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A B S T R A C T   

In recent years, there has been a notable surge in research focusing on the use of natural fiber- 
reinforced polymer composites (NFRPCs) in the automobile industry. These materials offer 
several advantages over their synthetic counterparts, including lightweight properties, renew-
ability, cost-effectiveness, and environmental friendliness. This increasing research interest in 
NFRPCs within the automotive sector is primarily aimed at overcoming the challenges that have 
thus far limited their industrial applications when compared to conventional synthetic compos-
ites. This paper provides a comprehensive overview of the potential applications and sustain-
ability of lignocellulosic-based NFRPCs in the automobile industry. It examines the current state 
of knowledge, identifies research needs and existing limitations, and provides insights into future 
perspectives. This review shows that, while lignocellulosic fibers hold great promise as sustain-
able, high-performance, and cost-effective alternatives to traditional reinforcing fibers, contin-
uous research is needed to further address issues such as fiber-matrix compatibility, processing 
techniques, long-term durability concerns, and general property improvement. These advance-
ments are essential to meet the increasing performance demand for eco-friendly, renewable, and 
energy-efficient materials in automotive design.   

1. Introduction 

Natural fibers are renewable organic materials produced from plants, animals, or minerals and are mainly used as sustainable 
sources of materials for both industrial and domestic purposes [1,2]. They are considered one of the largest sources of materials for 
sustainable energy generation and composite production because of their eco-friendly nature, renewability, biodegradability, and 
lower cost [3–5]. Reports have shown that over 998 million tons of agricultural-related by-products are produced annually from global 
agricultural activities. This is likely to increase significantly in the coming years as most developing countries continue to intensify 
their farming systems [6,7]. This large volume of waste materials can be converted into useful products for energy production and 
other applications [8]. Lignocellulosic-based agricultural resources are promising sources of raw materials with attractive attributes 
for large-scale industrial applications if properly harnessed, especially in areas requiring renewable materials for economic trans-
formation and sustainability [9]. Recent awareness of environmental impact management and the increasing demand for lightweight 
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and energy-efficient vehicles has led to the exploration of natural-based materials as integral components in automobile production 
[10]. The use of lignocellulosic fibers sometimes referred to as vegetable fibers or plant-based fibers in composite production for 
critical applications such as automotive, has displayed great potential for lowering greenhouse gas emissions and reducing fuel 
consumption, owing to their carbon dioxide neutrality and lightweight nature, respectively [11–13]. In response to the rapid growth of 
the world’s population, new government regulations and policies on climate issues, fear of the future disappearance of 
petroleum-derived products and other non-renewable mineral resources due to their high rate of depletion, have generated intensive 
research efforts toward producing eco-friendly and cost-effective natural products for industrial applications [14,15]. 

Lignocellulosic fibers are extracted directly from either the primary plants (e.g., sisal, jute, hemp, bamboo, etc) or from the waste 
products of various agricultural processing of secondary plants (e.g., pineapple, banana, coconut, cotton, etc) [16]. They are the most 
widely studied by industries and research communities when compared to other types of natural fibers. This is due to their unique 
characteristics such as renewability, eco-friendliness, availability, low cost, and most importantly, acceptability [17–19]. Applications 
of fibers obtained from animal sources are often restricted by laws, whereas the use of mineral fibers such as asbestos is generally 
prohibited by many countries because of the high risks of exposure associated with human health [20,21]. Hence, both animal and 
mineral fibers are not covered in this overview. 

Exploring the potential of natural fibers as reinforcing materials for biocomposite development has witnessed enormous research 
interest in recent times because of their attractive features and advantages over synthetic fiber-reinforced composites. However, 
despite all the attractive characteristics of natural fibers, they are still less competitive with synthetic fibers as reinforcement materials 
in the composite global market, owing to their limited properties, wide variation in fiber quality, poor fiber/polymer compatibility, 
and high-water absorption characteristics [22,23]. Several studies have been conducted to address these prevalent challenges of 
natural fibers to improve their properties as well as their applicability, particularly in composite production and utilization [24–27]. 
Some of the approaches that have been reported include developing a new fiber extraction and processing technique, identification and 
utilization of different fiber treatment methods, exploration of different natural fibers and fiber contents [28,29]. Studies have shown 
that fiber types, fiber treatment, and fiber extraction methods are the major parameters that are often considered during the production 
of natural fiber-reinforced polymer matrix composites for property enhancement, especially the mechanical properties and thermal 
stability of the products [30–32]. Singh et al. [31] found that the surface treatment of natural fibers leads to a considerable increase in 
the tensile and flexural strength of a polymer-based composite reinforced with jute, banana, and sisal fibers. Maya et al. [33] 
investigated the effects of chemical treatment on sisal/oil palm-reinforced natural rubber hybrid composites using both alkaline and 
silane treatment processes and concluded that composites containing chemically treated fibers possess better mechanical properties 
than untreated fibers. Bezazi et al. [34] used two novel extraction techniques for agave fiber extraction. In the first technique, the 
Agave leaves were buried in the soil at a depth of 30–40 cm for 90 days, whereas in the second method, the leaves were completely 
immersed in an air-tight container for approximately 2 weeks, after which they were removed and gently scraped off the outer 
non-fibrous parts to separate the fibers. The mechanical properties and performance of the fibers obtained using both extraction 
methods were then studied. The outcome of the study shows that there was a strong correlation between the mechanical properties and 
extraction techniques, as the fibers produced by burying the agave leaves in the ground generally exhibited higher tensile modulus and 
strength than water-based extracted fibers. Ghosh et al. [35] studied the influence of different volume fractions of banana 
fiber-reinforced vinyl ester resin composite and reported a significant increase in the specific tensile strength of the composite by 65 % 
at a fiber volume fraction of 38.6 %. Sreekumar et al. [36] conducted a similar study on the effect of banana fiber volume fraction in 
polyester matrix composites and reported 40 % as the optimum volume fraction of the fiber that gave the maximum tensile strength. 

Some of the commonly used natural lignocellulosic fibers in biocomposite production include flax, abaca, agave, hemp, sisal, jute, 
pineapple leaves, banana stem, oil palm, rice husks, coir, and bamboo [37–39]. Extensive commercialization of natural fiber-based 
composite products in the automotive sector is still underdeveloped, particularly in the production of exterior parts [40,41]. 
Hence, it is necessary to critically assess some of the various drawbacks that limit their full-scale commercialization in the industry and 
to identify the way forward for new research and development in this field. Although several review articles on natural fibers and their 
composites are available in the literature, they have not been able to address and provide permanent solutions to all the 
above-mentioned challenges. Therefore, this critical appraisal brings forth the much-awaited development in the use of NFRPCs, and 
the current knowledge in exploring NFRPCs as sustainable automotive materials, while considering their physical and chemical 
characteristics, properties, and availability. The prospects and limitations of NFRPCs in the automotive sector, research needs, and 
future direction are summarized. 

2. Lignocellulosic fiber and its composite 

Fibers derived from plants are naturally occurring materials with excellent specific properties owing to their lower densities [18, 
42]. They are tough and stiff with moderate mechanical properties and thermal stability. The total volume of plant-based natural fibers 
produced yearly across the world is approximately 30 million tons and has been used for various applications, including textile 
products, food packaging, paper making, biocomposite development for automobile and aerospace components, building materials, 
and sports equipment [43–46]. The properties of plant-based natural fiber-reinforced composites largely depend on various factors, 
including the plant part from which the fibers are extracted, the age of the plant, the method of extraction, the geographical location of 
the plant, and growing conditions such as soil composition, temperature, humidity, and frost. The density of these fibers also varies 
greatly with the method of fiber harvesting and extraction process [47–49]. Plant fibers can be extracted from the stem, leaf, or seeds. 
The extraction method of fibers from the stem and leaf is very similar but differs from seed fiber extraction [50,51]. Table 1 highlights 
the world’s annual production of different plant fibers, their volumes, and the part of the plant where they were extracted. 
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Plant fiber-reinforced polymer matrix composites have shown adequate potential as alternative materials to synthetic fiber- 
reinforced composites for commercial and domestic purposes [54,55]. Thermoplastic and thermoset polymers are commonly used 
matrix materials for the production of natural-based fiber-reinforced composites [56–58]. Examples of thermoplastic materials used 
for this purpose include polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), and polystyrene (PS). Thermoset materials 
such as polyurethane, epoxy, phenolic, silicone, and polyester are also very popular as matrix materials for plant fiber-based composite 
development. Most thermoplastic polymers require lower processing temperatures usually below 200 ◦C, which is suitable for these 
types of fibers to prevent thermal degradation that could weaken their reinforcing potentials. They can also be easily recycled [59]. On 
the other hand, some thermoset polymers can withstand higher processing temperatures and longer curing durations but have low 
recyclability because of their unique characteristics of forming three-dimensional crosslinked networks during curing. Common 
composite processing methods, such as hand lay-up, filament winding, compression molding, injection molding, vacuum-assisted 
transfer molding, autoclave processing, and additive manufacturing, can be employed for processing natural fiber-based polymer 
matrix composites [60–62]. For biocomposite development, polyester, and epoxy are the most widely studied among researchers. 
Because of the unique characteristics of thermoset polymers, special processing techniques such as vacuum-assisted transfer molding 
and autoclave curing are often employed in the processing of thermoset-based natural fiber-reinforced composites, especially for 
critical applications such as transportation and marine sectors [63,64]. Compared to other conventional processing techniques, the two 
methods mentioned above prevent the emissions of volatile organic materials during composite curing and manufacturing, however, 
they are relatively more expensive than other processing techniques [65]. 

2.1. Natural fibers versus synthetic fibers 

Reports have shown that petroleum-derived products will be limited as their future availability is uncertain because of increasing 
human activities on natural resources which lead to their rapid depletion rate [66]. Hence, the need to source renewable and inex-
pensive materials that are environmentally friendly and abundantly available has become imperative. Natural fibers mainly originate 
from either plants or animals, whereas synthetic fibers are man-made materials derived from the synthesis of different chemical 
compounds. Natural fibers are cheap, lightweight, renewable, biodegradable, and non-toxic, but they have lower properties [67,68]. 
Synthetic fibers, on the other hand, exhibit advantageous properties such as thermal stability, superior mechanical and electrical 
characteristics, lower susceptibility to water absorption, and increased durability. Nevertheless, synthetic fibers come with drawbacks 
as they tend to be costly, pose toxicity risks, are non-renewable, non-biodegradable, and are not considered environmentally friendly 
[69–71]. Synthetic fibers such as glass fibers can cause lung cancers if inhaled, especially during production operations [72]. Table 2 
compares some of the important characteristics of natural and synthetic fibers. 

2.2. Extraction of natural lignocellulosic fibers 

The extraction of natural fibers involves sequential procedures to separate the fibers from various plants and prepare them into 
useful products. These procedures, which may vary depending on the specific fiber types and plant source, include harvesting of the 
plants, cleaning, retting, decortication, separation, drying, and finishing. Some fibers, depending on the desired end product, may 
require additional modification such as fiber spinning, which is mainly common with cotton, flax, and jute fibers. Natural fibers can be 

Table 1 
Annual world production of natural fiber from different plants [52,53].  

Types of fibers World production (103 tons) Origin 

Abaca 70 Stem 
Bamboo 10,000 Stem 
Flax 815 Fruit 
Ramie 100 Stem 
Coir 100 Stem 
Broom abundant stem 
Banana 200 Fruit 
Elephant grass abundant Stem 
Cotton lint 18,500 Stem 
Hemp 215 Stem 
Kenaf 770 Stem 
Pineapple abundant Leaf 
Linseed abundant Fruit 
Oil palm fruit abundant Fruit 
Jute 2500 Stem 
Nettles abundant Stem 
Caroa – Leaf 
Rice husk abundant Fruit/grain 
Rice straw abundant Stem 
Sisal 380 Leaf 
Sugarcane bagasse 75,000 Stem 
wood 1,750,000 Stem  
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extracted from the stems, bark, leaves, fruits, and roots, which serve as the basis for their sub-classifications. 
Generally, mechanical and retting processes are the two methods that are often used for natural fiber extraction, as reported in the 

literature [30,74,75]. For the mechanical extraction process, the fibers are separated from the plants using either a manually or 
mechanically assisted machine, as shown in Fig. 1. The part of the plant to be separated is inserted into the machine, which consists of 
two grinding gears that are driven by either human or machine power to obtain the fibers. Retting involves submerging the plants 
completely into a suitable liquid solution for several days to enable the action of moisture and bacteria to dissolve the cellular tissues 
and gummy substances surrounding the plants and facilitate easy separation of the fibers from their plants. Retting can be accom-
plished through different methods, including water retting, dew retting, or microbial retting. The common goal is to promote the 
natural breakdown or decomposition of the non-fibrous binding substances that hold the fibers together. 

2.3. Classification of natural fibers 

Natural fibers are generally obtained from different types of renewable resources and are classified based on their origin, i.e., 
animals, plants, and minerals. Plant fibers, which are the most commonly used natural reinforcing materials in polymer-based 
composites, are mainly composed of cellulose, hemicelluloses, lignin, pectin, and traces of other compounds [17,73,77]. These 

Table 2 
Comparison between synthetic and natural fibers [73].  

Natural fiber Synthetic fiber 

Lightweight Relatively heavier 
Low cost Very expensive 
Renewable Non-renewable 
Limited mechanical properties High mechanical properties 
Recyclable Non-recyclable 
Low energy consumption during manufacturing High energy consumption during manufacturing 
CO2 neutral Generate CO2 and other harmful substances 
Good insulation properties Poor insulation properties 
Low health risk High health risk 
Biodegradable Non-biodegradable 
Good dielectric properties Poor dielectric properties 
Low thermal properties Good thermal properties 
Non-toxic Toxic 
Low tool wear High tool wear 
Low electrical properties High electrical properties 
Abundantly available Less available  

Fig. 1. Natural fiber extraction processes: (a) mechanical method (b) manual method (c) retting method [75,76].  
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fibers can be extracted from different parts of the plant, which serves as their basis of classifications: bast fibers (hemp, kenaf), leaf fiber 
(sisal, pineapple), fruit fiber (coir), seed fiber (cotton), stalk fiber (rice husk), and reed/grass fiber (canary). Over the years, researchers 
have intensified their efforts in exploring more vegetable plants for the possibility of extracting their fibers for composite development 
with improved properties. These efforts have led to the discovery of some new plants with attractive fiber qualities. One of these newly 
reported natural plants is sea purslane which has enhanced mechanical and thermal properties [78]. Fig. 2 shows the general clas-
sification of natural fibers. 

2.4. Natural fiber-based biocomposites 

Concerted efforts have been made to produce natural fibers from agro-based materials for composite development [80]. Natural 
fiber-reinforced polymer matrix composites, sometimes referred to as ‘biocomposites’ can either be considered as fully or partially 
degradable materials, depending on the choice of polymeric resin used, as summarized in Fig. 3. A large percentage of most countries’ 
agricultural processes have been utilized to produce useful materials for industrial development. In recent years, many countries have 
ventured into trading natural lignocellulosic fibers to enhance the living standard of the people by using natural materials in 
manufacturing NFRPCs for both economic development and industrial transformation [81–84]. The newly developed idea of 
employing lignocellulosic fibers as reinforcement materials in composite production has been a focal point in the literature due to their 
great potential for replacing the existing synthetic fiber-reinforced composites that are not only very expensive but also pose many 
environmental challenges [13,85–88]. Some of the attractive features of biocomposite materials are lightweight, biodegradable, 
cheap, and environmentally friendly compared to traditional composites made from synthetic materials [88]. 

2.5. Manufacturing processes of NFRPC materials 

Several manufacturing techniques have been used to produce composites with lignocellulosic fibers as reinforcement materials. 
The selection of a particular processing method for any type of composite relies on the materials used for producing the composite, the 
production volume, the desired properties of the final composite product, and the intended application area [89,90]. Diverse tech-
niques were developed to address specific challenges encountered during composite processing, particularly delicate fiber-based 
composites such as those found in lignocellulosic fiber materials. Research has shown that all traditional composite manufacturing 
techniques can be employed to fabricate lignocellulosic fiber-reinforced polymer matrix composites [90]. However, the advantages 
and limitations of each of these manufacturing techniques must be considered to ensure a suitable choice of processing method. The 
manufacturing of composite materials typically involves some forms of shaping, and molding to properly blend the fiber and resin. The 

Fig. 2. General classification of fibers [13,78,79].  
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creation of a mold tool is crucial in the composite development process, to ensure the necessary uniformity of fiber and resin before the 
curing stage [91]. This step is fundamental to achieving the desired structural integrity and performance characteristics of the final 
composite material. A comprehensive understanding of the manufacturing methods, properties, and characteristics of natural fibers 
and their composites will widen their acceptability and applications in critical sectors such as automobile, aerospace, and electronics. 

Some of the commonly used composite manufacturing techniques for natural fiber-based composite, along with their associated 
benefits and limitations are summarized, as presented in Fig. 4. 

Fig. 3. Classification of the biocomposites.  

Fig. 4. Common manufacturing processes for natural fiber-based composites.  
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3. Properties of lignocellulosic fiber and its composites 

Natural fibers obtained from plant sources exhibit considerable variation in properties, which makes their selection as reinforcing 
materials in composite development very difficult because they affect the quality of the resulting composites. The properties of natural 
fibers depend largely on different factors including the chemical compositions of the fibers, fiber types, methods of fiber extraction, 
fiber maturity, and growing conditions [92,93]. 

3.1. Physical properties 

Table 3 shows the physical properties of some specific plant fibers. The average density of plant-based natural fibers ranges from 
0.5 to 1.7 g/cm3. The physical attributes of natural fibers are crucial factors in determining their application in various sectors such as 
the aerospace and automobile industries [94]. The lower densities of natural fibers are advantageous in the production of lightweight 
materials, which are essential in the manufacturing of automobile and aircraft parts to improve fuel efficiency. The main drawbacks of 
natural fibers are their shorter length and high water absorption characteristics, which significantly affect the mechanical properties 
and long-term durability of the fiber and its composites [11,95,96]. Most natural lignocellulosic fibers such as coir, abaca, kenaf are 
often classified as short fibers, as can be observed in Table 3. 

3.2. Chemical properties 

The main chemical constituents of lignocellulosic fibers are cellulose, hemicellulose, and lignin, with other traces of constituents 
such as pectin, wax, moisture, and ash, as shown in Table 4. Cellulose is a straight-chain polymer of carbohydrates that consists of 
several microfibrils bound together by both lignin and hemicellulose, which makes them flexible with a mechanical load-bearing 
function [102]. It has a crystalline structure present in the primary cell wall of a green plant. It contains glucose (C6H11O5) 
repeating units linked together by beta 1,4-D-glycosidic bonds at C1 and C4 positions with a very high degree of polymerization ranging 
from several hundred to over ten thousand [103]. The choice of any natural fiber for composite development depends on the chemical 
characteristics of the fibers, such as the cellulose content, moisture content, microfibril angle, and several other constituents that are 
considered less important but have some negative influences on the properties of the produced composite materials [99,102]. The low 
moisture resistance behavior of lignocellulosic fibers is due to their hydrophilic nature, which makes them less compatible with hy-
drophobic polymers during composite processing [104]. 

3.3. Mechanical properties 

Natural fibers have gained significant attention in several sectors owing to their exceptional characteristics, including environ-
mental and economic sustainability as well as acceptable strength-to-weight ratio. Understanding the mechanical behavior of natural 
lignocellulosic fibers is crucial for their successful utilization in various applications ranging from textiles to composite productions. 
These fibers exhibit a wide range of mechanical properties which largely depend on the chemical compositions of the fiber, types of the 
fiber, age, and the history of the fiber plant. The presence of non-cellulosic components in lignocellulosic fibers, such as hemicellulose, 
lignin, ashes, waxes, and pectin plays a major role in altering the mechanical behavior of the fibers. It affects the interfacial bonding 
strength between the fiber and the matrix during composite processing. Hence, reducing the presence of these components in the 
fibers, mostly achieved through fiber treatment, directly enhances the reinforcing potential, leading to improved mechanical prop-
erties and thermal stability of the fiber [53,111]. The mechanical properties of certain lignocellulosic fibers, extensively documented in 
the literature, encompass parameters such as tensile strength, Young’s modulus, and elongation at break (refer to Table 5). 

Table 3 
Physical properties of some natural fibers [97–101].  

Fiber Density (g/cm3) Diameter (μm) Length (mm) 

Cotton 1.2–1.6 14.5 42 
Jute 1.3–1.46 18.4 2.55 
Flax 1.4–1.5 20 31.75 
Hemp 1.48 19.9 11.2 
Ramie 1.5 31.55 160 
Sisal 1.2–1.5 21 2.5 
Coir 1.2 17.5 1.25 
Softwood kraft 1.5 – – 
Abaca 1.5 18.2 4.9 
Kenaf 1.52–1.63 19.8 2.35 
Henequen 1.2–1.6 – – 
Pineapple 1.52 50 – 
Banana 1.3 – 2.9 
Bamboo 0.6–1.1 25 2  
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3.4. Thermal properties 

The thermal characteristics of lignocellulosic fibers are of great importance because they determine how the fibers respond to heat, 
particularly during the composite manufacturing process. Some of the thermal characteristics of natural fibers include thermal con-
ductivity, thermal stability, flame resistance, and ignition temperature. The specific thermal properties of natural fibers vary widely 
depending on the fiber type, extraction or processing methods, fiber treatment, and growing conditions of the fiber plants. Generally, 
natural lignocellulosic fibers possess lower thermal properties, which may be advantageous in some applications such as textile in-
dustries, but limit their usage in other areas, such as composite production. Some of the effective testing methods that have been 
utilized to assess the thermal behavior of these fibers and their composites include thermogravimetric analysis (TGA), derivative 
thermogravimetry (DTG), and differential scanning calorimetry (DSC). The thermal disintegration of natural fibers is usually caused by 
the breakdown of their chemical components due to heat or ultraviolet energy [114,115]. Natural fibers have a limited processing 
temperature range, typically between 180 and 200 ◦C, which primarily affects the mass production and application of natural 
fiber-reinforced polymer matrix composites [116]. 

3.5. Acoustic properties 

Rapid growth has been observed in the use of natural fiber-based composite materials due to their improved acoustic properties for 
various applications, particularly in the building and automotive sectors. Natural fiber-based composites have good acoustic properties 
because of their inherent damping properties, porous structures, and lower densities. This enables the absorption of sound energy 
within the pores of the cell walls, thereby improving the sound absorption coefficient (SAC) and reducing noise and vibration levels in 
automotive components. The sound absorption coefficient is typically calculated by measuring the fraction of incident sound absorbed 
by materials. The range of SAC falls between 0 and 1, where a value of 1 signifies maximum absorption, and 0 indicates no absorption. 
Many factors affect the acoustic properties of natural fiber-based composites, including the type and size of the fiber, types and volume 
of the matrix material, fiber thickness, method of composite manufacturing, and aspect ratio of the fibers. Natural fibers with high 
aspect ratios, such as jute and hemp, have been reported to possess better sound absorption coefficients than other fibers with low 

Table 4 
Chemical composition of some natural fibers [52,100,105–110].  

Fiber type Cellulose (%) Lignin (%) Moisture content (%) Hemicellulose (%) Pectin (%) Ash (%) Waxes (%) 

Fiber flax 71 2.2 7 18.6–20.6 2.3 – 1.7 
Seed flax 43–47 21–23 – 24–26 – 5 – 
Jute 45–71.5 12–26 12 13.6–21 0.2 0.5–2 0.5 
Hemp 57–77 3.7–13 8 14–22.4 0.9 0.8 0.8 
Ramie 68–91 0.6–0.7 12–17 5–16.7 1.9 – 0.3 
Kenaf 37–49 15–21 6–12 18–24 – 2–4 – 
Abaca 56–63 7–9 – 15–17 – 3 – 
Sisal 47–78 7–11 11 10–24 10 0.6–1 2 
Henequen 77.6 13.1 – 4–8 – – 0.5 
Pineapple 70–82 5–12 11.8  1–2 1.1 – 
Coir 37 42 10 20 2–4 – 10.6 
Bamboo 26–65 5–31 9–10 30 – – – 
Banana 62–64 5–7.5 10–11 19 4 – –  

Table 5 
Mechanical properties of natural fibers [45,68,106,112,113].  

Fiber Elongation (%) Tensile strength (MPa) Young’s modulus (GPa) 

Cotton 3.0–10.0 287–597 5.5–12.6 
Jute 1.5–1.8 393–800 10–30 
Flax 1.2–3.2 345–1500 27.6–80 
Hemp 1.6 550–900 70 
Ramie 2.0–3.8 220–938 44–128 
Sisal 2.0–14 400–700 9.0–38.0 
Coir 15.0–30.0 175–220 4.0–6.0 
Softwood kraft – 1000 40.0 
PALF 1.6 413–1627 34.5–82.51 
Bagasse 1.1 20–290 19.7–27.1 
Henequen 3–4.7 430–580 – 
Banana 53 355 33.8 
Kenaf (bast) 2.7–6.9 295 – 
Okra 4–8 184–557.3 8.9–11.8 
Abaca 2.9 430–813 31.1–33.6 
Kapok 2–4 45–64 1.73–2.55 
Elephant grass 2.5 185 7.4  
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aspect ratios [117]. Lee and Joo [118] investigated the effect of fiber diameter on the acoustic properties of natural fiber-reinforced 
composites using polyester with different fiber diameters and found that the sound absorption coefficient of the developed composite 
material increases as the fiber diameter decreases. A similar study conducted by Koizumi et al. [119] showed that reducing the 
diameter of natural fiber enhances the sound absorption coefficient of NFRPCs. Reports have also shown that the types of fibers have a 
significant influence on the sound absorption coefficient of both natural and synthetic fibers [120]. 

Abdullah et al. [121] studied the effect of fiber types on the sound absorption coefficient of natural fiber-based composites with a 
fiber thickness of 1 cm. The study was performed using banana and sugarcane bagasse fibers with polyester resin as the matrix. The 
hybridization effects of the two natural fiber-reinforced composites on the SAC were also evaluated. The results showed that the sound 
absorption coefficients of both the sugarcane fiber-reinforced composites and banana fiber-reinforced composites were 0.6338 and 
0.6635, respectively, while the hybridized composite with the two fibers combined gave 0.733 at a frequency of 2325 Hz. The study 
also varied the fiber volumes and concluded that the sound absorption of both fibers increases with increasing fiber volume fraction. 

3.6. Tribological properties 

The tribological characteristics of natural fibers are a crucial consideration factor for choosing the best reinforcing materials for the 
production of both structural and non-structural composites. The specific tribological properties of natural fibers vary significantly 
among different types of fibers (e.g., hemp, pineapple, cotton, banana, jute, flax, etc.) and can be further influenced by fiber processing 
and treatment methods [122,123]. Tribology is the study of interacting surfaces that move relative to one another as well as their 
effects, which include wear, friction, and lubrication. This property plays an important role in various mechanical and structural 
systems or components, as it helps engineers and researchers understand and control the behavior of different surfaces in contact with 
each other. The tribological behavior of natural fibers is of great interest among researchers and manufacturers, especially in appli-
cations involving composite reinforcement, as the fiber and matrix material form a single interface that can easily wear off or tear 
during its service life when subjected to either mechanical loading or chemical attack [124]. Natural fibers and their composites have 
been widely used in designing several automobile parts that are directly in contact with other surfaces. Ali et al. [125] developed a 
coconut fiber-reinforced polymer composite with fiber content varying between 2 and 8 wt%, as an alternative brake pad material and 
compared the results with a similar volume fraction of a standard brake pad material made of Kevlar. The reports showed that the 
newly developed green composites can be sufficiently used to develop a brake pad material with acceptable properties. This study 
further indicates that the thermal stability of the composite material can be enhanced by increasing the coconut fiber weight fraction in 
the composite. Yashwhanth et al. [126] conducted a comprehensive survey on the potential applications of natural fiber-based 

Fig. 5. Effect of fiber length on the wear behavior of agave fiber reinforced epoxy composite under different wear testing conditions: (a) 300 rpm, 
1.413 m/s velocity; (b) 400 rpm, 1.884 m/s velocity; and (c) 500 rpm, 2.356 m/s velocity [132]. 
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composites as an alternative material to asbestos in vehicle brake pad designs. The study concluded that although natural fiber-based 
composites have great potential in the design of brake pads, their properties, such as thermal stability and wear rate, need to be 
improved through material selection and fiber surface treatment for optimal performance. Interfacial adhesion between natural fibers 
and polymer resin appears to be the most dominant factor affecting both the tribological and mechanical properties of NFRPCs [127]. 
Therefore, improving the interfacial bonding between the matrix material and the fiber will directly enhance the tribological char-
acteristics of the composite material. The coefficients of friction, wear resistance, lubrication, and moisture absorption behavior of 
natural fibers and their composites have been extensively investigated and documented in the literature by numerous researchers 
[128,129]. These studies have provided a better understanding of the relationships between these material properties and the per-
formance characteristics of natural fibers and their composites in various conditions. The comprehensive exploration of these factors 
provides valuable insights for researchers, engineers, and manufacturers involved in the field of natural fiber-based composite designs. 
Most natural fibers are hydrophilic and can easily absorb moisture from the surrounding environment or through contact with other 
materials. Reports have shown both positive and negative effects of moisture absorption on the tribological properties of natural fibers. 
For instance, moisture absorption can act as a lubricant to natural fibers, thereby enhancing wear resistance and reducing friction. On 
the contrary, when natural fiber absorbs excess moisture from the surroundings, it swells up, thereby causing the surrounding matrix 
component to undergo some microcracks, which negatively weaken the stress transfer efficiency between the fiber and the matrix, 
thereby reducing the overall strength of the composite material [130]. The tribological properties of natural fibers depend on several 
factors, including the fiber type, processing or extraction method, surface finish, fiber treatment, environmental conditions, length, 
and diameter of the fiber [131]. Studies have shown that longer and thinner fibers may have different friction and wear characteristics 
than shorter and thicker fibers. Mylsamy and Rajendran [132], investigated the effect of three different fiber lengths (3 mm, 5 mm, and 
7 mm) on the wear behavior of chopped agave fiber-reinforced epoxy composites. The results of their study showed that the wear rates 
of the composite decrease with a decrease in the fiber length, as 7 mm fiber length showed the highest wear rate (refer to Fig. 5). This 
report indicated that the critical fiber length of the composite may be within the range of 3 mm, leading to a more effective rein-
forcement potential of the fibers with improved wear resistance Mylsamy et al. [123] investigated the impact of surface modification 
on Coccinia indica (CI) and its ensuing effects on the tribological properties of Coccinia indica-reinforced epoxy matrix composites. 
This modification was carried out using both sodium hydroxide and silane treatments at concentrations of 5 wt% and 3 wt%, 
respectively. The results of the study showed that both treatments improved the wear resistance of the composites with 15 % and 39 % 
weight loss for NaOH and silane-treated composites, respectively. 

4. Application of NFRPCs in the automotive sector 

The use of lignocellulosic fiber-reinforced composites in automotive industries has been increasing in recent years because of the 
great demand for synthesized materials from renewable sources with excellent structural and non-structural properties for automobile 
parts production [60,133]. The viability of NFRPC materials in the automotive industry has experienced significant growth within the 
research community. This surge in interest is attributed to their potential as an alternative to synthetic fiber-based composites, with a 
particular emphasis on substituting glass fiber-reinforced composites [134–136]. Plant-based natural fibers are classified into two 
primary types, determined by their applications and corresponding global market demands: wood fibers and non-wood fibers [137, 
138]. Wood fibers are commonly used for construction purposes and are very popular in North America. Non-wood natural fibers 
thrive mostly in the automotive industry in Europe using both thermoplastic and thermoset resins as matrix materials for their 
composite production. Non-wood fibers have been successfully used as reinforcement materials in polymer matrices for different 
automobile parts manufacturing, including door trims, seat backs, dashboards, and headliners [134,135,139,140]. These renewable or 
partially renewable composite materials offer lower energy consumption during production, reductions in weight and fuel con-
sumption, improved recyclability, high specific strength, and low cost. These characteristics align with the sustainability goals of the 
automotive industry [141]. These goals encompass the development of materials that are not only durable and renewable but also 
exhibit enhanced properties, including mechanical, acoustic, and thermal stability. This pursuit is undertaken without compromising 
the important factors of lightweight construction and energy efficiency, which are frequently demanded in the sector [142]. Reports 
have indicated that the existing automotive materials are unable to meet the current demand for material performance. Consequently, 
recent advancements in materials processing technology have revealed that composites synthesized with natural lignocellulosic fibers 
as reinforcement could serve as an ideal solution to address the evolving requirements for advanced materials in the automotive sector 
[54,143–145]. Over the last few decades, there has been a consistent interest in the field of renewable materials among researchers and 
academia. This increasing research interest is usually aimed at improving the performance of NFRPCs to make them a suitable 
alternative to conventional engineering materials in the automotive sector. However, despite all these research efforts, the use of 
NFRPC has not yet been fully translated into a large-scale application in the automotive industry due to some of its limitations [146, 
147]. 

One of the significant limitations of NFRPCs in the design of automobile parts is their inferior mechanical characteristics. This 
drawback poses a considerable challenge, as it undermines their structural integrity and long-term application when compared with 
traditional materials like metals or synthetic fiber-reinforced composites [148]. To address this issue, researchers are actively engaged 
in developing hybrid composites that integrate both natural and synthetic fibers. Additionally, they are optimizing composite pro-
cessing methods to enhance the mechanical performance of these materials. This innovative approach seeks to bridge the gap in 
mechanical properties and pave the way for the broader and more effective use of NFRPCs in automotive applications. Thus, the use of 
NFRPCs as eco-friendly automotive materials is a developing field of inquiry, and the continuous attempt to enhance their functionality 
and processing techniques will probably broaden the use of these materials in the sector, particularly for the production of structural 
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automobile parts such as external body panels and structural body reinforcements. 

4.1. Automobile parts made from lignocellulosic-based NFRPCs 

Composites reinforced with natural lignocellulosic fibers are commonly used for non-structural purposes, particularly the interior 
parts of automobiles, because of their excellent thermal insulation characteristics. These include car door interior panels, trunk liners, 
seatbacks, cabin liners, parcel shelves, dashboards, seat cushions, door trim panels, and more [149–152]. Nonetheless, these com-
posites have minimal usage in the exterior design of automobiles owing to their limited load-bearing capacity. However, some 
particular components such as transmission covers and bumper beam covers have been reported to be produced using natural fibers 
reinforced with polyester [153,154]. Fig. 6 illustrates the specific automobile parts that can be manufactured using NFRPCs. 

4.2. Prospect for lignocellulosic-based NFRPCs in the automotive sector 

Previously, synthetic fibers were extensively used as the sole reinforcing materials in composite development owing to their 
enhanced mechanical properties and lightweightness compared to metals and ceramics. Nonetheless, various research studies have 
indicated that despite their aforementioned advantages, artificial fibers pose certain ecological concerns and are comparatively more 
costly than fibers derived from nature. In addition, the continued expansion in the use and depletion of finite traditional energy sources 
has compelled researchers to look for alternatives that are not only ecologically responsible but also replenishable for the development 
of new composite materials. Furthermore, the automotive industry’s sustainability objectives have led researchers in this domain to 
focus on developing more appropriate materials that are eco-friendly and financially viable. The features of natural fibers make them a 
crucial component in the automobile sector, as there is a consistent effort to reduce vehicle weight to improve fuel efficiency, enhance 
vehicle functionality, and adhere to emission regulations [135,156]. 

Plant-based fiber-reinforced composites have been employed in the production of various automobile parts as far back as the 1940s. 
During this period, Henry Ford pioneered the use of fiber-based composites, utilizing hemp fiber as the reinforcement material. This 
marked a significant milestone as it led to the creation of the first components made of plant-based natural fiber composites in a car 
[17,19,157]. This historic development not only showcased the feasibility of plant-based composites in automotive applications but 
also laid the foundation for ongoing research and advancements in the field of sustainable and eco-friendly materials for the auto-
motive industry. This led to the production of the East German Trabant body in the early 1950s, Daimler–Benz in 1994, and Mercedes 
in 1996, using natural fiber-reinforced polymer matrix composites [158]. Awareness of NFRPCs for automotive applications has been 
substantial, driven by the growing demand for materials with high-specific properties, lightweight characteristics, and environmen-
tally friendly attributes in the industry. This reflects a keen interest in exploring alternative materials that not only meet performance 
requirements but also align with the industry’s increasing emphasis on sustainability and renewable resources [159]. The economic 
sustainability of NFRPCs in the automotive sector can be attributed to many other advantages of natural fibers over synthetic fibers, 
which are critical in the manufacturing of automobile components. These include high design flexibility, non-toxicity, ease of pro-
cessing, reduced greenhouse emissions, low energy consumption, carbon dioxide (CO2) neutrality, and better specific properties [146, 
160,161]. The appealing qualities of natural fibers and their composites, along with their promising potential in critical sectors such as 

Fig. 6. Specific application areas of NFRPCs in automobile parts [155].  
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the sports and automotive industries, have progressively redirected research focus toward the development of sustainable composite 
materials. In this context, lignocellulosic fibers are gaining prominence as key reinforcing components. Studies have shown that these 
composite materials can significantly reduce the cost of automobile production by 20 % and weight reduction by 30 %, which will 
directly reduce fuel consumption significantly [146,162]. As research and development in this field continue, it is expected to see more 
widespread use of these composite materials in other critical sectors in the future. 

4.3. NFRPCs as sustainable auto materials: Research needs 

The use of NFRPCs as a sustainable and potential alternative to traditional automotive materials such as steel and aluminum has 
attracted serious research attention. NFRPCs are made using natural fibers as reinforcement, such as jute, bamboo, kenaf, flax, abaca, 
sisal, and hemp, which are embedded in a polymer matrix. Despite the tremendous growing research on NFRPCs for sustainable 
automotive materials, there are still many areas that require further investigation to either minimize the efforts required to manu-
facture the composites or maximize the desired benefits. In the past few years, European automotive industries have intensified efforts 
in developing natural-fiber-based biocomposites using conventional thermoplastics and thermosets as matrix materials for the 
manufacturing of different automobile components such as seatbacks, package trays, door panels, headliners, dashboards, and other 
interior parts [41,163]. This was further accelerated in 2006 immediately after the establishment of the European Union legislation to 
regulate excesses from these critical industries [12]. According to the legislation, manufacturers of vehicles must use materials in the 
design of the parts that can be reused or recycled to a minimum of 85 % by mass after the end-of-life of the vehicles [164]. The 
legislation also sets rules to ensure that reused components do not pose any health risks to the environment. A similar approach was 
also adopted by the Japanese government to produce vehicles such that 88 % of the components could be recycled after their useful life 
by 2005 and up to 92 % and 95 % by 2010 and 2015, respectively [165]. To achieve this industrial revolution in this sector, researchers 
have ventured into developing materials that can meet all these demands and other requirements. Although NFRPCs have a few issues, 
studies have shown that they are still the best candidate materials. This is due to their renewable nature, lightweight, recyclability, 
affordable, and ability to absorb more energy during impact [166]. NFRPCs exhibit excellent acoustic properties and high specific 
strength, rendering them highly appealing for applications that demand lightweight materials with superior sound absorption char-
acteristics and high strength. These qualities make NFRPCs particularly well-suited for a range of industries, including automotive, 
aerospace, and applications requiring bulletproof and ballistic features [167,168]. Weight reduction in the automotive sector is an 
important factor every automaker considers in designing and manufacturing vehicles because it reduces fuel consumption, thereby 
minimizing the emission of greenhouse gasses. In addition, the automotive industry has determined to reduce the cost of vehicle 
production by using more economical and inexpensive materials in the manufacturing of the major components [137,169]. Fig. 7(a) 
illustrates that, in the year 2016, the automotive industry emerged as the second-largest sector, following construction, to extensively 
utilize NFRPCs. Meanwhile, Fig. 7(b) depicts the research progress in NFRPCs from 1990 to 2021. It can be observed from Fig. 7 (b) 
that the number of studies on NFRPCs has risen exponentially in the last three decades because of their promising potential in many 
sectors, especially in the transportation industries. 

Owing to their many advantages over the more often used glass and carbon fiber-based composites, NFRPCs have seen a significant 
surge in research over the past three decades [171]. As shown in Fig. 8, these benefits can be divided into three categories: economic, 
property, and environmental, which are the major factors that influence the popularity of NFRPCs in the automotive industry. 

4.4. Limitations of NFRPCs in the automotive sector 

Despite the appealing characteristics of lignocellulosic NFRPCs, some significant challenges must be addressed, including 
compatibility issues, low durability, limited properties, poor moisture and fire resistance, and the need to develop cost-effective 
manufacturing techniques to produce large-scale and complex NFRPC components. Most natural fibers are hydrophilic, which 
makes them less compatible with hydrophobic polymer resins [29,172–174]. The lack of compatibility between the natural fibers and 

Fig. 7. Progress in NFRPCs: (a) global utilization of natural fiber-based composites in different applications in 2016 (b) the number of research 
publications on NFRPCs from 1990 to 2021 [170]. 
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the resin materials reduces the interfacial adhesion of the two components, thereby reducing the general properties and durability of 
the developed composite materials, as well as their dimensional stability [175]. Poor thermal stability, low fire resistance, and limited 
processing temperature negatively affect the long-term durability of NFRPCs, thereby restricting their application to specific parts in 
automobile component production [176]. 

To address these challenges, researchers have made efforts to improve the compatibility and wettability between fibers and matrix 
materials at the fiber-matrix interface. This is achieved by adopting various physical and chemical treatments for fibers and, in some 
cases, treating the resins before the composite processing stage. Choice of fibers and resin materials, fiber orientations, fiber volume 
fraction, and fiber hybridization are some of the other approaches that have been employed by these researchers to enhance the physio- 
mechanical properties of NFRPCs [177–179]. The reports from all these studies showed tremendous achievements in the resulting 
properties, particularly the mechanical properties of the produced composites. Furthermore, investing in training, research, and other 
educational programs for engineers, manufacturers, and researchers will ensure a better understanding of the unique properties and 
processing requirements of natural fiber-based composites, for optimal properties and materials control. This investment in R&D could 
result in the discovery of cutting-edge techniques and new technologies that will further improve the performance of natural fiber 
composites and broaden their acceptability in the automobile sector. 

5. Future direction 

The growing environmental awareness from the use of synthetic-based composite products in the automotive sector, as well as 
continued governmental and environmental bodies’ involvement in enforcing the adoption of more sustainable materials in vehicle 
production, will help to achieve more innovations and increase development in the automotive industry. This is expected to provide a 
lasting solution to the challenges associated with the current materials that are being used in this sector. The use of NFRPCs in 
automobile parts production presents a promising opportunity for the automotive industry. In addition to the automotive sector, 
NFRPCs have been used for several critical applications. Fig. 9 highlights past, present, and future uses of NFRPCs in different sectors of 
the economy. It can be projected that the present problems of NFRPCs that limit their popularity toward advanced applications will be 
overcome through extensive research and development in this important field of study. 

First, the development and use of NFRPCs will open up new market opportunities for automobile manufacturers, such as electric 
vehicle manufacturing and the external parts of automobile production, including bumpers, hat racks, bumper beams, roof covers, 
door protective covers, headlight covers, and general auto bodies. Achieving this expansion necessitates a concerted effort to explore 
and identify additional lignocellulosic fibers with superior properties as potential reinforcement materials in composite development 
when compared to existing fibers. 

Secondly, developing new manufacturing techniques that are more energy efficient and cost-effective, as NFRPCs require specific 
and robust processing techniques to achieve optimum performance. For example, the use of 3D printing and other additive 
manufacturing techniques could allow for the production of complex shapes and structures with NFRPCs, making their integration into 
automotive designs easier. In addition, optimizing these processing techniques and enhancing the composite performance is essential 
to meet the growing demand for eco-friendly and energy-efficient vehicles. Further research is needed to develop advanced testing 
methods and techniques to accurately and reliably evaluate the durability and long-term performance of the resulting composites. This 
requires comprehensive material characterization to determine whether the developed composites meet the properties requirements of 
the automotive sector. 

Finally, as consumer demand for sustainable and eco-friendly products continues to rise, vehicles incorporating natural fiber 

Fig. 8. Factors influencing the steady rise of research in NFRPCs for automotive applications.  
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composites may appeal to environmentally conscious consumers. Therefore, there is a need for more studies on the environmental 
impact of using these composite materials in the automotive industry concerning their recyclability and end-of-life disposability. 

6. Conclusion 

The adoption of natural-based materials in the automotive industry as a way of reducing the environmental challenges facing the 
sector and improving economic sustainability has been gradually increasing over the last few years. This approach to sourcing 
environmentally friendly and renewable materials as integral parts of automobile bodies has become necessary due to global and 
various governmental regulations on the safety environment, consumer choices, and, in some cases, cost reduction in vehicle pro-
duction. The current research and development efforts in NFRPCs with improved properties have revolutionized the automotive in-
dustry, considering the significant advantages of NFRPCs and the current global challenges stemming from fossil-based resources in the 
sector. Therefore, it is expected that increasing investment in the R&D of NFRPCs as sustainable automotive materials can potentially 
minimize the problem of harmful gas emissions, reduce the cost of automobile production, and minimize the dependency of the sector 
on scarce and non-renewable petroleum-based resources. This general overview has shown that NFRPCs offer several advantages over 
traditional materials, such as increased specific strength, eco-friendliness, and cost-effectiveness. However, more research is needed to 
optimize the use of these materials in the automotive industry, such as improving their mechanical properties, developing appropriate 
processing techniques, and assessing their long-term durability. Nevertheless, the future direction of lignocellulosic fiber-reinforced 
polymer matrix composites in the automotive industry is optimistic, and with continued R&D in this field, these materials are ex-
pected to play a major role in the production of lightweight and high-performance vehicles with minimal environmental impacts. 
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