rockland Immunochemicals, Inc. 

 Animals.   NOD/SCID- � 2m  � / �   mice were bred and maintained in micro-

isolator cages and provided with autoclaved food and water. Mice were 

irradiated at 8 – 10 wk of age with 350 cGy  137 Cs  � -rays. Cells were injected 

into mice intravenously a few hours after they had been irradiated. Mice were 

monitored daily for signs of weight loss or lethargy. Peripheral blood was col-

lected every 1 – 2 wk, and leukocytes were analyzed by FACS as previously 

described ( 46 ). For tumor formation studies, 10 million cells were injected 

subcutaneously into the left and right fl ank of mice, and the mice were moni-

tored daily for the tumor growth. The tumor volume was calculated from the 

greatest transverse (width) and longitudinal (length) diameter of the tumor us-

ing the formula: tumor volume = length  ×  width 2 /2. All animal experiments 

were performed in the Animal Resource Centre of BC Cancer Research 

Centre, and the procedures used were approved by the Animal Care Commit-

tee of the University of British Columbia (Vancouver). 

 Statistical analysis.   Results are shown as the mean  ±  SEM of values ob-

tained in independent experiments. Diff erences between groups were as-

sessed using the Student ’ s  t  test for paired samples. 

 Online supplemental material.   Fig. S1 shows that overexpression of 

 Ahi-1  confers growth advantage on BaF3 cells and enhances eff ects of  BCR-

ABL  with increased protein expression and tyrosine phosphorylation of 

p210 BCR-ABL . Fig. S2 shows that  Ahi-1  and  BCR-ABL  – transduced cells 

purifi ed from BM cells of diseased mice have increased proliferative and 

antiapoptotic activities and these eff ects can be enhanced by  BCR-ABL . 

The online supplemental material is available at http://www.jem.org/cgi/

content/full/jem.20072316/DC1. 
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