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ABSTRACT Carbapenemase-producing Enterobacterales pose an increasing medical
threat. Combination therapy is often used for severe infections; however, there is little
evidence supporting the optimal selection of drugs. This study aimed to determine
the in vitro effects of polymyxin B combinations against carbapenemase-producing
Escherichia coli. The interactions of polymyxin B in combination with aztreonam, mero-
penem, minocycline or rifampin against 20 clinical isolates of NDM and OXA-48-group-
producing E. coli were evaluated using time-lapse microscopy; 24-h samples were
spotted on plates with and without 4� MIC polymyxin B for viable counts. Whole-ge-
nome sequencing was applied to identify resistance genes and mutations. Finally,
potential associations between combination effects and bacterial genotypes were
assessed using Fisher's exact test. Synergistic and bactericidal effects were observed
with polymyxin B and minocycline against 11/20 strains and with polymyxin B and
rifampin against 9/20 strains. The combinations of polymyxin B and aztreonam or mer-
openem showed synergy against 2/20 strains. Negligible resistance development
against polymyxin B was detected. Synergy with polymyxin B and minocycline was
associated with genes involved in efflux (presence of tet[B], wild-type soxR, and the
marB mutation H44Q) and lipopolysaccharide synthesis (eptA C27Y, lpxB mutations,
and lpxK L323S). Synergy with polymyxin B and rifampin was associated with
sequence variations in arnT, which plays a role in lipid A modification. Polymyxin B in
combination with minocycline or rifampin frequently showed positive interactions
against NDM- and OXA-48-group-producing E. coli. Synergy was associated with genes
encoding efflux and components of the bacterial outer membrane.

KEYWORDS carbapenem resistance, Gram-negative bacteria, combination therapy,
synergy, polymyxins

The increasing prevalence of carbapenemase-producing Enterobacterales is an
emerging threat worldwide. These bacteria are common causes of severe infec-

tions, such as sepsis, urinary tract infections, and hospital-acquired pneumonia, and
are difficult to treat due to their multidrug-resistant phenotypes (1–3). The last resort
antibiotics polymyxin B and E (colistin) remain active against most isolates and have
been widely used for these infections (4, 5). Although combination therapy is always
recommended based on observational clinical data (6), evidence is still scarce on the
optimal selection of companion drug.

In vitro synergy against carbapenemase-producing Enterobacterales has been shown
with polymyxins in combination with multiple other antibiotics (e.g., b-lactams, minocy-
cline, rifampin) (7–10). Most studies have addressed Klebsiella pneumoniae, and data are
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limited for Escherichia coli. The prevailing theory for the observed synergistic interactions
is that the polymyxin-induced membrane disruption increases the membrane permeabil-
ity, thereby facilitating entry of the second antibiotic (11, 12). Polymyxins may also act
by counteracting the function of membrane-associated efflux pumps (11). However, the
mechanisms of synergistic interaction remain largely unknown. Therefore, to date, the
activity of antibiotic combinations cannot be predicted based on antibiotic susceptibility
testing of single drugs or genetic characterization.

We previously evaluated automated time-lapse microscopy (the oCelloScope, BioSense
Solutions Aps, Farum, Denmark) as a screening tool for antibiotic combinations (13) and
reported synergy with several polymyxin B combinations against multidrug-resistant K. pneu-
moniae and Pseudomonas aeruginosa (9, 14). In the present study, we evaluated the effects
of polymyxin B in combination with aztreonam, meropenem, minocycline and rifampin
against 20 NDM- and OXA-48-producing E. coli in 24-h time-lapse microscopy experiments.
A spot assay in which 24-h samples were placed on plates with and without polymyxin B at
4� MIC was added to provide viability data and detect emerging subpopulations with
reduced susceptibility. All isolates were subjected to whole-genome sequencing to map
genes known to impact the susceptibility to the tested antibiotics. Finally, we explored
potential associations between the observed combination effects and bacterial genetics.

RESULTS
Antibiotic susceptibilities. All strains were intermediate to polymyxin B with MICs

of 0.5 mg/liter (Table 1). Only three strains were susceptible to aztreonam. Strains car-
rying blaNDM (blaNDM-1, blaNDM-5 and blaNDM-7) were resistant to meropenem, whereas
those carrying only blaOXA-48 –group carbapenemase genes (blaOXA-48 and blaOXA-181)
were classified as susceptible. Minocycline MICs varied greatly between the strains
(range 1–64 mg/liter) and rifampin MICs were mostly high (8 to 32 mg/liter).

Resistance genes and mutations. Polymyxin resistance genes mcr-1 – 10 were not
found in the strains. All strains harbored genes encoding carbapenemases: NDM (n = 13),
OXA-48-group enzymes (n = 5) or both (n =2) (Table 2). In addition, other b-lactamase
genes were present in all strains, most frequently blaTEM-1B (n = 15), blaCTX-M-15 (n = 14) and
blaOXA-1 (n = 11). Tetracycline efflux genes tet(A) (n = 8), tet(B) (n = 8) or tet(D) (n = 2) were
found in 18/20 strains. All eight strains harboring tet(B) and eight of nine strains with wild
type soxR (Table 3) had increased minocycline MICs ($8 mg/liter). An amino acid

TABLE 1MIC values (mg/liter) and classification of antibiotic susceptibilities according to CLSI breakpoint tables M100-ED30:2020a

Strain Carbapenemase

Polymyxins b-lactams Tetracyclines Rifamycins

PMB ATM MEM MIN RIF
ARU770 NDM-1 0.5 (I) .16 (R) .64 (R) 32 (R) 16 (NA)
ARU771 NDM-1 0.5 (I) .16 (R) 64 (R) 32 (R) 16 (NA)
ARU772 NDM-7 0.5 (I) .16 (R) 32 (R) 4 (S) 16 (NA)
ARU773 NDM-5 0.5 (I) 1 (S) 64 (R) 16 (R) 16 (NA)
ARU774 NDM-1 0.5 (I) .16 (R) .64 (R) 16 (R) 32 (NA)
ARU775 NDM-5 0.5 (I) .16 (R) .64 (R) 4 (S) 16 (NA)
ARU776 NDM-1 0.5 (I) .16 (R) .64 (R) 4 (S) 16 (NA)
ARU777 NDM-5 0.5 (I) .16 (R) 16 (R) 16 (R) 16 (NA)
ARU778 NDM-1 0.5 (I) .16 (R) 16 (R) 16 (R) 32 (NA)
ARU779 NDM-5 0.5 (I) .16 (R) .64 (R) 8 (I) 16 (NA)
ARU780 NDM-5 0.5 (I) 8 (I) 64 (R) 8 (I) 16 (NA)
ARU781 NDM-5 0.5 (I) .16 (R) .64 (R) 8 (I) 16 (NA)
ARU782 NDM-5 0.5 (I) .16 (R) 64 (R) 4 (S) 32 (NA)
ARU783 OXA-48 0.5 (I) #0.5 (S) 0.5 (S) 2 (S) 8 (NA)
ARU785 OXA-48 0.5 (I) .16 (R) 2 (S) 1 (S) 8 (NA)
ARU786 OXA-48 0.5 (I) #0.5 (S) 1 (S) 8 (I) 16 (NA)
ARU787 OXA-181 0.5 (I) .16 (R) 1 (S) 8 (I) 32 (NA)
ARU788 OXA-181 0.5 (I) .16 (R) 0.5 (S) 16 (R) 16 (NA)
ARU790 NDM-5, OXA-181 0.5 (I) .16 (R) 16 (R) 32 (R) 32 (NA)
ARU791 NDM-1, OXA-48 0.5 (I) .16 (R) 32 (R) 64 (R) 32 (NA)
aAbbreviations: S, susceptible; I, intermediate; R, resistant; NA, not available; ATM, aztreonam; MEM, meropenem; MIN, minocycline; PMB, polymyxin B; RIF, rifampin
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substitution in rpoB (G1261C) was identified in ARU790 but was not located in any region
known to cause resistance to rifampin (15).

Eleven strains had a sequence variation (T5N, n = 2), frameshift (n = 7) or a prema-
ture stop codon (n = 2) in acrR (Table 3). These genetic variations likely result in
increased expression of the AcrAB-TolC efflux pump (16), for which aztreonam, mero-
penem, minocycline and rifampin are known substrates (17–19). A mutation in the
AcrAB-TolC efflux regulatory gene soxS (A12S), previously reported to be associated
with resistance, was found in one strain (20). We identified additional mutations com-
monly encountered in clinical isolates but have not been shown to increase AcrAB-
TolC efflux activity alone: acrA (T104A, A167S and N221Y [21]), marR, (S3N, K62R, G103S
and Y137H) and soxR (A111T, T38S and G74R) (22). Several other mutations with
unknown effects were found in marB; the most frequent mutation was H44Q which
was found in 14/20 strains. In 19/20 strains, genes encoding the OmpC and OmpF por-
ins, that facilitate entry of b-lactams (3), were associated with sequence variations in
the b-sheet regions composing the porin channels (23, 24) (Table 3). Several amino
acid variations were identified in genes encoding enzymes involved in the synthesis or
modification of LPS, mainly in lpxB, lpxK, lpxH, arnT, and eptA (25) (Table 4). Moreover,
there was large variability in core oligosaccharide types, as determined based on the
waa locus (25, 26); R1 was most frequent (n = 8), followed by R4 (n = 5), R2 (n = 4) and
R3 (n = 3).

Time-lapse microscopy experiments. The most effective combination was poly-
myxin B and minocycline, showing a positive interaction against 11/20 strains (Fig. 1),
closely followed by polymyxin B and rifampin with 9/20 strains. For polymyxin B and
meropenem a positive interaction was seen against 3/20 strains. The combination of
polymyxin B and aztreonam was not superior to monotherapy at any of the tested con-
centrations when using the predefined cutoffs for bacterial growth (BCA .8 at 24 h
and SESAmax .5.8). Negative interaction by the combination in comparison to mono-
therapy was observed with polymyxin B in combinations with meropenem (ARU770,
ARU779, ARU781 and ARU788) and aztreonam (ARU788).

Spot assay. The spot assay showed synergistic and bactericidal effects with 22/23 com-
binations that indicated positive interactions in the time-lapse microscopy experiments
(Fig. 1). In addition, synergistic and bactericidal effects were detected with polymyxin B and
aztreonam against two strains (ARU780 and ARU786). No antibiotic carryover effect was
observed (data not shown). Growth on polymyxin B at 4� MIC after 24 h was detected for
267 of the 504 spots (53%) that grew on nonantibiotic-containing plates (Fig. 1). However,
in all but three cases, growth on 4� MIC polymyxin B was only 2 log10 CFU/ml (= the lower
limit of detection, LOD) and repeated susceptibility testing of 67 spots revealed no increase
in polymyxin B MICs indicating an inoculum effect (data not shown).

Associations between combination effects and bacterial genetics. Statistical
analysis using Fisher’s exact text showed that synergy with polymyxin B and minocy-
cline was significantly associated with the tetracycline efflux gene tet(B); synergy was
noted in 7/8 strains carrying this gene (P = 0.0281) (Table S1). In contrast, a negative
association was found for tet(A); synergy was only observed in 1/8 harboring this gene
(P = 0.0045). Statistically significant associations were also found when comparing wild
type to any mutation(s) in marB (P = 0.0081), marR (P = 0.0499) and soxR (P = 0.0098),
which are all involved in AcrAB-TolC efflux. On the mutation level, the marB mutation
H44Q was frequently associated with a synergistic effect (10/11, P = 0.04985) (Table
S2). No specific marR mutation was significantly associated with synergy. Reduced sus-
ceptibility to minocycline in strains carrying tet(B) (n = 8) or wild type soxR (n = 9) was
reversed in the presence of polymyxin B in 7 and 8 cases, respectively (Fig. 1C). In con-
trast, the soxR mutation A111T was negatively associated with synergy (1/11,
P = 0.0499). Moreover, sequence alterations in the lpxB (P = 0.0499) and lpxK
(P = 0.0499) genes, encoding enzymes involved in lipid A synthesis, were associated
with synergy (Table S3) (25). On the mutation level, the lpxK mutation L323S
(P = 0.0499) was present in 10/11 strains against which synergy was found, whereas
the eptA mutation C27Y showed a negative association (1/11, P = 0.0499).
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FIG 1 Results of time-lapse microscopy experiments and spot assay. For time-lapse microscopy experiments, wells with BCA .8 and SESAmax .5.8,
indicating a bacterial density of .106 CFU/ml at 24 h, are highlighted in gray and combinations showing positive interactions in the time-lapse
microscopy experiments are marked with a square. For spot assay, bacterial growth on MH-II plates at 24 h is presented in log10 CFU/ml and no
visible growth is set to 1 log10 CFU/ml (LOD = 2 log10 CFU/ml). Growth on 4� MIC polymyxin B is presented in parentheses. Synergistic and
bactericidal effect with the combination, as determined with the spot assay, is highlighted with “*” and antagonistic effect “1.”
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FIG 1 (Continued)
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No significant associations were noted for the polymyxin B and rifampin combina-
tion for genes encoding efflux, porin loss or enzymatic resistance. However, several
mutations in the arnT gene encoding a lipid A-modifying enzyme were positively asso-
ciated with synergy (P values ranging from 0.005 to 0.022) (Table S4). Because synergy
was rarely observed with polymyxin B and aztreonam or meropenem, statistical analy-
ses were not considered meaningful for these combinations.

DISCUSSION

In this study, positive interactions were frequently found with polymyxin B com-
bined with minocycline or rifampin against NDM- and OXA-48-group producing E. coli.

FIG 2 Changes in cell morphology during exposure to polymyxin B (PMB), aztreonam (ATM) and meropenem
(MEM) against NDM-producing Escherichia coli ARU786. Antibiotics were added to the indicated concentrations
(mg/liter). Images were obtained at 0, 1, 3, 6 and 24 h. The SESAmax and BCA (in parentheses) values are
presented below each image. Filamentation during exposure to aztreonam alone resulted in high BCA and
SESAmax values despite low viable counts.
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In contrast, according to the 24-h viable count data, combinations of polymyxin B and
aztreonam or meropenem showed synergy and a bactericidal activity only against 2/20
strains. Negligible resistance development against polymyxin B was identified with all
combinations. Although growth on polymyxin B at 4� MIC was often observed follow-
ing antibiotic exposure, bacterial concentrations were typically low (#2 log10 CFU/ml)
and no MIC elevations were detected. Therefore, we deduce that this observation likely
reflects an inoculum effect, which is of uncertain clinical relevance, rather than emer-
gence or selection of resistant subpopulations.

Importantly, nonsusceptibility to one or both constituent antibiotics does not preclude
a synergistic activity when combining the two drugs. Polymyxin B and minocycline per-
formed well in this study despite that all strains were intermediate to polymyxin B, and
most were intermediate or resistant to minocycline. To our knowledge, data on the activity
of this combination against Enterobacterales are scarce. However, polymyxin B was previ-
ously reported to induce 8-fold reductions in minocycline MICs inmcr-1 positive E. coli and
K. pneumoniae (8). Also, we recently reported synergy with this combination in time-kill
experiments against 4/5 K. pneumoniae producing NDM, KPC or OXA-48 enzymes, includ-
ing strains displaying phenotypic resistance to one or both drugs (9).

Gram-negative bacteria are intrinsically resistant to rifampin due to the inability of
this molecule to penetrate the bacterial outer membrane. Yet, polymyxin B and rifampin
showed synergy against 9/20 strains in this study. Our results are consistent with other
studies reporting positive interactions with polymyxins and rifampin. One study
observed a bactericidal activity with polymyxin B and rifampin against 2/5 KPC-produc-
ing E. coli (10) and we previously reported synergy with this combination against 4/5
NDM-, KPC- or OXA-48-producing K. pneumoniae (9). Another study showed synergy
with this combination against NDM- and MCR-1-producing polymyxin-resistant E. coli (7).

Our results indicate polymyxin B and meropenem has low synergistic potential
against NDM- and OXA-48-producing E. coli. Polymyxin-carbapenem combinations
have been widely recommended for severe infections caused by carbapenemase-pro-
ducing Enterobacterales (4, 6). Observational clinical data support the use of such com-
binations against KPC-producing K. pneumoniae with carbapenem MICs #8 mg/liter (4,
5). However, their efficacy against E. coli and strains producing non-KPC enzymes
remains uncertain as illustrated in this study. As new b-lactam/b-lactamase inhibitor
combinations become available, it is important to consider the bacterial genetic deter-
minants and strain-dependent differences in antibiotic susceptibility to the single
drugs and combinations. While meropenem-vaborbactam and imipenem-relebactam
are normally active against KPC-producing isolates (6), their use will be limited in areas
where other carbapenemases are predominant. Aztreonam is highly intriguing in this
context due to its stability to metallo-b-lactamases, such as NDM-1. Still, polymyxin B
and aztreonam failed to show positive interactions against most of the tested strains in
this study. To our knowledge, previous data on this combination is lacking for E. coli
and is scarce for K. pneumoniae (9, 27). Clearly, coadministration of polymyxin B was
generally not sufficient to circumvent enzymatic resistance in these strains, e.g., medi-
ated by CTX-M-15, which was produced by 14/20 strains and has high affinity for
aztreonam (2, 28).

We observed several biologically plausible and statistically significant associations
between the interactions of polymyxin B and minocycline and bacterial genetics. For
example, synergy was positively associated with genes involved in efflux, which can be
counteracted by the membrane-disrupting activity of polymyxin B. Statistically signifi-
cant associations were observed for mutant marB and marR. These genes regulate
AcrAB-TolC efflux, for which minocycline and multiple antibiotics (e.g., meropenem,
aztreonam and rifampin) are known substrates. The association with the marB muta-
tion H44Q likely results from reduced repression of marA, which in turn increases
AcrAB-TolC activity (1) (Table S2). While wild type soxR was positively associated with
reduced susceptibility to minocycline and a synergistic activity with the combination, a
negative association was found for soxR mutation A111T. This observation aligns with
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a previous study where this mutation was not associated with resistance to tetracycline
or other antibiotics (22).

Further, several sequence variations in genes involved in LPS synthesis or modifica-
tion showed statistically significant associations with enhanced activity of polymyxin B
and minocycline or rifampin in combination (25). These genetic variations might have
altered minocycline or rifampin permeability as well as polymyxin B targets. For the
minocycline combination, mutant lpxB and lpxK L323S were associated with synergy,
while the C27Y mutation in eptA was negatively associated with synergy. LpxB has a
role in the addition of a saccharide to the lipid A structure and LpxK catalyzes the addi-
tion of the phosphate group. The cation-linkages between phosphates of the lipid A
molecules are an important feature for membrane stability and the negatively charged
phosphate groups are also a target of polymyxin B (12). Interestingly, minocycline has
a potent antioxidant activity and can also directly chelate Ca21 which could also con-
tribute to synergy with polymyxins by displacing the cation-linkages (Ca21 and Mg21)
between two lipid A molecules and increase permeability (12, 29). Synergy with poly-
myxin B and rifampin was positively associated with mutations in arnT. Both ArnT and
EptA mediate additions of positively charged moieties to the phosphate groups, which
could alter polymyxin B activity (25).

The spot assay added information on CFU/ml reductions and enabled assessment
of resistance development during antibiotic exposure. The measurement of bacterial
concentrations with this assay is similar to standard time-kill experiments but has lower
resolution as individual colonies are not counted (only growth/no growth with a 1:10
dilution between spots) and a higher LOD of 2 log10 versus 1 log10 CFU/ml. Also, the
time-lapse microscopy method differs from time-kill experiments in that there is no
shaking during incubation and the total volume is lower (200 ml versus ca 2 ml) (13).
The agreement in results between the oCelloScope readout and spot assay was excel-
lent with the exception of aztreonam, for which filamentation complicates readout
using the available SESA and BCA algorithms (Fig. 2). Filament formation is associated
with b-lactam antibiotics targeting penicillin-binding protein 3 (PBP3), including
aztreonam, and was previously observed in time-lapse microscopy experiments with K.
pneumoniae and P. aeruginosa (9, 13, 14).

The extensive genetic characterization of resistance mechanisms and mutations, and
the assessment of their potential associations with the combination effects is a strength of
this study. However, we recognize that more research is needed to validate our findings
and determine causality. Combination therapy will remain important in the treatment of
multidrug-resistant pathogens to enhance bacterial killing and suppress emergence of re-
sistance, and further efforts to better understand the determinants of synergistic interac-
tions are needed. A range of clinically achievable drug concentrations was used to reduce
the risk of overlooking synergistic activity. However, in some cases positive interactions
were detected only at the highest drug concentrations, which may be associated with a
risk of toxicity in patients. As always, translation of in vitro findings to the clinical setting
must also be made with caution due to the absence of an immune system and other bio-
logical processes as well as differences in growth conditions.

In conclusion, we report positive interactions with polymyxin B combinations
against E. coli producing NDM and OXA-48-group carbapenemases, most frequently
with minocycline or rifampin. These combinations should be further explored in vitro
and in vivo to determine their therapeutic potential. Resistance genes or mutations
involved in efflux, LPS synthesis or modification and lipid A modification were associ-
ated with synergistic effect. Deciphering such associations between combination
effects and bacterial genetics is a first step toward understanding the mechanisms of
synergistic interactions, and may help inform individualized therapy tailored to the
infecting pathogen in future patients.

MATERIALS ANDMETHODS
Antibiotics and media. All antibiotics were purchased from Sigma-Aldrich (St. Louis, MO). Stock sol-

utions of 10,000 mg/liter were prepared by dissolving polymyxin B and meropenem in sterile water and
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aztreonam, minocycline and rifampin in DMSO. Cation-adjusted Mueller-Hinton (MH-II) (BD Diagnostics,
Sparks, MD, USA) broth and agar plates were used for all experiments.

Strains and antibiotic susceptibility testing. Twenty carbapenemase-producing E. coli isolates col-
lected from hospitalized patients in Oman during 2015 were used. The susceptibilities to polymyxin B,
meropenem, minocycline. and rifampin were tested with broth microdilution according to CLSI recom-
mendations (30). Aztreonam MICs were determined using the Sensititre Antimicrobial Susceptibility
Testing System (Trek Diagnostic Systems, Cleveland, OH) according to the manufacturer’s instructions.
Susceptibilities were interpreted using CLSI clinical breakpoints M100-ED30:2020 (31).

Genetic characterization. DNA was extracted with the MagNA Pure96 System (F. Hoffmann-La Roche,
Basel, Switzerland) followed by whole-genome sequencing using HiSeq 2500 (Illumina, San Diego, USA). De
novo assembly was accomplished using CLC Genomics Workbench (version 20). ResFinder 4.1 was employed
to identify acquired resistance genes, (32). Because all strains were susceptible, the search for polymyxin B re-
sistance genes was restricted to mcr. To identify variations in genes involved in AcrAB-TolC efflux (acrA, acrB,
acrR, tolC, marR, marA, marB, soxS, soxR, rob), porin-specific entry (ompC, ompF, ompR, envZ), LPS synthesis
(lpp, lpxA-D, lpxH, lpxK-M, lpxP, ftsH, lapB, arnT, eptA, pagP and the waa locus) and rifampin resistance (rpoB)
genes were aligned against E. coliMG1655 K-12 (NCBI Reference Sequence: NC_000913.3) and the core oligo-
saccharide type was determined based on the waa locus composition (25).

Time-lapse microscopy. Screening was performed using the oCelloScope instrument as previously
described (9, 13, 14). Briefly, bacteria in exponential growth phase were added to achieve starting inoc-
ula ;106 CFU/ml and a total volume of 200 ml per well in a flat-bottom 96-well microtiter plate (Greiner
Bio-One GmbH, Frickenhausen, Germany). The following clinically achievable drug concentrations were
used: polymyxin B, 0.25, 0.5, 1 and 2 mg/liter; aztreonam, 2, 8 and 64 mg/liter; meropenem, 2, 16 and
64 mg/liter; minocycline, 0.5, 4 and 16 mg/liter; and rifampin, 1, 8 and 32 mg/liter. If one of the single
antibiotics of a combination prevented bacterial growth at all these concentrations, a lower concentra-
tion range was used: polymyxin B, 0.125, 0.25, 0.5 and 1 mg/liter; aztreonam, 0.125, 0.5 and 2 mg/liter;
and meropenem, 0.125, 0.5 and 2 mg/liter. Quality control strains (E. coli ATCC 25922 for polymyxin B,
aztreonam and meropenem and Staphylococcus aureus ATCC 29213 for minocycline and rifampin) were
included in all experiments. The 96-well microtiter plate was incubated at 37°C and images of each well
were generated every 15 min for 24 h by the oCelloScope. Focus was set using the bottom search func-
tion, illumination level was set to 150, and image distance to 4.9 mm.

The Background Corrected Absorption (BCA) and Segmentation Extracted Surface Area (SESA) algorithms
of the UniExplorer software version 6.0.0 (Philips BioCell A/S, Allerød, Denmark) were used to determine bac-
terial density. The LOD was ;1 � 104 CFU/ml. A BCA value .8 and a maximum SESA value (SESAmax) .5.8
were used as cutoff values to indicate a bacterial density of .106 CFU/ml at 24 h (13). The combination was
considered to exhibit a positive interaction if BCA and SESAmax were below these cutoffs with the combina-
tion but not with any of the constituent single antibiotics at the same concentration. Conversely, the combi-
nation was considered to show a negative interaction if BCA and SESAmax were above the cutoff values with
the combination but not with the single antibiotics at the same drug concentrations.

Spot assay and population analysis. After completing the 24-h time-lapse microscopy experiments,
samples from each well were serially diluted in PBS and 10 ml aliquots were spotted on MH-II agar plates
with and without 2 mg/liter polymyxin B (4� MIC) (33). Bacterial growth was recorded after overnight
incubation at 37°C. The LOD was 2 log10 CFU/ml. No visible bacterial growth was recorded as 1 log10 CFU/
ml in the analysis of synergistic and bactericidal effects. Synergy was defined as$2-log10 CFU/ml reduction
in bacterial concentrations with the combination at 24 h compared with the most potent single antibiotic
(33). A bactericidal effect was defined as$ 3-log10 reduction in CFU/ml at 24 h compared with the starting
inoculum. A $1-log10 CFU/ml increase in bacterial concentrations with the combination compared to one
or both single antibiotics at the same drug concentration was classified as antagonism. Potential antibiotic
carryover effects were assessed by regular plating of 100 ml undiluted and 10-fold diluted samples, allow-
ing the sample to sink in before spreading. Two strains producing NDM-1 (ARU770) or OXA-48 (ARU783)
were randomly selected for MIC determination of all spots growing on 4� MIC plates after 24 h.

Statistical analyses. Potential associations between synergistic effects with an antibiotic combina-
tion and the presence of resistance genes and mutations in the tested strains were assessed by Fisher's
exact test using R (version 3.6.3). Resistance genes showing statistically significant associations, defined
as P , 0.05, were further explored to identify correlations between combination interactions and spe-
cific mutations in these genes.

Data availability. Whole-genome sequencing raw data (reads) were deposited in the Sequence
Read Archive (SRA) as project PRJNA544438 (accession numbers SRR9113453, SRR9113455-SRR9113460,
SRR9113462, SRR9113468, SRR9113469, SRR9113478-SRR9113487).
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