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Abstract

Predicting the drug-target interaction is crucial for drug discovery as well as drug repurposing. Machine learning is commonly used in
drug-target affinity (DTA) problem. However, the machine learning model faces the cold-start problem where the model performance
drops when predicting the interaction of a novel drug or target. Previous works try to solve the cold start problem by learning the
drug or target representation using unsupervised learning. While the drug or target representation can be learned in an unsupervised
manner, it still lacks the interaction information, which is critical in drug-target interaction. To incorporate the interaction information
into the drug and protein interaction, we proposed using transfer learning from chemical–chemical interaction (CCI) and protein–
protein interaction (PPI) task to drug-target interaction task. The representation learned by CCI and PPI tasks can be transferred
smoothly to the DTA task due to the similar nature of the tasks. The result on the DTA datasets shows that our proposed method has
advantages compared to other pre-training methods in the DTA task.
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Introduction
Predicting the drug-target interaction is an important
task in drug discovery and drug repurposing [40]. Exper-
imental assays provide a precise but expensive tool to
determine the binding affinity. On the other hand, com-
putational methods have gained attraction due to their
low cost and reasonable performance [17].

Over the years, many machine learning-based drug-
target affinity (DTA) prediction methods [9, 30–32] have
been proposed. However, these computational methods
face the cold-start challenge where the model perfor-
mance drops in novel drugs or targets, which are com-
mon in drug discovery or drug repurposing.

Pre-training is an effective method to handle the cold-
start problem. Pre-training helps the model to learn a
robust and generalized representation by tapping into a
huge amount of unlabeled and labeled data from other
relevant tasks. Because both chemicals and proteins can
be represented as sequences, language modeling is one
of the common pre-training tasks. Thanks to the huge
available unlabelled dataset, the model can learn the
internal structure arrangement, or in short, the gram-
mar of molecules and proteins by predicting the masked
tokens in the sequences. Other pre-training methods

such as pre-training graph neural networks, contrastive
learning can be either share the same principle as the
language model or use different schemes such as mutual
information. All the unsupervised pre-training methods
share the common strategy that exploits the relationship
among components of the structure or between struc-
ture classes. These components can vary significantly
across atoms, residues or functional groups. These rela-
tionships between components can help the model to
learn the meaningful representation of each token as
well as the whole sequence.

Even though the unsupervised pre-training can model
the intra-molecule interaction within the molecule or
protein to provide the contextual information in the
representation, it still lacks the inter-molecule interac-
tion information. By saying inter-molecule interaction,
we mean the interaction between the molecule or protein
with other entities. Because the essence of the drug-
target interaction is in the inter-molecule interaction, it
raises the question of whether the intra-molecule inter-
action information learned by the language model is
sufficient for the DTA task.

To incorporate the inter-molecule interaction into
the protein or molecule, we propose a transfer learn-
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Figure 1. Example of how information from PPI task can be transferred to DTA task. (A) Crystal structure of the complex of resistant strain of HIV-1
protease (v82a mutant) with Ritonavir. (B) The hydrogen bond in PPI at the protein interface. (C) The binding site of Ritonavir in the proximity of protein
interface.

ing framework called Chemical-Chemical Protein-
Protein Transferred DTA (C2P2). First, C2P2 transfers the
inter-molecule interaction knowledge learned from
chemical–chemical interaction (CCI) and protein–protein
interaction (PPI). Then we combine the inter-molecule
interaction with the intra-molecule interaction knowl-
edge to learn the drug-target interaction space.

PPI is the physical interaction between two or more
protein macro-molecules. This interaction is the result of
the electrostatics forces, hydrogen bonding or hydropho-
bic effect of the residues at the protein interface [22].
The properties of the protein interface such as size
and shape, complementary between surfaces, residue
interface propensities, hydrophobicity, segmentation,
secondary structure and structure flexibility [22]. Even
though the protein interface is usually viewed as large,
flat, featureless and usually described as undruggable [4,
5, 19], the PPI can reveal the effective drug-target binding
mode [15]. Previous works have taken advantage of PPI
in drug discovery [2, 6, 15]. In addition, the distribution
of the protein interface can indicate the distribution
of ligand-binding pocket. Previous work [16] shows
that in the protein–protein complex, the majority of
ligand binding pockets are with 6 Amstrong (Å) of the
protein interface. Looking at Figure 1, the hydrogen bond
between ARG8 and ASP29 in the protein–protein complex
(Figure 1b) also exists in the binding configuration with
Ritonavir. Therefore, the information from the protein–
protein can be beneficial for the drug-target interaction.

CCI is the interaction between two chemical entities.
The interaction can be derived from various ways such
as pathway databases, text mining, structure or activities
similarity [27]. The DTA model can benefit from CCI infor-
mation in many ways. Reaction pathway can describe
how closely two molecules are related in a successive
reaction chain and their association. Structure and activ-
ities similarity between two or more molecules can reveal
the core structure and their roles in the binding. Lig-
and sharing the same pharmacological action is usually
predicted to share the same target. CCI can provide infor-
mation for many related tasks such as toxicity, combina-
tion therapies effect, biological functions and drug-target
bindings [28] to speed up the drug discovery process [7].
In addition, amino acid alone is also a molecule. We

Figure 2. Chemical–chemical interaction provides external information
for drug-target binding. Both Imatinib and Dasatinib share the MeSH
pharmacological action ’Protein Kinase Inhibitors’ reported in the exper-
imental data of STITCH [27] database. The CCI report is generated by
STITCH database web server tool [27].

can formulate the residue–ligand interaction as a CCI
in which the interaction is the hydrogen bonding, Van
der Waals force or electrostatics (Figure 2). The physical
interaction between molecules, non-covalent or cova-
lent, may suggest their interaction with amino acids. In
this case, the information from the CCI task can be ben-
eficial for learning the residue-ligand interaction, thus
protein-ligand interaction.

Our contribution is 2-fold. First, we propose enhanc-
ing the drug-target interaction prediction framework
with not only inter-molecule interaction learned from
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language modeling but also intra-molecule interaction
learned from related tasks such as PPI and CCI. We
integrate the intra-molecule interaction information into
unsupervised pre-training to enhance the representation
in (DTA) task where understanding interaction is the key
factor. Second, we provide different ways to integrate
the learned intra-molecules information into sequence
representation and graph representation.

Related works
Learning protein representation
Sequence representation

Recent developments [12, 29] in natural language pro-
cessing allow the learning model to capture the contex-
tual relationship between tokens in the sequence from
a large amount of unlabeled sequence data to achieve
state-of-the-art performance on many tasks. The success
of the language modeling approach is transferred to
protein sequence modeling. TAPE [34] learns the protein
embedding using language model Transformer [12] with
31 million sequences from the Pfam dataset [13]. Rives
et al. [35] train the language model varying in size in
the same manner as TAPE on 250 million sequences of
UniRef [38] dataset. ProtTrans [14] uses auto-regressive
models (Transformer-XL, XLNet) and auto-encoder mod-
els (BERT, Albert, Electra, T5) to learn the protein embed-
ding from 2.1 billion protein sequences. In addition to the
language model, dilated-CNN and BiLSTM are also used
to perform the sequence encoding [33].

3D structure representation

In the sequential representation, the structure infor-
mation is lost. Another way to represent the protein is
using the exact 3D structure information, meaning using
the 3D coordinate to represent each residue. However,
acquiring the protein-folding information through exper-
imental methods such as X-ray can be time-consuming
or expensive. Therefore, several computational methods
are proposed [23, 24] to compute high-resolution protein
structures. The predicted 3D structure can be used
to construct the detailed protein surface using point
cloud [10] or multi-scale graph structure [36]. However,
predicting the atom’s coordinate with high accuracy
requires large computational resources. In addition,
encoding the whole protein structure to the atom
level may lead to sparse representation and inefficient
computational resource usage. Therefore, a more simple
representation can be beneficial.

Protein graph representation

To balance between 3D structural information and
simplicity, 2D representation via attributed graph can
be used. Previous works [21, 31] have been using protein
structure graph representation for DTA prediction. The
contact/distance map is used as the adjacency matrix
of an attributed graph where each node represents
a residue and edge represents the contact/distance

between residues. The node attribute can be simply a
one-hot encoding of residue type [21] or an embedding
vector of the residue obtained from the language model
[31].

Learning molecule representation
Sequence representation

The molecules can be represented as SMILES sequence.
Therefore, we can apply language modeling to learn
the embedding of the molecules. Recent works [8,
44] uses LSTM and Transformer to learn the SMILES
sequence representation of chemical space from over
77 million SMILES sequences of PubChem dataset [25].
Chemical SMILES language modeling is essentially an
atom level pre-training where the model can learn
the intra-interaction of the molecule. The molecule
SMILES sequence representation can also be merged
with structural information like fingerprint to have both
motifs and context dependency information [33].

Graph representation

Graph is the natural representation of the molecule in
which the atoms are nodes and bonds are edges. The
pre-training method on graph neural network allows
the model to capture the robust representation at atom
level and molecules level. On node level pre-training,
Weihua et al. [20] propose both node-level pre-training
via attribute masking and context prediction task and
graph-level pre-training via transfer learning from graph
attribute and graph structure prediction. On graph level
pre-training, InfoGraph [37] maximizes the mutual infor-
mation between supervised and unsupervised represen-
tation. Node level pre-training can help the model to
learn the intra-interaction and internal structure at atom
level while graph level pre-training allows the model to
learn a robust representation of graph structure within
the same molecule class.

Methods
DTA problem is predicting the binding affinity A between
a drug compound D and a protein P. Mathematically, the
DTA prediction problem can be formulated as a regres-
sion task, minimizing the loss function of the predicted
affinity value Fθ of drug-target pair (Pi, Di) and the actual
affinity value Y:

L(Pi, Di, Yi) = fL(Fθ (Pi, Di), Yi), (1)

where θ is model parameters of predicting function F
and fL is implemented loss function.

The cold start in DTA prediction is inferring the binding
affinity of drugs and proteins, which do not appear in the
training set. Formally, we define the cold start problem
for drugs (cold-drug) as follows. During the training time,
we train the model with the set of proteins Xp and drugs
Xd. During the testing time, we are given a set of new
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Figure 3. The framework architecture of the C2P2 model. First, the
protein encoder and drug encoder are trained with PPI task and CCI
task, respectively. Then pre-trained encoders are used for drug and target
encoding in the DTA model.

drugs Xnd = {xnd1 , ..., xndn}, xndi
�∈ Xd while the protein set

remains the same. Cold-target is similar but the model is
tested with new protein set Xnp = {xnp1 , ..., xnpn}, xnpi

�∈ Xp.
In this section, we present our framework to combine

the intra-molecule interaction from language modeling
with the inter-molecule interaction knowledge learned
from PPI and CCI tasks. In Sec. Overall framework , we
present the overall framework of C2P2, followed by
learning inter-molecule and intra-molecule interaction
with language modeling, CCI, and PPI task. Then Sec.
Integrating inter-molecule interaction into DTA model
introduces the combination of the inter-molecule and
intra-molecule interaction to predict the binding affinity.

Overall framework
The overall framework is presented in Figure 3. The goal
is to transfer the interaction learned from the source
domain, which is PPI and CCI task, to the target domain
DTA task. First, the protein and drug encoder is pre-
trained with PPI and CCI tasks. The benefits of pre-
training the protein and drug encoder with PPI and CCI
tasks are 2-fold: better generalization representation and
interaction-oriented representation. By better general-
ization representation, we mean that the encoder can
learn from a large amount of drug and protein samples
from PPI and CCI tasks. Interaction-oriented represen-
tation means that the encoder can learn the binding
interaction of many different drugs and proteins. Then
the pre-trained drug and target encoders are transferred
to the target domain DTA task to extract the drug and
target interaction-oriented representation. Finally, both
drug and target representation are combined to predict
the binding affinity.

Learning chemical inter-molecule interaction
space
In this section, we propose the framework to learn
the chemical inter-molecule interaction via the CCI

Table 1. Molecule feature vector

Feature Feature length

Element types 43
Degree 10
Number of hydrogens 10
Implicit valence 10
Aromatic 1

prediction task. The overall framework consists of
two main stsvg: learning molecule representation and
interaction inference. Our CCI model takes two chemical
SMILES sequences Ds1 and Ds2 as the inputs. The
molecule representations of two SMILES sequences can
be either graph representations (Sec. Graph representat-
ion of drug molecule) or language model representa-
tions (Sec. Molecule SMILES representation by language
modeling). Then both representations of Ds1 and Ds2 are
joined for CCI. By learning the CCI, our goal is pre-training
the molecule encoder to encode the interaction imbued
molecule representation.

Graph representation of drug molecule

Figure 4 shows the architecture of CCI task with a graph
neural network. Our CCI framework takes the graph
structure G1 and G2 of two molecules. The molecule graph
structure G1 has nodes representing the atoms and edges
representing the bonds.

G1 = (X1,A1) (2)

where X1 = [p1, ..., pN] is the node feature matrix of N
nodes where each node is represented by vector pi and
A ∈ R

N×N is the adjacency matrix that describes the
graph structure. The molecule graph structure G2 is also
constructed in the same manner.

The atom node feature X is its element type, degree,
number of Hydrogens, and implicit valence. The detail of
the feature vector of the molecule graph node is shown
in Table 1. The graph representation is learned using
graph isomorphism network (GIN) [45]. The graph neural
network updates the node feature vector by:

p(k)
v = MLP(k)((1 + ε(k)) · p(k−1)

v +
∑

u∈N (v)

p(k−1)
u ) ∈ R

C(k)
(3)

where ε(k) is a trainable parameter, MLP is a multi-layer

perceptron, p(k)
v ∈ R

C(k)
is the kth layer feature vector of

vth node, C(k) is the feature vector dimension at kth layer.
After kth GIN layers, we have the

P ′
d = {p′

i ∈ R
h1 | i ∈ 1, 2, . . . , S} as node features of

molecule graph, where S is the number of nodes in
the drug graph, h1 is the dimension of the node feature
vector. Then we use the max pooling operation followed
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Figure 4. Learning and enhancing the drug and protein representation from (A) SMILES sequence encoder, (B) protein sequence and (C) molecule graph
with interaction from CCI and PPI tasks.

by linear layers for feature projection:

p′
max = MaxPool(P ′

d), (4)

xd = (W0p′
max + b0)W1 + b1. (5)

where W0, b0 and W1 b1 are trainable weight and bias
of two linear layers. Finally, we obtain xd as the feature
vector of the drug molecule.

Molecule SMILES representation by language modeling

Figure 4 shows the architecture of enhancing the
molecule representation learned from the language
model with the interaction information. As the language
model tends to learn the internal arrangement (grammar
structure) which is essentially the internal interaction.
To enhance the language model representation with
molecule inter-molecule interaction information, we
fine-tune the language model on the CCI task.

Given the SMILES sequence Ds with length n, SMILES
sequence representation is extracted using the pre-
trained Transformer blocks. We use the BERT language
model named ChemBERTa pre-trained on SMILES
sequence [8].

Xs = BERT(Ds), Xs ∈ R
n×d (6)

where d is the dimension of the embedding vec-
tor. ChemBERTa uses the RoBERTa [29] Transformer
implementation. Transformer [41] is attention-based
architecture commonly used in language modeling. The
language modeling pre-training task is predicting the
masked character in the SMILES sequence. ChemBERTa
is trained on 10 million SMILES sequences from the
PubChem dataset. The ChemBERTa language model is
directly used as sequence feature extraction without any
fine-tuning. Then the sequence feature vector xs is the

average along feature vector:

xs = AVG(Xs), xs ∈ R
d (7)

Then the sequence representation xs is projected into
lower dimension using linear layer:

xd = (Wθd
xs + b), xd ∈ R

d′
, d′ < d (8)

where Wθd
and b are trainable weight and bias of linear

layer. The goal of the linear layer is to learn to extract
important features from the sequence representation
and reduce noise. The Transformer and projection matri-
ces in both branches are shared weight to reduce the
number of parameters.

Chemical–chemical prediction

The SMILES sequences from two chemical Ds1 and Ds2
are encoded into xd1 and xd2 by either the graph neural
network (Sec. Graph representation of drug molecule) or
the pre-trained language model (Sec. Molecule SMILES
representation by language modeling). Then both chem-
ical representations are joined with a simple concatenate
operator:

xdj = [xd1; xd2] (9)

Finally, the interaction is predicted with a classifier:

y = sigmoid(RELU(Wxdf + b)) (10)

where Wxdf and b are trainable weight and bias of linear
layer.

Learning protein inter-molecule interaction
space
Protein sequence representation by language modeling

Figure 4 presents the PPI prediction model. The goal is to
enhance the protein sequence representation learned by
the language model with the protein interaction. Given
two protein sequences Dp1 and Dp2 length n, the protein
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sequence embedding Xp is extracted by a protein lan-
guage model named ESM [35].

Xp = ESM(Dp), Xp ∈ R
n×d (11)

where d is the embedding dimension. ESM is an
attention-based Transformer [12] language model. ESM
is pre-trained with predicting masked tokens in the
protein sequence. ESM language model is pre-trained
on UniRef50 dataset [38]. Similar to SMILES sequence
representation in Eq. 6, we also directly use ESM protein
language model as a protein sequence feature extraction
without fine-tuning the language model. The protein
sequence embedding is averaged along dimension d:

xp = AVG(Xp), xp ∈ R
d, xp ∈ R

d′
, d′ < d (12)

The protein sequence representation xp is projected
into lower dimension using linear layer:

xp = (Wθpxs + b). (13)

Protein–protein interaction prediction

Given the two protein sequence representations xp1 and
xp2 of two input protein sequences p1 and p2, the joint
representation is:

xpj = [xp1; xp2] (14)

where [; ] is the concatenate operator. The p1 − p2 inter-
action is predicted by:

y = sigmoid(RELU(Wxpf + b)) (15)

where Wxpf and b trainable weight and bias of linear
layer.

Integrating inter-molecule interaction
into DTA model
After being pre-trained with CCI (Sec. Learning chemical
inter-molecule interaction space) and PPI task (Sec.
Learning protein inter-molecule interaction space), the
drug encoder f (Ds, θd) and protein encoder f (Dp, θp), where
θp and θd are model parameters, are used to encode the
protein and drug:

xp = f (Dp, θp) (16)

xd = f (Ds, θd) (17)

The protein-drug joint representation is:

xpdj = [xp; xd] (18)

Table 2. The train, valid and test set split for Davis and PDBBind
v2019.

Dataset Setting Split Number of sample

Davis Cold-target Train 15708
Valid 3877
Test 4964

Cold-drug Train 19006
Valid 4862
Test 6188

PDBBind v2019 Cold-target Train 9134
Valid 2282
Test 2595

Cold-drug Train 8927
Valid 2256
Test 2828

Finally, the binding affinity is predicted by:

ya = (W0xpdj + b0)W1 + b1 (19)

where W0, b0 and W1 b1 are trainable weight and bias of
two linear layers.

Experiments
Dataset
We use the STRING dataset [39] for the PPI task. The
STRING dataset is the protein–protein network database
from over 67.6 million proteins with over 20 billion
protein–protein pairs. The protein–protein association
includes text mining from literature, interaction exper-
iments, computational experiments and systematic
interaction transferring. As we only need the protein
physical interaction, we filter out other types of protein–
protein association such as text mining.

For the CCI task, we use the STITCH dataset [27]. The
dataset contains over 0.5 million chemicals with over 1.6
billion interactions. The chemical–chemical associations
are built from the experimental results from pathway
dataset, text mining from literature, structural similarity
and activities similarity. The drug encoder is pre-trained
by either full STITCH dataset or only experimental asso-
ciation.

For the DTA task, we conduct our experiments on two
popular DTA datasets: Davis [11] and PDBBind v2019 [42,
43]. In the DTA task, we test our proposed method in
cold-start settings, including cold-drug and cold-target.
We follow previous works [1, 47] on cold start splitting
process. In the cold drug setting, all drugs in the valida-
tion and test set are absent from the training set. In cold
target setting, all targets in the validation and test set are
absent from the training set. The train/valid/test split of
Davis and PDBBind v2019 are provided in Table 2

Benchmark
We use four benchmark methods to evaluate the
performance of extra-interaction transfer learning
on different representations. First, we compare our
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Table 3. Hyper-parameters in the experiments.

Hyper-parameters Value

Learning rate [0.0005:0.005]
Batch size [128; 256; 512; 1024]

proposed method with the previous SOTA method
GraphDTA [30]. GraphDTA uses CNN as protein encoder
and graph neural network as drug encoder. Then the
second benchmark method is ESMDTA which replaces
the CNN protein encoder with protein representation
pre-trained with protein language model ESM [35]. The
third benchmark is ChemBERTaDTA that replaces the
graph encoder with SMILES sequences language model
representation [8]. Finally, to evaluate with other graph
pre-training strategies, we compare our method with
Infograph pre-training method [37]. We evaluate the
model performance on the test set using Root Mean
Squared Error (RMSE), Pearson [3], Spearman [48] and
Concordance Index (CI) [18].

Implementation detail
Our methods are implemented using Pytorch. The
source code and data is available at https://github.
com/ngminhtri0394/C2P2. The hyper-parameters are
tuned using the validation set. The hyper-parameters
detail reported in Table 3. The results are reported on
the independent test set. The protein language model
ESM embedding dimension is d = 768, which is later
projected to d′ = 128 (Eq. 12). The ChemBERTa embedding
dimension d = 768 is projected to d′ = 128 (Eq. 8).
The model is trained with MSE loss using Adam
optimizer for 500 epochs. The number of GIN layers (Sec.
Graph representation of drug molecule) k = 5.

Results and Discussion
Inter-molecule interaction knowledge benefits
the DTA task
We demonstrate the advantages of transferring the inter-
molecule interaction learned from PPI and CCI tasks
to the DTA tasks in cold-drug and cold-target settings
across two benchmark datasets with balance distribu-
tion (PDBBind dataset) and long-tail distribution (Davis
dataset).

In the cold-target setting, we group the proposed
methods by the drug encoder and compare the perfor-
mance between models with and without PPI transfer
learning. Overall, the models with PPI transfer learning
show advantages compared with the models without
transfer learning. With the graph-based drug encoder
(GIN, GIN-CCI and Infograph), PPI enhanced models have
better overall performance compared to model using
only ESM feature. Looking at the language model-based
drug encoder, the combination of ChemBERTa as drug
encoder and ESM–PPI as protein encoder consistently
outperforms the model with only ESM as protein
encoder. However, combining ChemBERTa-CCI with

ESM feature outperforms ESM–PPI feature across two
datasets. This suggests some degree of incompatibility
between ChemBERTa-CCI and ESM–PPI in the cold-target
setting. In the end, in general, cooperating the intra-
molecule information learned from PPI task with a
protein language model such as ESM benefits the DTA
task performance.

Similar to the cold-target setting, for the cold-drug
setting, we group the proposed models by protein
encoder and compare the performance of models with
and without CCI transfer learning. Among graph-based
drug encoders, pre-training graph neural network with
CCI task outperforms Infograph pre-training and training
from scratch across two datasets and two types of
protein encoder. In case of language model-based drug
encoder, while pairing with ESM protein encoder, models
with CCI pre-training have better performance than
models without pre-training. However, ChemBERTa-CCI
and ESM–PPI show a certain degree of incompatibility
shown in lower performance than ChemBERTa and ESM–
PPI pair. Overall, integrating CCI information into DTA
models enhances the DTA model performance, especially
in graph representation.

It is worth noting that the impact of pre-training
encoder using auxiliary task CCI in cold-target is minimal
and vice versa. In the cold-target scenario, the drugs
in the test set are also in the training set. The encoder
has already learned the representation as well as the
interaction information of the test set’s drugs. As the
result, the external information from auxiliary task CCI
is redundant. This is also the case for PPI pre-training
in the cold-drug setting. To further verify this point, we
conduct our experiment in a warm setting in which drugs
and proteins in the test set are also in the training set.
The results from Tables 8 and 9 show the similarity in
the performance level of pre-trained and non-pretrained
models.

The performance of encoder architecture design is
reported in Table 10. For the CCI task, we follow the
evaluation process of previous work [46] and report
on CCI700, CCI800 and CCI900 dataset [46]. The per-
formance of sequence encoder ChemBERTa is quite
similar to graph encoder GIN in CCI700 and CCI800
and slightly better in CCI900. However, it is difficult
to conclude the correlation between the performance
in auxiliary tasks and the downstream tasks as many
factors are interfering with the performance such as data
distribution of pre-training and downstream dataset, the
DTA model design.

Protein–protein interaction knowledge enhances
protein language model representation
Figure 5 shows the t-SNE plot of protein embedding with
ESM encoder and ESM–PPI encoder using PDBBind cold-
target test set. We also annotate the plot with druggabil-
ity obtained from ‘NonRedundant dataset of Druggable
and Less Druggable binding sites’ (NRDLD) dataset [26].
In the PDBBind cold-target setting test set, the Glucarate

https://github.com/ngminhtri0394/C2P2
https://github.com/ngminhtri0394/C2P2
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Table 4. The performance of the different drug and protein encoder combinations on Davis dataset with the cold-target setting. The
X-Y drug or protein encoder means that the base model is X and pre-trained with Y task. PPI, CCI and Infograph are pre-training with
PPI, CCI task or Infograph unsupervised training. In this experiment, we compare the protein encoder ESM with (ESM–PPI) and without
PPI pre-training (ESM) in the same drug encoder setting to demonstrate the effectiveness of PPI pre-training in cold-target scenario.
The numbers in bold indicate the top performance within the same drug encoder.

Drug encoder Protein encoder RMSE Pearson Spearman CI

GIN [30] CNN [30] 0.696 0.548 0.439 0.733
(0.009) (0.013) (0.025) (0.013)

GIN [30] ESM [35] 0.708 0.579 0.493 0.764
(0.011) (0.012) (0.017) (0.01)

ESM-PPI (Ours) 0.676 0.589 0.506 0.771
(0.008) (0.014) (0.014) (0.007)

GIN-CCI (Ours) ESM [35] 0.741 0.565 0.454 0.742
(0.009) (0.016) (0.017) (0.01)

ESM-PPI (Ours) 0.684 0.583 0.492 0.763
(0.009) (0.012) (0.015) (0.008)

ChemBERTa [8] ESM [35] 0.784 0.54 0.41 0.718
(0.01) (0.01) (0.013) (0.007)

ESM-PPI (Ours) 0.675 0.589 0.497 0.765
(0.01) (0.013) (0.02) (0.011)

ChemBERTa-CCI (Ours) ESM [35] 0.733 0.557 0.493 0.763
(0.004) (0.004) (0.007) (0.004)

ESM-PPI (Ours) 0.686 0.581 0.508 0.772
(0.006) (0.009) (0.009) (0.005)

Infograph [37] ESM [35] 0.718 0.58 0.481 0.757
(0.006) (0.01) (0.011) (0.006)

ESM-PPI (Ours) 0.67 0.601 0.517 0.777
(0.01) (0.01) (0.015) (0.009)

Table 5. The performance of the different drug and protein encoder combinations on PDBBind dataset with the cold-target setting.
The X-Y drug or protein encoder means that the base model is X and pre-trained with Y task. PPI, CCI and Infograph are pre-training
with PPI, CCI task or Infograph unsupervised training. In this experiment, we compare the protein encoder ESM with (ESM–PPI) and
without PPI pre-training (ESM) in the same drug encoder setting to demonstrate the effectiveness of PPI pre-training in cold-target
scenario. The numbers in bold indicate the top performance within the same drug encoder.

Drug encoder Protein encoder RMSE Pearson Spearman CI

GIN [30] CNN [30] 1.638 0.576 0.575 0.704
(0.034) (0.02) (0.025) (0.009)

GIN [30] ESM [35] 1.702 0.614 0.642 0.732
(0.045) (0.057) (0.035) (0.016)

ESM-PPI (Ours) 1.397 0.708 0.699 0.757
(0.012) (0.006) (0.006) (0.003)

GIN-CCI (Ours) ESM [35] 1.473 0.686 0.682 0.747
(0.013) (0.009) (0.007) (0.003)

ESM-PPI (Ours) 1.394 0.715 0.703 0.759
(0.007) (0.003) (0.005) (0.002)

ChemBERTa [8] ESM [35] 1.487 0.689 0.684 0.748
(0.023) (0.015) (0.012) (0.006)

ESM-PPI (Ours) 1.461 0.695 0.688 0.750
(0.013) (0.009) (0.008) (0.004)

ChemBERTa-CCI (Ours) ESM [35] 1.395 0.709 0.697 0.756
(0.01) (0.004) (0.004) (0.002)

ESM-PPI (Ours) 1.390 0.712 0.700 0.758
(0.007) (0.005) (0.005) (0.002)

Infograph [37] ESM [35] 1.597 0.634 0.639 0.729
(0.01) (0.008) (0.01) (0.004)

ESM-PPI (Ours) 1.395 0.710 0.699 0.758
(0.015) (0.007) (0.008) (0.004)

Dehydratase (PDB:1ec9) is labeled as undruggable [26].
We can observe the clear distribution of druggable and
undruggable protein in the embedding space of ESM–
PPI protein encoder. We hypothesize that the knowledge

learned from PPI task can assist the druggability predic-
tion. To verify this hypothesis, we use the ESM or ESM–
PPI as the input for simple SVM model for druggability
classification. We use the NRDLD dataset [26] for training
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Table 6. The performance of the different drug and protein encoder combinations on Davis dataset with the cold-drug setting. The X-Y
drug or protein encoder means that the base model is X and pre-trained with Y task. PPI, CCI and Infograph are pre-training with PPI,
CCI task or Infograph unsupervised training. In this experiment, we compare different types of drug encoders using the same protein
encoder (ESM and ESM–PPI) to demonstrate the effectiveness of CCI pre-training in cold-drug scenario. We also group the models
based on drug encoder type (graph based GIN and sequence based ChemBERTa) to further investigate the impact of CCI pre-training
on molecule graph representation as well as SMILES sequence representation. The numbers in bold indicate the top performance
within the same protein encoder and same drug encoder representation type (graph-based GIN and sequence-based ChemBERTa).

Protein encoder Drug encoder RMSE Pearson Spearman CI

CNN [30] GIN [30] 0.905 0.480 0.428 0.705
(0.024) (0.03) (0.035) (0.017)

ESM [35] GIN [30] 1.011 0.475 0.407 0.695
(0.07) (0.081) (0.088) (0.043)

Infograph [37] 0.970 0.530 0.392 0.688
(0.021) (0.024) (0.046) (0.022)

GIN-CCI (Ours) 0.927 0.501 0.436 0.710
(0.028) (0.042) (0.03) (0.015)

ChemBERTa [8] 1.048 0.433 0.358 0.671
(0.031) (0.071) (0.053) (0.027)

ChemBERTa-CCI (Ours) 0.982 0.502 0.441 0.712
(0.032) (0.015) (0.021) (0.01)

ESM-PPI (Ours) GIN [30] 0.985 0.496 0.416 0.699
(0.039) (0.049) (0.087) (0.043)

Infograph [37] 0.949 0.488 0.44 0.712
(0.019) (0.034) (0.05) (0.025)

GIN-CCI (Ours) 0.907 0.526 0.463 0.723
(0.028) (0.044) (0.041) (0.021)

ChemBERTa [8] 1.02 0.431 0.342 0.663
(0.033) (0.048) (0.026) (0.013)

ChemBERTa-CCI (Ours) 0.971 0.506 0.448 0.716
(0.044) (0.027) (0.033) (0.016)

Table 7. The performance of the different drug and protein encoder combinations on PDBBind dataset with the cold-drug setting. The
X-Y drug or protein encoder means that the base model is X and pre-trained with Y task. PPI, CCI and Infograph are pre-training with
PPI, CCI task or Infograph unsupervised training. In this experiment, we compare different types of drug encoders using the same
protein encoder (ESM and ESM–PPI) to demonstrate the effectiveness of CCI pre-training in cold-drug scenario. We also group the
models based on drug encoder type (graph based GIN and sequence based ChemBERTa) to further investigate the impact of CCI
pre-training on molecule graph representation as well as SMILES sequence representation. The numbers in bold indicate the top
performance within the same protein encoder and same drug encoder representation type (graph-based GIN and sequence-based
ChemBERTa).

Protein encoder Drug encoder RMSE Pearson Spearman CI

CNN [30] GIN [30] 1.495 0.643 0.631 0.728
(0.024) (0.015) (0.015) (0.006)

ESM [35] GIN [30] 1.622 0.588 0.611 0.718
(0.061) (0.036) (0.012) (0.006)

Infograph [37] 1.599 0.610 0.617 0.722
(0.017) (0.013) (0.013) (0.006)

GIN-CCI (Ours) 1.443 0.683 0.667 0.742
(0.015) (0.007) (0.004) (0.002)

ChemBERTa [8] 1.446 0.683 0.664 0.741
(0.013) (0.009) (0.007) (0.004)

ChemBERTa-CCI (Ours) 1.389 0.695 0.677 0.747
(0.011) (0.01) (0.005) (0.004)

ESM-PPI (Ours) GIN [30] 1.629 0.587 0.613 0.719
(0.046) (0.022) (0.016) (0.007)

Infograph [37] 1.591 0.609 0.617 0.721
(0.015) (0.009) (0.009) (0.004)

GIN-CCI (Ours) 1.438 0.686 0.669 0.743
(0.02) (0.01) (0.007) (0.004)

ChemBERTa [8] 1.423 0.689 0.668 0.743
(0.011) (0.006) (0.005) (0.002)

ChemBERTa-CCI (Ours) 1.387 0.692 0.678 0.747
(0.01) (0.005) (0.005) (0.002)
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Table 8. The performance of the different drug and protein encoder combinations on Davis dataset with the warm setting. The X-Y
drug or protein encoder means that the base model is X and pre-trained with Y task. PPI, CCI and Infograph are pre-training with PPI,
CCI task or Infograph unsupervised training. In this experiment, we compare the protein encoder ESM with (ESM–PPI) and without PPI
pre-training (ESM) in the same drug encoder setting to demonstrate the effectiveness of PPI pre-training in cold-target scenario. The
numbers in bold indicate the top performance within the same drug encoder.

Drug encoder Protein encoder RMSE Pearson Spearman CI

GIN [30] CNN [30] 0.506 0.825 0.69 0.883
(0.005) (0.003) (0.006) (0.003)

GIN [30] ESM [35] 0.476 0.848 0.706 0.895
(0.004) (0.002) (0.003) (0.002)

ESM-PPI (Ours) 0.476 0.847 0.703 0.893
(0.005) (0.003) (0.004) (0.002)

GIN-CCI (Ours) ESM [35] 0.477 0.847 0.701 0.892
(0.004) (0.003) (0.006) (0.004)

ESM-PPI (Ours) 0.477 0.847 0.697 0.89
(0.003) (0.002) (0.005) (0.003)

ChemBERTa [8] ESM [35] 0.483 0.844 0.7 0.891
(0.005) (0.003) (0.005) (0.003)

ESM-PPI (Ours) 0.481 0.844 0.7 0.891
(0.003) (0.002) (0.004) (0.002)

ChemBERTa-CCI (Ours) ESM [35] 0.481 0.843 0.703 0.893
(0.004) (0.003) (0.005) (0.003)

ESM-PPI (Ours) 0.479 0.845 0.704 0.893
(0.004) (0.003) (0.005) (0.003)

Infograph [37] ESM [35] 0.476 0.848 0.705 0.895
(0.004) (0.002) (0.005) (0.003)

ESM-PPI (Ours) 0.473 0.85 0.706 0.895
(0.003) (0.002) (0.004) (0.002)

Table 9. The performance of the different drug and protein encoder combinations on PDBBind dataset with the Warm setting. The X-Y
drug or protein encoder means that the base model is X and pre-trained with Y task. PPI, CCI, and Infograph are pre-training with PPI,
CCI task, or Infograph unsupervised training. In this experiment, we compare the protein encoder ESM with (ESM-PPI) and without PPI
pre-training (ESM) in the same drug encoder setting to demonstrate the effectiveness of PPI pre-training in cold-target scenario. The
numbers in bold indicate the top performance within the same drug encoder.

Drug encoder Protein encoder RMSE Pearson Spearman CI

GIN [30] CNN [30] 1.6469 0.601 0.595 0.713
(0.013) (0.006) (0.008) (0.003)

GIN [30] ESM [35] 1.521 0.671 0.68 0.748
(0.014) (0.005) (0.006) (0.002)

ESM-PPI (Ours) 1.515 0.671 0.682 0.749
(0.015) (0.01) (0.008) (0.004)

GIN-CCI (Ours) ESM [35] 1.519 0.679 0.687 0.751
(0.013) (0.005) (0.004) (0.002)

ESM-PPI (Ours) 1.509 0.683 0.69 0.753
(0.011) (0.004) (0.003) (0.002)

ChemBERTa [8] ESM [35] 1.584 0.657 0.662 0.741
(0.018) (0.007) (0.006) (0.003)

ESM-PPI (Ours) 1.586 0.656 0.665 0.743
(0.013) (0.006) (0.005) (0.002)

ChemBERTa-CCI (Ours) ESM [35] 1.499 0.676 0.678 0.747
(0.015) (0.007) (0.007) (0.003)

ESM-PPI (Ours) 1.502 0.672 0.675 0.746
(0.016) (0.007) (0.007) (0.003)

Infograph [37] ESM [35] 1.534 0.669 0.681 0.748
(0.015) (0.008) (0.007) (0.003)

ESM-PPI (Ours) 1.527 0.666 0.68 0.748
(0.014) (0.005) (0.004) (0.002)

and validation. The result (Table 11) indicates that the
knowledge learned from PPI task can help the model
learn the druggability of protein, thus assisting the DTA
task.

Looking back to the complex of resistant strain of
HIV-1 protease (v82a mutant) with Ritonavir in Sec.
Introduction, we compare the performance of model
using only ESM and model with PPI transfer learning and
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Figure 5. The T-sne plot of protein embedding of (A) ESM (B) ESM–PPI. Proteins are annotated with druggability, which is white text for non-druggable
and yellow text for druggable protein. The druggability information is obtained from NRDLD dataset [26]. Each dot represents a protein in a drug-target
pair in the PDBBind dataset. The low-affinity drug-target pair is in blue and the high-affinity pair is in red.

Table 10. The performance of the drug encoder and protein
encoder architecture on chemical-chemical interaction and
protein-protein interaction tasks.

Task Dataset Encoder Accuracy AUC AUPR

CCI CCI700[46] GIN 0.964 0.993 0.993
ChemBERTa 0.962 0.993 0.992

CCI800[46] GIN 0.944 0.985 0.984
ChemBERTa 0.95 0.988 0.986

CCI900[46] GIN 0.868 0.935 0.922
ChemBERTa 0.885 0.952 0.943

PPI STRING[39] ESM 0.758 0.878 0.725

Table 11. The result of druggability classification on NRDLD
dataset [26] using ESM and ESM-PPI features with a simple SVM
model. The result shows that ESM-PPI clusters the druggability,
thus improving SVM model performance.

Protein encoder Precision Recall F1 Accuracy

ESM 0.6803 0.8028 0.7349 0.6434
ESM-PPI 0.6979 0.8742 0.7733 0.6869

Table 12. The prediction of ESM and ESM-PPI model for the
resistant strain of HIV-1 protease (v82a mutant) with Ritonavir.

Protein encoder Predicted affinity Error

ESM 7.2532 1.1532
ESM-PPI 6.9038 0.8038

ESM (ESM–PPI). The results in Table 12 shows that model
with PPI transfer learning has a lower error rate than the
model without PPI transfer learning. This implies that
knowledge of protein interface and PPI integrates well
into the DTA model.

Integrating different types of CCI improves
the DTA prediction model performance
The CCI in STITCH dataset [27] consists of not only
interaction from experimental data but also interaction
in a sense of similarity between activities or structure
and literature text co-occurrence. The number of exper-
imental data is only a small proportion of full CCI data.
We hypothesize that not only the experimental interac-
tion but also other types of interaction are useful for
pre-training tasks. The results in Table 13 and 14 show
that pre-training with all types of CCI outperforms pre-
training with only experimental data by a large margin.
This suggests drug structure and activities similarity,
as well as text co-occurrence can also provide useful
information for DTA task.

Conclusions and Future work
In conclusion, migrating the cold-start problem in DTA
prediction requires external knowledge from labeled and
unlabeled data. Unsupervised learning such as language
modeling learns the intra-molecule interaction and inter-
nal structure representation of the proteins and drugs
from unlabeled data. The drugs and proteins represen-
tation are then imbued with inter-molecule interaction
learned from similar tasks such as PPI and CCI. The
PPI can provides knowledge regarding protein surface,
activity, druggability. The CCI provides common phar-
macological action, similarity in structure and targets.
Combining both intra-molecule interaction and inter-
molecule interaction information allows more robust
drug and protein representation to deal with the cold-
start problem. In addition, interactions curated from dif-
ferent resources such as text mining are also useful for
learning interaction knowledge.
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Table 13. The performance of the DTA model on Davis dataset with drug encoder pre-trained with only experimental interaction CCI
and drug encoder pre-trained with all types of interaction available in the stitch STITCH dataset.

Protein encoder Drug encoder Pretrain RMSE Pearson Spearman CI

ESM GIN-CCI Full 0.8755 0.575 0.5034 0.743
Exp 0.98 0.3588 0.4275 0.707

ChemBERTa-CCI Full 0.9146 0.5259 0.4485 0.7171
Exp 1.07 0.346 0.3664 0.6769

ESM-PPI GIN-CCI Full 0.8841 0.5564 0.4741 0.7299
Exp 1.0398 0.3595 0.3706 0.6753

ChemBERTa-CCI Full 0.9171 0.4906 0.4216 0.7034
Exp 0.9181 0.4774 0.4087 0.6956

Table 14. The performance of the DTA model on PDBBind dataset with drug encoder pre-trained with only experimental interaction
CCI and drug encoder pre-trained with all types of interaction available in the stitch STITCH dataset.

Protein encoder Drug encoder Pretrain RMSE Pearson Spearman CI

ESM GIN-CCI Full 1.3484 0.7236 0.7025 0.7603
Exp 1.4053 0.6927 0.6638 0.7441

ChemBERTa-CCI Full 1.3653 0.7059 0.6798 0.7498
Exp 1.3816 0.7012 0.6696 0.7454

ESM-PPI GIN-CCI Full 1.3379 0.7282 0.7039 0.7618
Exp 1.4789 0.6672 0.6482 0.7351

ChemBERTa-CCI Full 1.3735 0.7009 0.6800 0.75
Exp 1.3627 0.7112 0.6835 0.751

PPI is a complex interaction. Our framework focus
on protein sequence learned from the language model.
Because the protein is represented as a sequence, the
information on protein structure and the binding site is
lost. Therefore, proteins with multiple interaction sites
and binding configurations are not considered during the
PPI pre-training. Modeling the exact interaction between
two proteins requires surface and structure information
reflected in the protein encoding architecture such as
graph or cloud points. Learning PPI with more dedicated
architecture could potentially benefit not only DTA task
but other tasks such as druggability as well. In addition,
the number of the high resolution of protein–protein
3D structures is limited. Using solely protein–protein
3D information for pre-training may lower the benefits
of pre-training. However, with the advance in structure
prediction, e.g. AlphaFold [23], more 3D structure data
become available that will open up opportunities for pre-
training techniques.

Key Points

• We have proposed a deep learning DTA framework
that uses inter-molecule interaction information learned
from unsupervised language model and intra-molecule
interaction learned from auxiliary tasks to deal with cold
start problem.

• The representation learned by unsupervised pre-training
tasks can be further enhanced by auxiliary tasks to
encourage the model to learn the key features relevant
to the task of interest.

• Knowledge regarding protein surface, activity, druggabil-
ity from protein–protein interaction and common phar-
macological action, similarity in structure and targets

from chemical–chemical interaction allows more robust
drug and protein representation to deal with cold-start
problem.

• Interactions curated from different resources such as
text mining and experimental results are useful for
learning interaction knowledge.
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