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ABSTRACT: There is an urgent need to elucidate the underlying
mechanisms of coronavirus disease (COVID-19) so that vaccines
and treatments can be devised. Severe acute respiratory syndrome
coronavirus 2 has genetic similarity with bats and pangolin viruses,
but a comprehensive understanding of the functions of its proteins
at the amino acid sequence level is lacking. A total of 4320
sequences of human and nonhuman coronaviruses was retrieved from the Global Initiative on Sharing All Influenza Data and the
National Center for Biotechnology Information. This work proposes an optimization method COVID-Pred with an efficient feature
selection algorithm to classify the species-specific coronaviruses based on physicochemical properties (PCPs) of their sequences.
COVID-Pred identified a set of 11 PCPs using a support vector machine and achieved 10-fold cross-validation and test accuracies of
99.53% and 97.80%, respectively. These findings could provide key insights into understanding the driving forces during the course
of infection and assist in developing effective therapies.
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■ INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is responsible for the COVID-19 pandemic that has
spread around the globe since its first appearance in Wuhan,
Hubei province of China, in early December.1 As of 21
February 2021, the World Health Organization has reported
110.38 million confirmed cases and 2,446,008 deaths globally,
becoming a major health concern. As of 18 February 2021, at
least seven different vaccines across three platforms have been
rolled out in countries.
Coronaviruses are enveloped single-stranded positive-sense

RNA viruses that belong to a large family of viruses that
constitute a subfamily Orthocoronavirinae in the family of
Coronaviridae.2 The genome sequence of SARS-CoV-2 is
closely related to severe acute respiratory syndrome
coronavirus (SARS-CoV) and bat coronaviruses. It shares
79.6% sequence identity to SARS-CoV, and it is 96% identical
to bat coronavirus.3 Human coronavirus (HCoV) genomes
encode four major structural proteins including the spike (S),
envelope (E), membrane (M), and nucleocapsid (N)
proteins.4 Each protein plays a significant role in the structure
of the virus and in other aspects of the replication process.
The S glycoprotein of coronaviruses binds to appropriate

receptors to facilitate viral entry into human host cells. SARS-
CoV-2 uses the SARS-CoV receptor antigen converting
enzyme 2 (ACE2) to enter into the host cell primed by
TMPRSS2.5 The S glycoprotein of SARS-CoV-2 and its entry
into the host cell through ACE2 is well characterized.6,7 The
primary role of the N protein is to pack the viral genome into a
nucleocapsid,8 and it is considered to be a multifunctional

protein in coronaviruses involved in the host cellular response
to viral infection and replication.9 The N protein is a key
molecule in the egress and assembly of SARS-CoV, and
transient expression of N is involved in the production of
viruslike particles of coronaviruses.10

The M protein plays an important role in virus assembly and
in the production of viral particles.11 Homotypic interactions
of M proteins are involved in envelope formation,12 and they
contribute to the core stability of coronaviruses.13 Elongated
and compacted M proteins are associated with the flexibility
and density of S proteins.11 The interaction between the M
and E proteins is involved in envelope formation and budding
of coronavirus particles.11

The coronavirus E protein is a minor component of the virus
particles, but it plays an important role in virion assembly and
virus host−cell interactions.14 The absence of E protein in
gastroenteritis coronaviruses blocks virus trafficking in the
secretory pathway and prevents virus maturation.15 Together,
the structural and functional studies of the SARS-CoV-2
proteins can provide invaluable information about the binding
potential of viruses to host cells, that is, information necessary
for vaccine design.
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Each protein has distinct properties that allow it to perform
its functions, and its interactions and dynamics depend on its
physicochemical properties (PCPs). HCoV shares 89.1%
nucleotide and 77.2% amino acid sequence similarity with
some bat coronaviruses.16 More importantly, the amino acid
sequence comparison of the receptor-binding domain of the S
proteins from HCoV and SARS-CoV showed that they shared
only 73.8−74.9% sequence identities.16 In addition, small
changes in the amino acid sequence of the S protein are crucial
for binding to its host. For instance, the bat SARS-like CoV
strain cannot bind to human ACE217 due to minor amino acid
differences from SARS-CoV. Therefore, knowing the HCoV
protein PCPs and understanding the amino acid differences at
the sequence level would be crucial for determining the
mechanisms behind their species specificity and the functions
of the HCoV proteins.
Extensive efforts are being made to eradicate the COVID-19

pandemic; the number of COVID-19 tests is rapidly increasing
and it produces a huge dataset, which makes it difficult to
derive the key elements that are essential for treatment.
Artificial intelligence and machine learning are playing a critical
role in COVID-19, especially by decreasing the workload of
medical experts using computed tomography scans to detect
COVID-19.18 Machine learning techniques can broaden the
screening process and identify potential antiviral agents based
on their protein structures and DNA sequences to predict the
drug binding sites of SARS-CoV-2.19 Therefore, machine
learning methods are ideal tools for analyzing large volumes of
data and for identifying promising candidates for treating
COVID-19.
In this study, we retrieved the protein sequences of 4320

coronaviruses from the Global Initiative on Sharing All
Influenza Data (GISAID) and the National Center for
Biotechnology Information (NCBI) databases. We constructed
a dataset with 2225 human−host coronaviruses (HCoV) as
positive samples and 2095 nonhuman−host coronaviruses
(nHCoV) as negative samples. We used a support vector
machine (SVM)-based optimization method called COVID-
Pred to distinguish HCoV and nHCoV using their amino acid
sequences. COVID-Pred uses an optimal feature selection
algorithm called the inheritable bi-objective combinatorial
genetic algorithm (IBCGA)20 to select informative PCPs that
are differentiated between HCoV and nHCoV. COVID-Pred
identified 11 PCPs that are able to distinguish HCoV and
nHCoV proteins. The objective of this study was to explore the
PCPs and amino acid compositions that are specific to HCoV,
which may be helpful in understanding how HCoV proteins
function and may provide a guide for vaccine design.

■ MATERIALS AND METHODS

Dataset

The protein sequences of 2225 HCoV were retrieved from the
GISAID database (https://www.gisaid.org) on June 3, 2020,
and 2095 nHCoV protein sequences were retrieved from the
NCBI database. The initial dataset thus consisted of the
protein sequences of 4320 coronaviruses. Since each amino
acid sequence is crucial for the binding of coronaviruses to
their hosts, we reduced the sequence identity to 90%. After
removal of redundancy and sequence uncertainties, the final
dataset consisted of 141 HCoV structural proteins of
coronaviruses as positive samples, whereas 163 nHCoV S
protein sequences were negative samples. Furthermore, the

dataset was divided into training and test sets in a ratio of 7:3.
There were 213 sequences (HCoV and nHCoV) in the
training set and 91 sequences (HCoV and nHCoV) in the test
set. Additionally, we used seven S protein sequences of HCoV
from the NCBI database after sequence identity reduction for
an independent test. All of the data set information is
summarized in Tables S1,S2 (Supplementary Data 2).
Physicochemical Properties

This study used 531 PCPs retrieved from the AAindex
database developed by Kawashima and Kanehisa21 as
candidate features to construct COVID-Pred to distinguish
species-specific coronavirus proteins. The original coronavirus’
amino acid sequences were converted into numerical indices
according to the 531 PCP values. The feature representation of
the 531 PCPs is described as follows

a) Collect the HCoV and nHCoV protein sequences from
the dataset.

b) Calculate the composition f(ai) of a protein for the ith

amino acid ai of 20 amino acids to encode the protein
sequence of variable length into a feature vector of
length 531.

c) Calculate the feature value of the nth physicochemical
property, PCP(n), of a coronavirus protein, where n = 1,
2, ..., 531.

n f a aPCP( ) ( ) PCP ( )
i

i n i
1

20

∑= ×
= (1)

where PCPn(ai) is the value of the ai amino acid of the nth

physicochemical property.
Proposed COVID-Pred Method

To investigate the properties of the coronavirus proteins, we
proposed the COVID-Pred method, which was customized
using the SVM incorporating the optimal feature selection
algorithm IBCGA.
Inheritable Bi-objective Combinatorial Genetic Algorithm
To construct the COVID-Pred method, IBCGA was used

for feature selection. IBCGA is a well-known feature selection
algorithm that has been used for solving biological problems
such as cancer survival predictions,22−24 protein function
predictions,25 and modeling gene regulatory networks.26,27

IBCGA is an efficient global optimization technique with an
intelligent evolutionary algorithm (IEA) to select a small set of
informative features from a large pool of candidate features
while optimizing the prediction performance. COVID-Pred
utilized the SVM classifier for distinguishing the HCoV and
nHCoV. In COVID-Pred, the SVM classifier was implemented
in the LIBSVM package.28 The radial basis function (RBF)
kernel was used for the implementation of SVM in the
LIBSVM package. The scoring function of the RBF kernel was
computed in the feature space between the two data points, xi
and xj. The RBF kernel function is defined as follows

K x x x x( , ) exp( )i j i j
2γ= − − (2)

In IBCGA, the commonly used genetic algorithm (GA)
terms such as gene and chromosome, represented as GA-gene
and GA-chromosome, were used. The chromosome of IEA
consists of m = 531 binary genes for selecting informative
PCPs and two 4-bit GA-genes for encoding the parameters C
and γ of SVM. The high performance of COVID-Pred arises
from the simultaneous optimization of feature selection and
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fine-tuning of SVM using IBCGA. In COVID-Pred, numerical
protein sequences encoded as 531 PCPs in the training dataset
were used as the input. The IBCGA can simultaneously
provide a set of solutions, Xr, where r = rend, rend + 1, ..., rstart in a
single run. The feature selection algorithm IBCGA used can be
described as follows
Step 1: (Initialization) Randomly generate an initial

population of Npop individuals. In this work, Npop = 50,
rstart = 50, rend = 10, and r = rstart.
Step 2: (Evaluation) Evaluate the fitness value of all

individuals using the fitness function, that is the prediction
ACC in terms of 10-fold cross-validation.
Step 3: (Selection) Use a conventional method of

tournament selection that selects the winner from two
randomly selected individuals to generate a mating pool.
Step 4: (Crossover) Select two parents from the mating pool

to perform an orthogonal array crossover operation of IEA.
Step 5: (Mutation) Apply a conventional bit mutation

operator to parameter genes and a swap mutation to the binary
genes for keeping r selected features. The best individual was
not mutated for the elite strategy.
Step 6: (Termination test) If the stopping condition for

obtaining the solution Xr is satisfied, output the best individual
as the solution Xr. Otherwise, go to Step 2.
Step 7: (Inheritance) If r > rend, randomly change one bit in

the binary genes for each individual from 1 to 0; decrease the
number r by one and go to Step 2. Otherwise, stop the
algorithm.
Step 8: (Output) Obtain a set of m PCPs from the

chromosome of the best solution Xm among the solutions Xr,
where r = rend, rend + 1, ..., rstart.

Weka Classifiers

We used eight famous machine learning methods in Weka data
mining software29 to distinguish HCoV and nHCoV for
performance comparison with COVID-Pred. They were Naive
Bayes, multilayer perceptron (MLP), sequential minimal
optimization (SMO), stochastic gradient descent (SGD),
logistic model tree (LMT), J48, decision tree, and random
forest. The classifier subset evaluator and the best first search
were used for feature selection to design classifiers for
distinguishing HCoV and nHCoV.

Evaluation Metrics

We evaluated the predictive performance of COVID-Pred
using the following evaluation metrics: sensitivity (SN),
specificity (SP), Matthews correlation coefficient (MCC),
accuracy (ACC), and area under the ROC curve (AUC).

Amino Acid and Dipeptide Compositions

Amino acid composition (AAC) was measured for the HCoV
and nHCoV. For the 20 amino acids denoted as A1...A20, the
frequency of each amino acid (Afi) was measured for the
protein sequence length (L). AAC is represented as follows

Af

L

Af

L

Af

L
AAC , , ...1 2 20=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (3)

Dipeptide composition (DPC) is defined as pairs of amino
acids denoted as dipeptides, AiAj (i.e., AA, AC.... YY), and the
frequency of occurrence of dipeptides is defined as dfi,j. The
DPC is computed as

n n n
DPC

df
,

df
, ...

df1,1 1,2 20,20=
Ä

Ç

ÅÅÅÅÅÅÅÅÅ
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ÑÑÑÑÑÑÑÑÑ (4)

where n = df1,1 + df2,2 + ... + df20,20.

■ RESULTS

Identification of SARS-CoV-2 Proteins

The objective of this study was to identify and analyze the
PCPs that are specific to different coronavirus species and to
explore the crucial driving forces that are involved in HCoV
protein functions. For this purpose, 4320 protein sequences
from HCoV and other organisms (nHCoV) in FASTA format
were extracted. After preprocessing the initial dataset, the final
dataset consisting of 141 HCoV and 163 nHCoV protein
sequences was obtained from the GISAID and NCBI
databases. The COVID-Pred method was established using
the SVM incorporating the optimal feature selection algorithm
IBCGA to identify the PCPs that could distinguish between
HCoV and nHCoV. COVID-Pred selected 11 PCPs and
achieved 10-fold cross-validation (10-CV) ACC, SN, SP,
MCC, AUC, test ACC, and test AUCs of 99.53%, 1.00, 0.99,
0.99, 0.996, 97.80%, and 0.991, respectively. COVID-Pred
obtained 100% (7/7) accuracy on an independent dataset
consisting of seven HCoV S protein sequences. The COVID-
Pred performance was evaluated using ROC curves as shown
in Figure S1 (Supplementary Data 1).
Next, the prediction performance of COVID-Pred was

compared with some machine learning methods of the Weka
classifier using the full dataset (n = 304). We used the classifier
subset evaluator and the best first search for the feature
selection and selected 28 features to distinguish HCoV and
nHCoV. Eight standard classifiers such as Naive Bayes, MLP,
SMO, SGD, LMT, J48, decision tree, and random forest were
used for the performance comparison. The Naive Bayes
classifier achieved 10-CV ACC, MCC, SN, SP, and AUC of

Table 1. Performance Comparisons of COVID-Pred

10-CV (%) MCC SN SP AUC

Naive Bayes 89.80 0.80 0.98 0.84 0.96
MLP 92.10 0.84 0.96 0.88 0.96
SMO 88.15 0.77 0.98 0.82 0.87
SGD 91.77 0.84 0.98 0.87 0.91
LMT 90.78 0.81 0.93 0.88 0.95
J48 92.43 0.84 0.93 0.91 0.93
decision tree 83.55 0.69 0.96 0.76 0.82
random forest 96.38 0.92 0.97 0.95 0.98
COVID-Pred 99.67 0.99 1.00 0.99 0.99
COVID-Pred (mean) 99.38 ± 0.11 0.98 ± 0.003 0.99 ± 0.003 0.99 ± 0.001 0.99 ± 0.001
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89.80%, 0.80, 0.98, 0.84, and 0.96, respectively; MLP achieved
92.10%, 0.84, 0.96, 0.88, and 0.96, respectively; SMO achieved
88.15%, 0.77, 0.98, 0.82, and 0.87, respectively; SGD achieved
91.77%, 0.84, 0.98, 0.87, and 0.91, respectively; LMT achieved
90.78%, 0.81, 0.93, 0.88, and 0.95, respectively; J48 achieved
92.43%, 0.84, 0.93, 0.91, and 0.93, respectively; decision tree
achieved 83.55%, 0.69, 0.96, 0.76, and 0.82, respectively; and
random forest achieved 96.38%, 0.92, 0.97, 0.95, and 0.98,
respectively. COVID-Pred obtained 10-CV ACC, MCC, SN,
SP, and AUC of 99.67%, 0.99, 1.00, 0.99, and 0.99,
respectively. The prediction performance of COVID-Pred
was better than those of the other machine learning methods,
as shown in Table 1. The COVID-Pred method achieved mean
performance, 10-CV, MCC, SN, SP, and AUC of 99.38 ± 0.11,
0.98 ± 0.003, 0.99 ± 0.003, 0.99 ± 0.001, and 0.99 ± 0.001,
respectively.
Informative PCP Characterization

We ranked the identified 11 PCPs based on their prediction
performance using the main effect difference (MED). A larger
MED score indicates a greater contribution toward prediction
accuracy. The identified 11 PCPs and their corresponding
ranks and MED scores are listed in Table 2. The identified 11

properties, including FAUJ880103, ONEK900101,
PALJ810116, AURR980102, FAUJ880106, TANS770103,
F A SG7 6 0 1 0 1 , MONM99 0 1 0 1 , AURR9 8 0 1 1 6 ,
DAYM780201, and RICJ880117, were analyzed further to
explore their roles in SARS-CoV-2 proteins.
Normalized van der Waals Volume. The top PCP based

on the MED results was normalized by the van der Waals
volume (FAUJ880103),30 with a MED score of 9.94. Faucher̀e
et al. measured the side chain parameters of the 20 amino
acids. The relevance of the parameters for hydrophobicity and
steric and electric properties of the amino acid side chains was
assessed30 in which the normalized van der Waals volume of
the amino acid side chains was measured. There are different
mechanisms involved in protein molecule interactions,
including electrostatic forces, salvation forces, and van der
Waals forces. Van der Waals forces act during interactions of
proteins with other molecules.31 Recently, stronger van der
Waals interactions were found between SARS-CoV-2 and
ACE2 compared to those between SARS-CoV and ACE2.32 A
molecular docking study on SARS-CoV-2 reported that van

der Waals interactions play a major role in the binding
process.33 Yan et al. found that subtle amino acid changes
improve the van der Waals interactions between SARS-CoV-2
and ACE2 and might determine the stronger interaction.34

More amino acids that formed hydrogen bonds and van der
Waals interactions were found at the SARS-CoV-2 interaction
sites when compared to those at the SARS-CoV interaction
sites. Wang et al. identified that the SARS-CoV-2-CTD
binding interface has more amino acid residues forming van
der Waals interactions than SARS-RBD that directly interacts
with ACE2.35 Stronger electrostatic and van der Waals
interactions were observed between SARS-CoV-2 and ACE2
compared to those between SARS-CoV and ACE2.36

We thus measured the normalized van der Waals volumes
for HCoV and nHCoV according to FAUJ880103.30 We
observed that the average normalized van der Waals volumes
for HCoV were slightly higher than those for nHCoV. The
mean normalized van der Waals volumes obtained for HCoV
and nHCoV were 0.17 ± 0.10 and 0.16 ± 0.09, respectively.
Among the 20 amino acids, larger van der Waals volume
differences were observed between HCoV and nHCoV for L,
K, N, R, and V. Additionally, we also observed slightly larger
van der Waals volumes for the HCoV S proteins compared to
the nHCoV S proteins. The amino acids R, Y, K, and P showed
larger differences in van der Waals volumes between the HCoV
and nHCoV proteins, as shown in Figure S2A (Supplementary
Data 1).

Delta G Values for the Peptides Extrapolated to 0 M
Urea. The conformational preferences of the amino acids
influence the secondary and tertiary structures of proteins.
Aydin et al. reported a 50% α-helical content in a designed
recombinant SARS-CoV S2 domain fusion protein.37 Sub-
sequent conformational changes at the helices are critical to
the fusion of viral and host membranes and the release of the
viral genome into the host cells.38 Karyn et al. measured the
free energy difference (ΔΔG0) values of amino acids by
substituting them in the guest sites of alpha helices.39 We
further calculated the ΔΔG0 values for HCoV and nHCoV
according to ONEK900101.39 The mean ΔΔG0 values did not
show much difference between HCoV and nHCoV, but among
the 20 amino acids, L, N, K, and E showed the largest
differences in ΔΔG0 values between HCoV and nHCoV. A
slight difference in the ΔΔG0 value was observed between the
HCoV and nHCoV S proteins in which amino acids R, Y, V,
and K showed a larger difference in ΔΔG0 value compared to
the others.

Normalized Frequency of Turn in α/β Class. The
property of PALJ810116 is described as “Normalized
frequency of turn in α/β class.”40 Palau et al. calculated the
conformational propensities of each amino acid for secondary
structural alignments. The utilization of amino acids depends
on the amount and topology of different secondary structures,
and there are distinct preferences for α/β protein amino acids,
such as I and V being the preferred amino acids in the α/β
structures.40 A circular dichroism spectroscopy study reported
that a SARS-CoV-2 fusion peptide has an α-helical content.41

Therefore, we measured the normalized propensities of α/β in
HCoV and nHCoV. We observed a slight difference in the
mean normalized α/β turns between HCoV and nHCoV with
a mean normalized frequency of α/β turns of 0.048 ± 0.02 and
0.050 ± 0.03, respectively. Larger differences in the amino
acids for this property between HCoV and nHCoV were
observed for N, K, G, S, and Y. There was no mean difference

Table 2. MED Analysis

rank AAindex-ID AAindex-desc MED

1 FAUJ880103 normalized van der Waals volume 9.94
2 ONEK900101 delta G values for the peptides

extrapolated to 0 M urea
9.33

3 PALJ810116 normalized frequency of turn in α/β class 8.05
4 AURR980102 normalized positional residue frequency

at the helix termini N″’
6.83

5 FAUJ880106 STERIMOL maximum width of the side
chain

6.56

6 TANS770103 normalized frequency of the extended
structure

6.56

7 FASG760101 molecular weight 5.68
8 MONM990101 turn propensity scale for transmembrane

helices
4.33

9 AURR980116 normalized positional residue frequency
at the helix termini Cc

3.80

10 DAYM780201 relative mutability 1.91
11 RICJ880117 relative preference value at C″ 0.50
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observed for this property between the HCoV and nHCoV S
proteins, but amino acids Y, R, P, G, and S showed a difference
in the normalized frequency of turns in α/β between the
HCoV and nHCoV S proteins. This analysis indicates that
amino acid propensities at α/β structures of SARS-CoV-2
might play an important role in the ACE2 binding process.
Normalized Positional Residue Frequency at the

Helix Termini N″. The property of AURR980102 describes
the normalized positional residue frequency at the helix termini
N″. Aurora and Rose examined the role of helix capping in the
secondary structures of proteins and identified seven distinct
capping motifs at the helices C-terminus and N-terminus,
where each motif exhibits a pattern of hydrogen bonds with
hydrophobic interactions.42 Various experiments demonstrated
that the capping stabilizes the α-helices in proteins43−45 and
mutations of interacting residues in the capping motifs affect
protein stability.46 According to a previous study,42 the
normalized frequency of Pro is higher in N-terminal motifs,
and also Pro functions as a hydrophobic residue. The CoV S
glycoprotein is characterized by a complex of heptad-repeated
regions (HR1 and HR2). The amide groups at the N-terminus
of HR2 are capped by Asn, which interacts with the amide
group via ordered water molecules, which may be one of the
influential factors that stabilize the S glycol protein.47 To
examine the helix capping preferences, we measured the
normalized frequencies of amino acids at helix capping in
HCoV and nHCoV. We observed a slight difference in the
mean normalized positional residue frequency at the helix
termini N″ between HCoV and nHCoV. Although there was

no large mean difference between HCoV and nHCoV for this
property, we observed a larger difference in the normalized
positional residue frequency at the helix termini N″ for the
amino acids N, L, K, E, and G between HCoV and nHCoV as
well as for R, P, K, S, and E between the S proteins of HCoV
and nHCoV.

Relative Mutability. Dayhoff et al. calculated the relative
mutability of amino acids, which indicates the probability of
amino acid changes in a given small evolutionary interval.48

The genome analysis of SARS-CoV-2 revealed that nearly 80%
of the recurrent mutations produced nonsynonymous changes
at the protein level, and these mutations are possible
candidates for continuing adaptation of SARS-CoV-2 to its
novel human host.49 The genetic analysis of SARS-CoV-2
discovered various mutations and deletions in coding and
noncoding regions.50 The rapid mutations of SARS-CoV-2
play important roles in the virus spread. Hence, we measured
the relative mutability of HCoV and nHCoV according to
DAYM780201.48 There was a slight difference in the mean
relative mutability between HCoV and nHCoV, 3.77 ± 2.24
and 3.9 ± 2.85, respectively. A larger difference in the relative
mutability of amino acids between HCoV and nHCoV was
observed for N, E, S, L, and T, and differences in the relative
mutability of amino acids between the S proteins of HCoV and
nHCoV were observed for R, S, V, N, and P. Furthermore, the
mutations in the S proteins were compared with the reference
strain SARS-like bat virus, which falls under nHCoV
(SLCoVZXC21/2015). We observed 203 mutations in the S
protein (PDBID:6ACJ) compared with the reference sequence

Figure 1. Comparison of PCPs between the HCoV and nHCoV proteins. (A) FAUJ880103, (B) ONEK900101, (C) PALJ810116, (D)
AURR980102, (E) FAUJ880106, (F) TANS770103, (G) FASG760101, (H) MONM990101, (I) AURR980116, (J) DAYM780201, and (K)
RICJ880117.
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Figure 2. Graphical representation of the analyzed informative PCPs using the secondary structure of 6M0J as a model.

Figure 3. Visualization of the S glycoprotein with mutations. (A) Structure of the SARS-CoV S protein (PDB: 6acc, EM 3.6 Angstrom). (B) S
glycoprotein (PDB: 6acj, EM 4.2 Angstrom) in complex with the host cell receptor ACE2 (green ribbon); mutations identified in the query
sequences are shown as colored balls (based on the nearest residue if in the loop/termini region).
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SARS-like/Bat/Nanjing/SL-CoVZXC21/2015 (PDBI-
D:6ACC). A detailed list of the mutations between these
two structures is given in Table S3 (Supplementary Data 3).
Furthermore, we performed a statistical analysis using t-test

to identify the significant amino acids of the six PCPs across
HCoV and nHCoV. The p <0.05 was considered as statistical
significance in the analysis. A significant difference (p <0.005)
in van der Waals volume between HCoV and nHCoV was
observed for the amino acids K, L, N, R, and V. The amino
acids L, N, K, and E showed a significant difference in ΔΔG0

values between HCoV and nHCoV. A significant difference in
the amino acids for the normalized frequency of turn in α/β
class between HCoV and nHCoV was observed for N, K, G, S,
and Y. A significant difference in the normalized positional
residue frequency at the helix termini N″ between HCoV and
nHCoV was observed for the amino acids N, L, K, E, and G. A
significant difference in the relative mutability of amino acids
between HCoV and nHCoV was observed for the amino acids
N, E, S, L, and T.
Additionally, the other six properties identified were the

STERIMOL maximum width of the side chain (FAUJ880106),
normalized frequency of the extended structure
(TANS770103), molecular weight (FASG760101), turn
p r o p en s i t y s c a l e f o r t r a n smemb r a n e h e l i c e s
(MONM990101), normalized positional residue frequency at
the helix termini Cc (AURR980116), and the relative
preference value at C″ (RICJ880117). Their differences
between HCoV and nHCoV are shown in Figure 1. The
amino acid compositional preferences for the 11 PCPs
between the S proteins of HCoV and nHCoV are shown in
Figure S2 (Supplementary Data 1). Graphical representations
of the five analyzed properties, FAUJ880103, ONEK900101,
PALJ810116, AURR980102, and DAYM780201, are shown in
Figure 2. The comparison of the mutations between the S
protein and the reference strain SARS-like bat virus is shown in
Figure 3. Furthermore, we ranked the amino acids based on
their compositional preference differences between HCoV and
nHCoV for the 11 PCPs. The amino acid rank is proportional
to the compositional preference difference, meaning that the

rank one amino acid has the greatest difference between HCoV
and nHCoV. The amino acids that show compositional
preference differences for the 11 PCPs between HCoV and
nHCoV are shown in Figure 4. The amino acids that show
compositional preference differences for the 11 PCPs between
the S proteins of HCoV and nHCoV are shown in Figure S3
(Supplementary Data 1). The identified 11 PCPs and their
amino acid compositional preferences are reported in Table S4
(Supplementary Data ).

Analysis of Amino Acid and Dipeptide Compositions

Amino acid differences in different proteins could shed light on
how SARS-CoV-2 is functionally and structurally different
from humans and other organisms. Hence, the AAC
differences were measured between HCoV and nHCoV. The
maximum amino acid compositional differences between
HCoV and nHCoV were obtained for L, K, and N with a
±2% composition difference and for E, H, R, M, Y, Q, G, V, S,
and T with a ±1% composition difference, while the other
amino acids did not show any differences, as shown in Figure
5A. The AAC differences for all of the amino acids are listed in
Table 3. When we compared the S proteins of HCoV and
nHCoV, the maximum AAC difference was observed for the
amino acid R with a 2% composition difference and for P, K,
G, V, N, and V with a ±1% difference, as shown in Figure S4
(Supplementary Data 1).
Dipeptides play an important role in folding and peptide

binding. Therefore, DPCs were measured for the HCoV,
nHCoV, and HCoV S proteins. The top five DPCs obtained
for HCoV were LL, FL, LV, VL, and TL, while for nHCoV,
they were LL, VN, NG, SV, and SL; for the HCoV S proteins,
they were RR, VL, IA, SN, and SV. A heatmap showing the
differences in the DPC of HCoV and nHCoV is shown in
Figure 5B. These AAC and DPC differences may be important
factors for functional and pathogenic divergence of SARS-
CoV-2. Heatmaps showing the DPCs of HCoV and nHCoV
are shown in Figure S5A,5B (Supplementary Data 1).

Figure 4. Normalized amino acid compositional preferences showing differences in the 11 PCPs between HCoV and nHCoV.
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■ CONCLUSIONS

Currently, substantial efforts are being made to develop
therapeutic strategies51−53 to eradicate the COVID-19 health
crisis. Identifying the informative PCPs of COVID proteins
could assist in vaccine design and COVID prevention. Due to
the potential role of machine learning in solving many
biological issues, it is considered a suitable tool for COVID-
19 research. Hence, machine learning-based prediction models
for COVID-19 are necessary to identify and analyze the
important biomarkers for vaccine design. Here, to explore the

PCPs of HCoV, we developed COVID-Pred for identification
of valuable information of COVID proteins that could help in
understanding their functions. A dataset consisting of protein
sequences from 4320 HCoV and nHCoV was retrieved from
the GISAID and NCBI databases. COVID-Pred was developed
for the identification of informative PCPs and for the
prediction of species-specific coronavirus proteins. COVID-
Pred selected 11 PCPs and achieved 10-CV ACC, AUC, test
ACC, and test AUC of 99.53%, 0.996, 97.80%, and 0.991,
respectively, and obtained 100% (7/7) accuracy on an

Figure 5. Amino acid and dipeptide compositional analysis. (A) Amino acid compositional differences between HCoV and nHCoV and (B)
heatmap showing dipeptide compositional differences between HCoV and nHCoV.
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independent data set consisting of seven HCoV S protein
sequences.
Further analysis of five informative PCPs revealed that van

der Waals forces, α-helices, frequencies of amino acids at α/β
turns, helix capping, and mutability played some significant
roles in differences between HCoV and nHCoV proteins. First,
the characterization analysis of these informative PCPs
revealed that there was a slight difference observed in the
van der Waals volume between HCoV and nHCoV. Second, a
difference in the ΔΔG0 value was observed between the S
proteins of HCoV and nHCoV in which the amino acids R, Y,
V, and K showed a larger difference in ΔΔG0 value compared
to the other amino acids. Third, a larger difference in the
amino acids for PALJ810116 was observed between HCoV
and nHCoV for N, K, G, S, and Y. Fourth, we observed a larger
difference in the normalized positional residue frequency at the
helix termini N″ for the amino acids N, L, K, E, and G between
HCoV and nHCoV as well as for R, P, K, S, and E between the
S proteins of HCoV and nHCoV. Fifth, a larger difference in
the relative mutability of amino acids between HCoV and
nHCoV was observed for N, E, S, L, and T, whereas the
relative mutability of amino acids between the S proteins of
HCoV and nHCoV was observed for R, S, V, N, and P. The
mutational analysis showed the mutations in the S proteins
compared with the reference strain SARS-like bat virus, which
falls under nHCoV (SLCoVZXC21/2015). Furthermore, we
observed a difference in the AACs and DPCs between HCoV
and nHCoV. The amino acid and dipeptide compositional
differences for specific amino acids and dipeptides were also
observed between HCoV and nHCoV. We believe that these
findings could be helpful in understanding the functions of
COVID proteins, which will be invaluable in designing
vaccines.
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Table 3. AAC Difference between the HCoV and nHCoV
Proteins

amino acids HCoV nHCoV composition difference

L 11% 9% 2%
K 5% 4% 2%
E 5% 3% 1%
H 2% 1% 1%
R 4% 3% 1%
M 2% 2% 1%
W 1% 1% 0%
P 4% 4% 0%
D 5% 5% 0%
C 3% 3% 0%
F 5% 5% 0%
I 6% 6% 0%
A 6% 6% 0%
Y 4% 5% −1%
Q 4% 5% −1%
G 6% 7% −1%
V 7% 8% −1%
S 7% 8% −1%
T 7% 8% −1%
N 5% 7% −2%

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.1c00156
J. Proteome Res. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00156?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.1c00156/suppl_file/pr1c00156_si_001.zip
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shinn-Ying+Ho"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:syho@mail.nctu.edu.tw
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Srinivasulu+Yerukala+Sathipati"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00156?ref=pdf
https://www.gisaid.org
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.1c00156?rel=cite-as&ref=PDF&jav=VoR


■ REFERENCES
(1) Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.;
Leung, K. S. M.; Lau, E. H. Y.; Wong, J. Y.; Xing, X.; Xiang, N.; Wu,
Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen,
C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.;
Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.;
Zhang, Y.; Shi, G.; Lam, T. T. Y.; Wu, J. T.; Gao, G. F.; Cowling, B. J.;
Yang, B.; Leung, G. M.; Feng, Z. Early Transmission Dynamics in
Wuhan, China, of Novel Coronavirus−Infected Pneumonia. N. Engl. J.
Med. 2020, 382, 1199−1207.
(2) Family - Coronaviridae. In Virus Taxonomy; King, A. M. Q.;
Adams, M. J.; Carstens, E. B.; Lefkowitz, E. J., Eds. Elsevier: San
Diego, 2012; 806−828.
(3) Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang,
W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; Chen, H.-D.; Chen, J.;
Luo, Y.; Guo, H.; Jiang, R.-D.; Liu, M.-Q.; Chen, Y.; Shen, X.-R.;
Wang, X.; Zheng, X.-S.; Zhao, K.; Chen, Q.-J.; Deng, F.; Liu, L.-L.;
Yan, B.; Zhan, F.-X.; Wang, Y.-Y.; Xiao, G.-F.; Shi, Z.-L. A pneumonia
outbreak associated with a new coronavirus of probable bat origin.
Nature 2020, 579, 270−273.
(4) Masters, P. S. The Molecular Biology of Coronaviruses. In
Advances in Virus Research; Academic Press, 2006; 66, 193−292.
(5) Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.;
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