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a b s t r a c t 

Using the Density Functional Theory approach and in silico docking, the current study analyzes the in- 

hibitory role of a novel α-aminophosphonate derivative against SARS-CoV-2 major protease (Mpro) and 

RNA dependent RNA polymerase (RdRp) of SARS-CoV-2. FT-IR, UV–Vis, and NMR (1H, 13C, 31P) ap- 

proaches were used to produce and confirm the novel α-aminophosphonate derivative. The quantum 

chemical parameters were detremined, and the reactivity of the synthesized molecule was discussed us- 

ing DFT at the B3LYP/6-31G(d,p) level. In addition, the inhibitory function of the investigated derivative 

for SARS-CoV-2 major protease (Mpro) and RNA dependent RNA polymerase (RdRp) was estimated using 

in silico docking. These discoveries could pave the way for novel SARS-CoV-2 therapies to develop and 

be tested. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Coronaviridae virus SARS-CoV-2. This infectious disease first 

urfaced in the Chinese city of Wuhan in December 2019, soon 

preading throughout China and then internationally, resulting in 

 global outbreak. In China, on November 9th [1] , the COVID-19 

irus had spread to over 190 countries, causing 50 million illnesses 

nd 1 250 0 0 0 deaths [2] . Covid-19 is a respiratory illness that can

e deadly in elderly or chronically ill patients. It is spread by inti- 

ate contact with sick individuals. Many doctors have been wait- 

ng for the SARS-CoV-2 coronavirus to emerge. When confronted 

ith an unknown illness, they often had to do what they had on 

and to treat their patients; this pushed them to experiment with 

llegal medications and therapies. Covid-19 stands for "Coronavirus 

llness 2019," a disease caused by the even though a health cri- 

is caused the COVID-19 pandemic, it infected millions of people 

orldwide and caused unprecedented tension and a surge in all as- 

ects of life. COVID-19 has caused widespread misery and human 

uffering. It has hurt social life, health care systems, educational 
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ystems, technological, industrial, agricultural production, and fi- 

ancial systems worldwide, pushing people’s socioeconomic well- 

eing to the brink of collapse [3] . However, because of the pan- 

emic’s global nature, people from all over the world may band 

ogether and work together to slow and stop the spread of the dis- 

ase and find new drug treatments. 

In this context, and according to a study published in the jour- 

al Infectious Diseases and Therapy by the University of Pennsyl- 

ania (United States), 115 different drugs and remedies were pre- 

cribed to the first patients with Covid-19, a total of 9152 pa- 

ients, and the vast majority of these treatments were adminis- 

ered outside of standard care protocols and without proven ef- 

ectiveness, with only a small number of articles published with 

xploitable data on their efficacy [4] . Antivirals, particularly the 

opinavir/ritonavir combination, are among these medications, as 

re antibiotics and corticosteroids such as methylprednisolone. Pa- 

ients have also been treated with antibodies, while others have 

een treated solely or with traditional medical remedies such as 

erbal decoctions [5] . In Algeria, for example, two medications, Hy- 

roxychloroquine (HCQ) and Chloroquine(CQ) have been approved 

or the treatment of individuals with coronavirus illness 2019 

COVID-19) [6] , against COVID-19 [7–11] . Also, some researchers 

re evaluating drugs approved for other vision conditions to see 

https://doi.org/10.1016/j.molstruc.2022.134196
http://www.ScienceDirect.com
http://www.elsevier.com/locate/molstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molstruc.2022.134196&domain=pdf
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f they can be repositioned for treatment and prevention in ani- 

als and humans [12–14] , and regulators have yet to approve any 

rugs for the treatment of SARS-COV-2 infection. Researchers need 

o understand better the dynamics of SRAS-CoV-2, the virus that 

auses the disease. However, due to the difficulty of experimental 

easurements and the rapid progression of the coronavirus, they 

ave turned to models to better understand how the disease de- 

elops in the body, particularly in the blood and immune system 

15–17] , in order to model drug treatments and identify ideal de- 

ivery methods [18–20] . 

As a result, various research teams worldwide have already con- 

ucted an extensive study to assess the efficacy of several medica- 

ions α-aminophosphonates, structural counterparts of the corre- 

ponding α-amino acids, have gotten much attention in this con- 

ext, and their synthesis has gotten much attention in synthetic or- 

anic chemistry and medicinal chemistry [21] . They play an impor- 

ant role and exhibit various biological and biochemical properties. 

hey effectively inhibit the growth of plasmodium falciparum, the 

arasite that causes malaria, in test tubes [22] . They also act as in-

ibitors of specific enzymes, such as HIV protease, thrombin, and 

uman collagenase, and suppress the growth of various tumours 

nd viruses [23 , 24] . Antibiotics [25] , antimicrobials [26] , anticancer 

gents 27] , and antioxidants agents [28] are all examples of α- 

minophosphonates. For coronaviruses, such as SARS-CoV-2 [29–

3] , enzymes such as Mpro/3CLpro and RdRp, which play signifi- 

ant roles in viral transcription and replication, have been regarded 

s interesting therapeutic targets. CoV-2 is difficult, this study 

ought to establish a link between some quantum descriptors and 

he inhibitory action of the examined α-aminophosphonates for 

ARS-CoV-2. The Density Functional Theory (DFT) approach de- 

ived quantum chemical parameters at the B3LYP/6-31G(d,p) level. 

he energy of the highest occupied molecular orbital (EHOMO), the 

nergy of the lowest unoccupied molecular orbital (ELUMO), the 

nergy gap ( �Egap), global hardness ( η), global softness ( σ ), ab- 

olute electronegativity ( χ ), and the electrophilicity index ( ω) are 

ome of the characteristics. This study was also used to predict the 

nhibitory activity of the examined α-aminophosphonate for SARS- 

oV-2 in silico docking. 

. Materials and methods 

.1. Experimental 

All of the chemical substances used in this research were ac- 

uired from Sigma-Aldrich and used without additional purifica- 

ion. The melting point of the obtained compound was determined 

sing an open capillary method in Buchi Melting Point B-540 (60 

 900 °C). In contrast, UV–vis spectra were obtained using a JASCO 

-650 UV–Vis spectrophotometer with quartz cells of 1 cm path 

ength in Methanol between 200 and 800 nm. FT-IR spectra were 

btained using a JASCO 4200 spectrometer between 40 0 0 and 

00 cm 1. Finally, the 1H, 13C, and 31P NMR spectra were obtained 

sing a Bruker AV III 300 MHz in DMSO–d6 with tetramethylsilane 

TMS) as an internal reference. 

In a Kabachnik-Fields reaction [34] , an equimolar amount of 

-amino pyridine (1 mmol, 0.094 mg), 4-hydroxybenzaldehyde 

1 mmol, 1.22 mg), and triethyl phosphite (1 mmol, 1.66 mg) 

ere combined to make diethyl(4-hydroxyphenyl) [(pyridine-4- 

l)amino]methylphosphonate. The reaction was monitored using 

hromatography TLC (n-hexane/ethyl acetate) on Merck pre-coated 

F254 silica plates. After that, the solid product was recrystallized 

n ethanol and dried at room temperature. The structure of the ob- 

ained α-aminophosphonate was confirmed by FT-IR, UV–Vis, 1H, 

3C, and 31P NMR spectra (DHPAMP). 
2 
.2. Computational details 

.2.1. Quantum chemical calculations 

The Lee-Yang–Parr nonlocal correlation functional (RB3LYP) and 

eck’s three-parameter exchange functional (B3LYP) with the 6- 

1G (d, p) basis set were used in all calculations [35 , 36] . The Gaus-

ian 09 program parcel [37] was used to complete the investigated 

tructure’s full optimization and vibrational study. Gauss View 

.0.8 computer program was used to visualize the results [38] . TD- 

CF was used to forecast UV–Vis spectra using the B3LYP/6.31G- 

1G (d, p) level, while 1H and 13C chemical shift calculations were 

erformed using the 6.31G(d,p) basis set in DMSO solution. The 

sotropic chemical shifts concerning tetramethylsilane were calcu- 

ated using the isotropic shielding values (TMS). The dipole mo- 

ent (μ), energy gap ( �Egap), chemical hardness ( η), chemical 

oftness ( σ ), electronegativity ( χ ), and global electrophilicity index 

 ω) were estimated with the following formula [39–41] . 

E gap = E LUMO − E HOMO (1) 

= 

E LUMO − E HOMO 

2 

(2) 

= 

1 

η
(3) 

= 

−( E HOMO + E LUMO ) 

2 

(4) 

 = 

(
χ2 

2 η

)
(5) 

.2.2. Molecular docking 

One of the most basic and essential strategies for drug develop- 

ent is molecular docking analysis [42–44] . It was carried out to 

etermine the ligand’s binding affinity for SARS-CoV-2 major pro- 

ease (Mpro, also known as 3CLPro or chymotrypsin-like protease) 

nd RNA dependent RNA polymerase (RdRp) [45] . Mpro and PLpro 

re proteases with the codes 6LU7 and 7BV2 [46] in the Protein 

ata Bank (PDB). Autodock software version 4.2.6 [47] was used to 

isualize the molecular docking process, including a built-in grid 

f 30 × 30 × 30 Ǻ3. The DHPAMP-RdRp and DHPAMP -RdRp com- 

lexes were visualized and depicted using Accelrys Discovery Stu- 

io [48] . 

. Results and discussion 

.1. Experimental 

.1.1. IR spectra 

DHPAMP stands for Diethyl(4-hydroxyphenyl) [(pyridine-4-yl) 

mino] methyl phosphonate. Mol.Wt: 336. 322, Yield: 85% white 

olid, mp 90 °C. The vibrational analysis is an effective approach 

o locating vibrational modes linked with a compound’s projected 

pecific molecular structure. A non-linear molecule with N atoms 

as many potentially active observable fundamentals of three 

ranslational and three rotational degrees of freedom (3N-6). The 

ibrational bands of DHPAMP were allocated using the GaussView 

olecular visualization tool [38] . There are 126 common vibration 

odes for the DHPAMP molecule because it comprises 44 atoms. 

ig. 2 shows the measured FT-IR spectra of DHPAMP beside the hy- 

othesized infrared spectra. Table 1 summarizes the observed and 

stimated frequencies using DFT/B3LYP with the 6-31G (d, p) ba- 

is set and associated DHPAMP probable assignments. The func- 

ional group’s unique peaks may be seen in the IR spectra of the 

-aminophosphonate molecule: Positive evidence for the synthesis 
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Table 1 

Comparison of the title compound’s observed and calculated vibrational spectra. 

Experimental IR (cm 

−1 ) Calculated(cm 

−1 ) B3LYP/6-31G(d, p) Assignment 

3253 3526 ν (N 

–H) 

2844–2999 3225–3039 ν(C –H) arom; ν(C –H) aliph 

1650 ∼1543 1561–1659 ν(C = C), ν (C = N) /aromatiques 

1381 1309 ν ( –P –CH 2 ) 

1215 1211 ν (P = O) 

1039 1056 ν (C –N) aliphatiques 

959 968 ν(C –C)aliphatiques 

764 768 ν(P –O) 

697 744 ν (P –O 

–C) 

Fig. 1. Synthesis procedure of DHPAMP. 

Fig. 2. (a) Calculated and (b) experimental FT-IR spectra of DHPAMP. 
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Fig. 3. DHPAMP’s UV-visible spectrum. 
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f functional groups is the elimination of the aldehyde’s distinctive 

arbonyl peaks and the imprinting of the primary amine group on 

he produced molecule. νN–H (3253), νC–H (aliphatic) (2844–2999), 

(C = C), ν (C = N) aromatiques (1650–1543), ν (-P-CH2) (1381), νP = O 
1215), ν (C –N) aliphatiques (1039), ν(C –C)aliphatiques (959), νP-O (764), 

P–O –C (697). There is a good match between the experimental and 

omputed frequencies ( Fig. 2 ). 

.1.2. UV–vis analysis 

Fig. 3 shows the measured UV–vis spectra of DHPAMP and the 

ypothesized infrared spectra. They were carried out in methanol. 

he spectra of the synthesized product differ significantly from 

hose of the starting products, with considerable displacements 

f the bands’ maximum values and the emergence of the shoul- 

ers typical of α-aminophosphonate. DHPAMP’s UV–Vis spectra are 

haracterized by three absorption bands positioned at: A high- 

ctane band based on λmax = 206 characterizes the molecule. 

n contrast, another band at λmax2 = 243 nm corresponds to 

he C = C group of the aromatic ring’s π→ π ∗ transitions. The 
3 
 → π ∗ transitions associated with the presence of heteroatoms (O, 

, and P) on the molecular structure of the examined molecule 

re allocated to the band that appeared λmax3 = 293 nm, while 

max1 = 198 nm, λmax2 = 232 nm, λmax3 = 309 nm are the cal- 

ulated values by the (B3LYP/6-31G(d, p) technique, respectively. 

hese findings show distinct discrepancies between the spectra of 

he acquired product and the spectra of the starting products, with 

ood agreement between experimental and predicted values for 

he current molecule (Supplementary file). 

.1.3. NMR spectroscopy 

NMR spectroscopies of 1H, 13C, and 31P were also used to 

escribe the molecule. The title compound’s 1H, 13C, and 31P 

MR spectra were recorded using TMS as an internal standard and 

MSO as the solvent, following the numbering scheme indicated 

n (Supplementary file). The DFT (B3LYP) approach with the 6-31G 

d, p) basis sets was used to produce GIAO 1H and 13C chem- 

cal shift values (concerning TMS), which were compared to ex- 

erimental 1H and 13C chemical shift values. Table 2 summarizes 

he general conclusions of this calculation, along with experimen- 

al values. In addition, we present correlation graphs based on cal- 

ulations in Fig. 4 to compare with experimental observations. As 

hown in Table 2 and Fig. 5 the experimental values are in good 

greement with the DFT/B3LYP/6-31G (d,p) results. 
1 H NMR (400 MHz, DMSO): δ (ppm): 1.13 ppm (3H, t, 

 = 7.0 Hz, –CH 2 –CH 3 ), 1.19 ppm (3H, t, J = 7.0 Hz, –CH 2 –CH 3 ),

.84–3.99 ppm (m, 4H, –CH 2 –CH 3 ), 4.80 ppm (H, H 

–C-P), 

.83 ppm (H, -NH), 6.75 ppm (1H, arom) 6.77 ppm (1H, arom), 

.95 ppm (1H, arom), 6.98 ppm (1H, arom), 7.24 ppm (1H, 

rom), 7.35 ppm (1H, arom), 7.75 ppm (1H, arom), 7.77 ppm 

1H, arom), 8.08 pm (1H, arom), 8.10 pm (1H, arom), 9.80 ppm 
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Table 2 

Isotropic chemical shifts (ppm) for the title molecule, both ex- 

perimental and theoretical (13C and 1H). 

Atom Experimental B3LYP/6-31G(d,p) 

1-C 128.84 127.29 

2-C 129.14 128.20 

3-C 132.51 135.67 

4-C 129.20 133.14 

5-C 128.89 128.00 

6-C 191.30 159.87 

11-C 62.17 67.24 

13-C 163.91 157.64 

14-C 115.11 126.54 

15-C 116.34 126.79 

16-C 157.39 153.11 

18-C 140.22 152.19 

28-C 68.91 70.68 

32- C 16.68 25.38 

37-C 70.26 75.35 

41- C 16.79 27.34 

7-H 6.75 8.16 

8-H 7.75 6.17 

9-H 7.77 7.17 

10-H 6.98 6.16 

12-H 4.80 3.87 

17-H 7.24 8.17 

19-H 7.35 8.17 

20-H 8.08 9.42 

21-H 8.10 9.51 

23-H 4.83 4.05 

26-H 9.80 9.93 

29-H 3.84 5.06 

33-H 1.13 1.97 

34-H 1.13 1.64 

35-H 1.13 0.94 

36-H 3.84 5.06 

38- H 3.99 5.36 

39- H 3.99 5.38 

42-H 1.13 2.05 

43-H 1.13 2.72 

43- H 1.13 3.00 

Fig. 4. Experimental and theoretical NMR chemical shift values(ppm) of the DH- 

PAMP. 
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Table 3 

Quantum chemical parameters of DHPAMP calculated 

using DFT. 

Quantum chemical parameters Values 

Total energy E tot (eV) -37,393.74736 

E HOMO (eV) −5.89970 

E LUMO (eV) −0.26122 

�E gap (E LUMO -E HOMO ) (eV) 5.63848 

Dipôle moment (μ) (debye) 4.8495 

Hardness ( η) 2.81924 

Softness ( σ ) 0.45612 

Electronegativity ( χ ) 3.08046 

Electrophilicity ( ω) 1.68294 
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1H, OH). 13 C NMR (400 MHz, DMSO): δ (ppm): 16. 68 ppm 

d, J = 11.5 Hz, –CH 2 –CH 3 ),16.79 ppm (d, J = 11.8 Hz,

CH 2 –CH 3 ), 68.51- 70.26 ppm (2C, CH 3 –CH 2 -), 62.17 ppm (1C, 

 

–C-P), 115.11–116.34 ppm (2C, –CH arom), 128.84 ppm (1C, 

CH arom), 128.89 ppm (1C, –CH arom), 129.14 ppm (1C, –CH 

rom), 129.20 ppm (1C, –CH arom), 132.51 ppm (1C, –CH arom), 

40.22 ppm (1C, –CH arom), 157.39 ppm (1C, –CH( –CH arom), 
4 
63.91 ppm (1C, –CH( –CH arom), 191.30 ppm (1C, –CH( –CH arom). 
1 P NMR (400 MHz, CDCl 3 ), δ (ppm): 22.31 ppm (C- P O (OC 2 H 5 ) 2 ).

.2. Computational achievements 

.2.1. DFT calculations 

Fig. 5 depicts the optimized structure and atom numbering 

f the examined molecule achieved using the B3LYP/6-31G tech- 

ique. The calculated total energy (E Tot ), the dipole moment (μ), 

nergy gap ( �Egap), chemical hardness ( η), chemical softness ( σ ), 

lectronegativity ( χ ), and global electrophilicity index ( ω) are all 

hown in Table 3 . 

Frontier Molecular Orbitals (FMO) refers to two molecular or- 

ital frontiers known as HOMO (Highest Occupied Molecular Or- 

ital) and LUMO (Lowest Unoccupied Molecular Orbital), or LUMO 

s directly related to electron affinity. In contrast, HOMO is di- 

ectly related to ionization potential [4 8 , 4 9] . These orbitals aid

n understanding the molecule’s chemical stability and reactivity 

50 , 51] . Furthermore, the estimated value of �Egap shows the en- 

rgy required to excite a molecule’s electrons. If the HOMO-LUMO 

nergy gap is small, molecules can be unstable and readily ex- 

ited, whereas if the �Egap is big, molecules can be very stable 

nd chemically reactive [52] . The B3LYP/6-31G (d, p) approach was 

sed to calculate the FMOs in electronic transitions and their en- 

rgies and their orbital energy gap ( �Egap) to predict the energy 

haracteristics and reactivity of the generated compound against 

he COVID-19 virus. EHOMO and ELUMO have −5.89970 eV and 

0.26122 eV, respectively, and the energy separation between the 

OMO and the LUMO has a value of 5.63848 eV for the most sta- 

le conformer. 

The polarity of pharmacological molecules is denoted by the 

ipole moment ( μ), which is a three-dimensional vector and is 

onnected with the fractional electric charge distribution in these 

ompounds [53] . As a result, its significance is demonstrated in 

eaction mechanisms and relates to molecules’ ability to interact 

ith other molecular species. For example, the dipole moment for 

he molecule DHPAMP is 4.3301 Debye, which indicates that it has 

 high ability to interact with the environment. 

Furthermore, the hardness( η) and local softness ( σ ) of drug 

olecules can be used to assess their resistance to deformation 

f their electron clouds or polarization [54] . The examined com- 

ound’s hardness and local softness were computed and deter- 

ined to be 2.81924 and 0.45612 eV, respectively. Electronegativ- 

ty ( χ ) is a metric that compares an atom’s attraction to bonding 

lectrons in molecules to that of other atoms. The molecule’s elec- 

ronegativity is calculated and found to be 3.08046 eV, showing 

hat the ligand is an electronegative species. The electrophilicity 

ndex( ω) is used to describe a molecule’s biological activity [55] , 

ith higher values indicating stronger electrophilicity and lower 

alues indicating a weak electrophile [56] . We can divide organic 

olecules into three categories based on their electrophilicity val- 

es: marginal electrophiles with a value of less than 0.8 eV, moder- 
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Fig. 5. Optimized structure with atomic Mulliken charges, HOMO and LUMO frontierorbitals and MEP map of DHPAMP. 
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te electrophiles between 0.8 and 1.5 eV, and strong electrophiles 

ith a value greater than 1.5 eV [57] . The value of 1.68294 eV for

he researched ligand indicates that it is a good electrophile capa- 

le of receiving an electron doublet to form bonds with another 

eagent, which must be a nucleophile. 

Because atomic charges affect dipole moment, molecular polar- 

zability, electronic structure, and many other aspects of molecu- 

ar systems, while Mulliken atomic charge calculation is a crucial 

arameter for molecular systems, medicinal compounds’ atomic 

ulliken charges can be utilized to prove their adsorptive loca- 

ions [58] . The Mulliken atomic charges of the estimated com- 

ound were calculated using DFT with B3LYP 6-311G (d,p) as a ba- 

is set and are listed in Table 4 and are plotted in Fig. 6 . According
5 
o the data, the oxygen and nitrogen atoms have the most signif- 

cant negative charges because of molecular relaxation. However, 

he hydrogen atoms also cover the positive charges. The majority 

f negative charges are concentrated on the atoms N22, N24, O25, 

30, O31 and O40, which are thought to be the active region of 

dsorption [59] . Furthermore, most of the positive charges are car- 

ied by the P27 atom. 

.2.2. Structure and preparation of MPro for docking studies 

Because of its role in processing translated polyproteins, Mpro 

as chosen as a docking study target. In contrast, RdRp was chosen 

ecause of its significance in viral genome replication and tran- 

cription. The DHPAMP ligand was docked with receptors to de- 
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Table 4 

Mulliken atomic charges of the DHPAMP calculated by DFT at 

B3LYP/6-31G (d,p). 

Symbol MM Charge Symbol MM Charge 

1C −0.10 23H 0.27 

2C −0.11 24N −0.45 

3C 0.14 25O −0.55 

4C −0.12 26H 0.31 

5C −0.13 27P 1.17 

6C 0.32 28C 0.04 

7H 0.10 29H 0.12 

8H 0.09 30O −0.54 

9H 0.08 31O −0.60 

10H 0.07 32C −0.33 

11C −0.21 33H 0.11 

12H 0.14 34H 0.11 

13C 0.36 35H 0.12 

14C −0.14 36H 0.13 

15C −0.12 37C 0.04 

16C 0.08 38H 0.11 

17H 0.07 39H 0.11 

18C 0.08 40O −0.53 

19H 0.07 41C −0.33 

20H 0.09 42H 0.10 

21H 0.09 43H 0.12 

22N −0.61 44H 0.15 

Fig. 6. Mulliken charges charge distribution of DHPAMP compound. 
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p

ermine the correct conformation of DHPAMP in the receptor and 

he secondary forces that result from the ligand and the recep- 

or’s active amino acids. The molecular docking of the DHPAMP 

igand with the Mpro and RdRp receptors was used to determine 

he proper conformation of the ligand in the receptor and the sec- 
Fig. 8. Best docked model visualization with M 

pr

6

ndary forces that occur from DHPAMP binding to the receptor’s 

ctive amino acids. As a result, novel medication designs are de- 

eloped. The non-covalent bonds, π- π ∗ and π- σ interactions be- 

ween the active amino acids of the Mpro and RdRp target recep- 

ors and the DHPAMP ligand were assessed based on the minimal 

inding energy. Fig. 7 depict Mpro and RdRp crystal structures, re- 

pectively, while Fig. 8 depicts the crystal structures of the best 

ocked Mpro- DHPAMP and RdRp- DHPAMP complexes. The ligand 

inds to RdRp stronger than to the Main Protease, and it prefers to 

ind in the outer structure of Mpro, whereas it prefers to bind in 

he inner pocket of RdRp, as seen in Fig. 8 . According to the dock-

ng studies, the ligand showed great potential for binding to the 

ctive site of COVID-19 Mpro, and RdRp could be promising thera- 

eutic agents in COVID-19 infections. 

With binding affinities of −6.40 kcal/mol and −8.40, respec- 

ively, the docking of DHPAMP with SARS-CoV-2 Mpro and RdRp 

emonstrated significant interactions in the central pocket. For 

pro, DHPAMP created van der Waals forces with the amino 

cids HIS41, MET49, HIS164, MET165, GLU166 and GLN189, as well 

s hydrogen bonds with the amino acids SER144, HIS163, and 

LU166 ( Fig. 9 a). While for RdRp, it created van der Waals forces

ith LYS272, TYR273, ASP274, PHE275, and GLU277 and hydrogen 

onds with LEU271, LYS272, ASP274, THR276 and GLU277 ( Fig. 9 b). 

he lowest binding energy in molecular interactions is shown by 

omparing the estimated binding energies of DHPAMP and other 

edicines ( Table 5 ). lowest bending energy in interactions with 

pro and RdRp, suggesting that it has a higher affinity for bind- 

ng and that the complexes produced by Mpro-DHPAMP and RdRp- 

HPAMP are more stable than those produced by the other com- 

ounds. 
o - DHPAMP and RdRp- DHPAMP complexes. 



R. kerkour, N. Chafai, O. Moumeni et al. Journal of Molecular Structure 1272 (2023) 134196 

Fig. 9. 2D, 3D Binding-interaction diagrams of DHPAMP with SARS-CoV-2 main protease ( a ) and RNA dependent RNA polymerase ( b ). 

Table 5 

Molecular docking results of DHPAMP and some drugs with Mpro and RdRp. 

Compounds 

M 

pro Docking score 

(Kcal/mol) 

RdRp Docking score 

(Kcal/mol) 

This work (DHPAMP) −6.40 −8.40 

HDZPA [20] −6.00 −7.70 

Chloroquine [60] −4.9 −5.4 

Hydroxychloroquine [61] −5.5 −5.6 

Remdesivir [62,63] −4.96 −7.60 
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f

c

COVID-19 viral inhibitor. 
. Conclusion 

A novel α -aminophosphonate derivative was produced and 

haracterized using one-pot three-component processes. The ob- 

ained chemical is a stable solid with high melting temperature, 

nd its structure was identified using the IR, UV–Vis, 1H, 13C, and 
7 
1P NMR spectra. DFT method and molecular docking calculations 

ere used to study derivative of α-aminophosphonate. Quantum 

hemical computations (DFT) B3LYP/6-31G (d, p) were used to op- 

imize the molecular structures of this derivative, and their geo- 

etrical parameters were identified. Additionally, molecular dock- 

ng research was carried out to evaluate the synthesized ligand’s 

ffinity for binding to the main protease (Mpro) of the SARS-CoV- 

 and the RNA dependent RNA polymerase (RdRp). The obtained 

 HOMO , E LUMO , and �Egap values show that the ligand is a reactive

nd unstable species. The predicted MEP maps show potential nu- 

leophilic and electrophilic attack sites, and the Mulliken charges 

how that there may be active interaction sites as well. The in- 

estigated ligand’s interactions with Mpro and RdRp showed that 

t can bind to several bonding contacts. The derivative can be ef- 

ective in treating this condition since, according to the synthesis, 

omputational analysis, and in silico docking data, it is a potent 
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