Note

A set of tetra-nucleotide core motif SSR markers for efficient identification of potato (*Solanum tuberosum*) cultivars

Masahiro Kishine^{*1}, Katsuji Tsutsumi² and Kazumi Kitta¹

¹⁾ Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan

²⁾ Yamazaki Biscuits Co., Ltd., 1-26-2, Nishishinjuku Shinjuku-Ku, Tokyo 163-0540, Japan

Simple sequence repeat (SSR) is a popular tool for individual fingerprinting. The long-core motif (e.g. tetra-, penta-, and hexa-nucleotide) simple sequence repeats (SSRs) are preferred because they make it easier to separate and distinguish neighbor alleles. In the present study, a new set of 8 tetra-nucleotide SSRs in potato (*Solanum tuberosum*) is reported. By using these 8 markers, 72 out of 76 cultivars obtained from Japan and the United States were clearly discriminated, while two pairs, both of which arose from natural variation, showed identical profiles. The combined probability of identity between two random cultivars for the set of 8 SSR markers was estimated to be 1.10×10^{-8} , confirming the usefulness of the proposed SSR markers for finger-printing analyses of potato.

Key Words: potato, Solanum tuberosum, cultivar identification, SSR markers.

Introduction

Potato (*Solanum tuberosum*) is the fourth-largest food crop in the world, following maize, wheat, and rice. More than 4,500 potato varieties are cultivated in over 100 countries (Pieterse and Judd 2014). As the number of known varieties increases, it becomes difficult to identify them by morphological markers. Thus, reliable methods of correctly identifying cultivars are strongly needed to assess the genetic diversity of the potato germplasm.

SSR markers, or microsatellites, consist of tandemly repeated DNA sequences with a core unit of 1–6 base pairs (bp). They have many positive features useful for the genetic profiling of individuals, including abundance in plant genomes, multi-allelic co-dominant patterns, ease of use, and high variability in the number of core-motif repeats. In the long-core motif (e.g. tetra-, penta-, and hexa-nucleotide) SSRs, neighbor alleles are more easily separated from each other, while di-nucleotide SSRs are subject to a lower level of separation of neighbor alleles and a higher level of stuttering, which make the interpretation of electropherograms and the allele call less reliable (Cipriani *et al.* 2008). Long nucleotide repeats are widely adopted for genetic profiling in humans and animals (Butler *et al.* 2004, Butler 2006, Hammond *et al.* 1994, Hellmann *et al.* 2006, Ruitberg *et al.* 2001). Meanwhile, regarding plants, the use of long nucleotide repeats has been limited to the variety identification of a few crops: grape (Cipriani *et al.* 2008, 2010), *Eucalyptus* (Faria *et al.* 2011), olive (De la Rosa *et al.* 2013), peach (Dettori *et al.* 2015), and tea (Wang *et al.* 2016).

In potato, SSRs have been used to study the genetic relationships and distances between wild and cultivated potato (Ghislain *et al.* 2004, 2009, Milbourne *et al.* 1998). However, as with other crops, di- and tri-nucleotide SSRs have mainly been used, and few long-core motif SSRs have been reported (Ghislain *et al.* 2004, 2009, Milbourne *et al.* 1998).

In the present paper, we propose a new set of long-core motif SSR markers for potato with the aim of minimizing genotyping errors.

Materials and Methods

Plant materials and DNA extraction

Ten potato cultivars of in vitro cultures were obtained from the University of Idaho as representative cultivars in the United States. Potato tubers of Japanese cultivars were obtained from the Hokkaido Research Organization (HRO) Kitami Agricultural Experiment Station (9 cultivars), the Nagasaki Agricultural and Forestry Technical Development Center (8 cultivars), and the NARO Hokkaido Agricultural Research Center (49 cultivars) (**Table 3**). For each cultivar tested, DNA was extracted using the GM quicker 2 kit (Nippon Gene, Toyama, Japan) according to the supplier's protocol.

Communicated by Sachiko Isobe

Received June 28, 2017. Accepted September 14, 2017.

First Published Online in J-STAGE on November 16, 2017.

^{*}Corresponding author (e-mail: kishine@affrc.go.jp)

Potato cultivar identification using tetra-nucleotide SSR markers

PCR and DNA fragment analysis

Fifty-six SSR markers with a tetra-nucleotide motif from Spud DB (Hirsch *et al.* 2014) were initially selected. Using 4 Japanese and 4 US major cultivars, a preliminary test of PCR amplification was performed. After the screening, 8 markers were selected for efficient discrimination of cultivars.

Octaplex PCR reactions were carried in a 5 µL reaction mixture with 2.5 ng genomic DNA, 0.1 U of KOD -Multi & Epi- (Toyobo, Osaka, Japan) and appropriate concentrations of the primer pairs shown in **Table 1**. The forward primers were labeled with any of 6-FAM, HEX, NED, and PET fluorescent dyes. The PCR reactions were carried out with the following thermal profile: one cycle at 94°C for 2 min followed by 30 cycles at 98°C for 10 sec, 63°C for 30 sec, and 68°C for 30 sec. Electrophoresis was performed in a Genetic Analyzer 310 (Thermo Fisher Scientific, Waltham, MA, USA). The PCR products were analyzed using GeneMapper v3.7 software (Thermo Fisher Scientific). For each locus, peaks were assigned letters in alphabetical order from the smallest to the largest (Table 2). The number of peaks and the number of profiles per marker were evaluated based on amplification of the 76 test cultivars. Discrimination power (DP) was calculated as $DP = 1 - \sum P_i^2$ where P_i is the frequency of the ith profile.

Results and Discussion

A total of 1,729 tetra-nucleotide SSRs were annotated by Spud DB (Hirsch *et al.* 2014). Among them, 56 SSRs were selected based on a high number of repeats, and were tested

according to the following criteria: (1) two or more peaks detected in a preliminary screening with 8 cultivars, (2) no null peak, (3) at most one marker in each chromosome to ensure independence of individual markers. As a result, 8 SSRs were further selected and an 8-plex PCR condition was designed (Table 1).

Based on the analysis of the 76 test cultivars, the number of peaks ranged from 6 to 12 (average 7.4), and the number of profiles ranged from 16 to 36 (average 24.4). For each locus, the discrimination power (PD) ranged from 0.725 to 0.942, averaging 0.886 (**Table 2**). The probability of finding two random individuals with identical profiles at all 8 loci was an estimated 1.10×10^{-8} , which provided enough discriminant power to identify the tested cultivars.

Among all peaks, the differences of peak sizes between B and C of marker 8242, C and D of 12002, and A and B of 46514 were within two bases, suggesting that these small differences of peak sizes may have been caused by insertion or deletion of nucleotide except for difference of SSR motif replication. Because one base difference of peaks is sometimes difficult to discriminate in peak callings, we propose to use reference cultivars in a practical discrimination experiment or to consider results of other markers profile when these peaks are used in cultivar discrimination.

The profiles of the 76 cultivars generated from the set of 8 SSR markers are shown in **Table 3**. By using 8 markers, 72 cultivars were distinguished from each other, except for two combinations of cultivars: the combination of "Red Moon" and "Destroyer", and that of "Inca no mezame" and "Hokkai 98 (Inca Rouge)". Both of the latter cultivars are known as skin color mutants derived from the former ones,

 Table 1. Eight tetra-nucleotide SSR primers selected for identification of potato cultivars

Marker ID*	Chr.	Motif	Forward (5' to 3')	Reverse (5' to 3')	Conc. (µM)	peak range (bp)
4026/4027	1	(CTAT)n(CTAG)n	NED-AACTTGCGGGGAATAAGTGACG	ACTATACACACGTGCCCTGAAACTAG	0.09	265-346
8242	2	(CTTT)n	FAM-CGTCTTGGATGTCTTAGTTGTGG	GCAAAACCAGAAAGGCTAACAAAC	0.08	191-218
12002	3	(ACAT)n	NED-CCATGAACCTGAAGTTTTTCTGC	TGGATATCTTGTGCCTACAAGCTAG	0.10	209-235
16410	4	(ATAC)n	FAM-GTATGTTTGAGTAAAATCCTCCACCA'	TTCTCTGCCCCCTTTTAATTTG	0.16	258-354
31924	8	(ATAC)n	VIC-CGAAGACACCAAATCGCTCAG	GAAACGCCATTAACATTTTACATCG	0.07	136-250
35584	9	(GAAA)n	VIC-AGTAAGTCAAACTCAACTCCAAGGTG	GTTCTAGATTATCTCACTCATGCCTTTC	0.08	84-111
43016	11	(ATCC)n	PET-CAAGCTGCATGAAAGCCATC	TTTGCCTAAAAGTTTGTAGTGTGAGG	0.07	184-227
46514	12	(TATC)n	PET-TGCTTTTTGTTTCCTTTTGTGTG	GGAATGAAACTAAGCCTTGCTCTG	0.12	130-172

*Marker IDs are the same as in Spud DB (http://solanaceae.plantbiology.msu.edu/pgsc_download.shtml).

Table 2. Characteristics of 8 tetra-nucleotide SSR primers

Marker ID	No. of peaks	No. of profiles	Discrimi-	Averaged peak size (bp)											
			nation power	А	В	С	D	Е	F	G	Н	Ι	J	K	L
4026/4027	7	27	0.912	265.0	307.4	312.9	319.7	339.3	343.0	345.5					
8242	7	31	0.942	190.6	193.5	194.5	198.4	206.3	214.2	218.2					
12002	7	28	0.920	208.9	212.9	216.9	217.8	224.5	230.7	234.6					
16410	12	36	0.927	257.6	266.9	271.0	279.0	281.0	310.3	325.2	335.5	339.5	346.3	349.9	353.6
31924	6	22	0.918	135.6	213.5	218.2	222.2	230.3	249.9						
35584	6	17	0.874	84.0	91.9	95.9	99.8	103.7	111.2						
43016	7	16	0.725	184.3	188.0	192.0	199.5	203.5	215.0	226.9					
46514	7	18	0.869	129.9	131.2	152.5	156.9	161.1	165.1	172.0					

For each locus, peaks were assigned letters in alphabetical order from the smallest to the largest.

	-								
Cultivar	Source	4026/4027	8242	12002	16410	31924	35584	43016	46514
Ainoaka	Nagasaki	AB	CF	BCD	BE	BD	CF	D	ABE
Aiyutaka	Nagasaki	ABF	ABF	BD	BE	BD	С	G	AF
Alturas	Idaho	С	BC	CE	DEK	BDE	В	DFG	AE
Astarte	NARO	BD	BCF	D	DE	ABD	BE	D	AE
Atlantic	NARO	BDG	ACD	CDEF	BK	BD	BCE	DFG	А
Beniakari	NARO	BG	BF	DFG	BEK	DE	CEF	D	AC
Benimaru	NARO	BDG	ABD	CDFG	EHIK	AB	BE	CE	AE
Cal white	Idaho	DG	ABC	BCF	CDK	BE	BF	D	E
Chelsea (Jenny)	NARO	В	BCG	ACD	DEFK	BCD	ABE	D	AE
Cherie	NARO	BD	ABCD	CD	DEG	AD	В	DF	E
Clearwater	Idaho	A	В	BCF	DK	BE	В	D	EG
Cynthia	NARO	AB	BF	CD	DEHK	BD	В	CD	ABE
Dansyakuimo (Irish Cobber)	NARO	B	AB	CF	BCIK	AB	BC	D	E
Dejima	Nagasaki	ABF	ABF	BCD	BE	В	BC	Null	AFG
Destroyer	NARO	В	BDF	CD	AEJK	CF	AB	BCDF	ACE
Early Starch	NARO	В	CF	CD	BE	ABD	BE	D	ACG
Eniwa	NARO	G	ABF	CDF	DEKL	BDE	BC	D	ACE
Hanashibetsu	Hokkaido	BCD	AF	DFG	BE	BCD	BE	AD	AE
Haruka	NARO	BC	BF	BCDG	BEG	BD	BCEF	DEG	AEF
Hikaru	NARO	BCFG	BDEF	DE	BEK	ABCE	BCF	D	ACEF
Hokkai 50	NARO	В	BF	CDF	BCIK	AB	BC	D	AE
Hokkai 98 (Inca Rouge)	NARO	В	CG	F	EK	F	В	D	E
Hokkaikogane	NARO	BG	AB	CDF	EH	ABE	BC	D	AC
Hugenmaru	Nagasaki	ABF	AF	BCD	BE	AB	В	G	AE
Inca no hitomi	NARO	D	FG	FG	K	F	В	D	E
Inca no mezame	NARO	В	CG	F	EK	F	В	D	E
Inca Purple	NARO	BCG	BCF	CDF	EK	AB	B	AC	ACE
Inca Red	NARO	B	BF	DF	EK	AC	BC	D	ABE
Kıtaakarı	NARO	BF	ABF	CDF	BCEK	BE	BC	D	AEG
Kitahime	NARO	BC	F	CG	EFGK	BCE	BEF	DE	E
Kitamurasaki	NARO	BCG	B	CD	BEK	ADE	EF	D	ACE
Kitamusashi	NARO	FG	BDF	BD	DE	BD	BE	E	ACEF
Koganemaru	NARO	BF	AB	CD	BEK	BDE	ABE	DG	ACE
Konahubuki	Hokkaido	BG	ABD	CD	CE	BD	В	D	AG
Konayuki	Hokkaido	BG	AB	CDF	EHIK	AB	Е	CD	AE
Konayutaka	Hokkaido	BDF	ABE	DFG	BEK	BE	BC	D	AE
Matilda	NARO	BD	CDG	DG	BEI	CD	ABE	D	EG
May Queen	NARO	BDG	CDF	CFG	BEGI	BE	BE	EF	ABE
Nishiyutaka	Nagasaki	В	BCF	CD	BEK	В	BE	Null	AEG
Norin 1	NARO	B	AB	CDF	BEHK	AB	BCE	D	AE
Norking Russet	NARO	BF	BC	BCD	DE	BCE	BF	Null	AEG
Northern Ruby	NARO	CG	BCF	CD	CEK	ABD	BF	DE	AE
Okhotsk Chip	Hokkaido	BG	CDF	BCF	EK	BE	BEF	DF	AF
Oojiro	NARO	B	AD	DF	BHIK	A	BCE	D	E
Piruka	NARO	BF	ABC	BCD	BEK	BD	CE	CDG	ACE
Prevalent	NARO	CD	CDG	BD	DE	BCD	AB	CE	E
Ranger Russet	Idaho	В	CF	BDG	DEK	CD	BC	Null	AE
Ranran Chip	NARO	BDF	BCF	BCD	BEK	BD	BCF	DG	ABE
Red Andes	NARO	В	ABG	F	BDF	BDF	BE	D	ADE
Red Moon	NARO	B	BDF	CD	AEJK	CF	AB	BCDF	ACE
Rira Chip	Hokkaido	BCG	ACF	BCD	BEK	BE	BC	DG	AE
Russet Bannock	Idano	ABC	BCF	UF DOEC	DK	BDE	BU	D	EG
Russet Burbank	Idano	B	BDG	BCFG	DGK	BC	BEF	DE	AE
Kussel Norkolan Saikai 21 (Dragan Bad)	Nagagal-:	BD	BCDG	DFG	BDK	BCD	BCE	D D	AEF
Salurahuhuh:	Nagasaki	ACE	АГ	BCD	BEL	BD	BCF	D	ABE
Sakuranubuki	NAKO	EG	AB	CD	CEKL	BD	BC	D	AEG
Sanjumaru	Nagasaki	AC	BDF	BCE	BE	В		DG	AEF
Sanyenimo (vermont Gold Coln)	NAKO U-l-l-sid-	BG	ABDG	CDE	BCGK	B	BE	Null	AE
Sayaakane	Ноккалао	BD	CF	CDF	E	BCD	BCE	D	AE
Sayaka	NAKO	BC	BF	DDE	BFG	BD	BEF	DE	AE
Shadayy Quaam	Nagasaki	DF	ADF	CD	DERN	ADD	DEE	DE	AEF
Shanody	Idaha		CDEC	DCDC	DEN	ABCD	DEF	DE	ADEC
Shipetsu	NAPO	ADU BE	APE	CD	BEV		DE BC	DC-	ADEU
Singelsu Snow March	Hokkaida	BDC	ADE	CDE	DEN	ADD B	BCE	DG	ACE
Snow Match Snowden	NAPO	BDG	RCE	CDE	DEN	D D	BC	DG	ADDC
Showuch Star Duby	NARO	BDC	BCE	RCDF	BDV	BCE	BE	D	ADEU
Stat KUUy Tawaramurasaki	NARO		ACE	DCDF	DDK	DUE			ACE
TawalallulaSaKi	NARO		ACF	DUF	DE DEV		ADE	DG	ACE
Tova	NARO	DF		BCD	DEK	ADD	BCE	G	ACE
Toya	NARO	DF	ADD	CDE	DEN	DDE	DCE	U	A
IUyosfilfo	INAKU	BG	ABD	DF	EL DV	BDE	BU	U	AE
Unatina Kusset	NARO	DU E	CDF	CDC					
Wastern Pusset	INAKU	г PD	CDF	PDC	EN DEV	ADE	DE D		AE
Westelli Russel	NARO	BE	BCE	C	EV	עם	B	D	ADCE
Yukitsubura	Hokkaido	BC	C	CDF	BDG	DE	BC	Ē	AF
i unitoutuu	ilonnaluo	DC	C	CDI	000		DC	-	111

Symbols of the peaks are described in Table 2. Null indicates a cultivar in which no peaks are obtained with the corresponding primer pair.

Potato cultivar identification using tetra-nucleotide SSR markers

suggesting that these two cultivar pairs respectively have the same genomic organization other than the corresponding gene for skin color.

Cultivar identification of potato has been reported previously, and the markers described by Ghislain *et al.* (2004, 2009) have been used widely. Since these markers are mainly di- and tri-nucleotide SSRs, the lower separation of neighboring alleles and the relatively high level of stutter bands are inevitable. In fact, Reid *et al.* (2011) reported that one allele of STM3023 (di-nucleotide SSRs) is located at the stutter position for the other allele, resulting in a complication of the allele call. Additionally, simplex PCR and the various annealing temperatures of the primers are timeconsuming and labor-intensive.

The set of tetra-nucleotide SSRs described here has no or extremely little stuttering, resulting in good reproducibility and reliability of allele calling. The 8-plex PCR conditions designed in this study allow simple and rapid analysis of cultivars. These markers will be helpful for the rapid identification of potato cultivars, and consequently for protecting plant breeders' rights.

Acknowledgments

The authors would like to thank the University of Idaho, HRO Kitami Agricultural Experiment Station, Nagasaki Agricultural and Forestry Technical Development Center, and NARO Hokkaido Agricultural Research Center for providing us with potato materials.

Literature Cited

- Butler, J.M., E. Buel, F. Crivellente and B.R. McCord (2004) Forensic DNA typing by capillary electrophoresis: using the ABI Prism 310 and 3100 genetic analyzers for STR analysis. Electrophoresis 25: 1397–1412.
- Butler, J.M. (2006) Genetics and genomics of core short tandem repeat loci used in human identity testing. J. Forensic Sci. 51: 253–265.
- Cipriani, G., M.T. Marrazzo, G. Di Gaspero, A. Pfeiffer, M. Morgante and R. Testolin (2008) A set of microsatellite markers with long core repeat optimized for grape (*Vitis* spp.) genotyping. BMC Plant Biol. 8: 127.
- Cipriani, G., A. Spadotto, I. Jurman, G. Di Gaspero, M. Crespan, S. Meneghetti, E. Frare, R. Vignani, M. Cresti, M. Morgante *et al.* (2010) The SSR-based molecular profile of 1005 grapevine (*Vitis vinifera* L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geo-

graphic origin. Theor. Appl. Genet. 121: 1569-1585.

- De la Rosa, R., A. Belaj, A. Muñoz-Mérida, O. Trelles, I. Ortíz-Martín, J.J. González-Plaza, V. Valpuesta and C.R. Beuzón (2013) Development of EST-derived SSR markers with long-core repeat in olive and their use for paternity testing. J. Am. Soc. Hortic. Sci. 138: 290–296.
- Dettori, M.T., S. Micali, J. Giovinazzi, S. Scalabrin, I. Verde and G. Cipriani (2015) Mining microsatellites in the peach genome: development of new long-core SSR markers for genetic analyses in five *Prunus* species. Springerplus 4: 337.
- Faria, D.A., E.M.C. Mamani, G.J. Pappas Jr. and D. Grattapaglia (2011) Genotyping systems for *Eucalyptus* based on tetra-, penta-, and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests. Tree Genet. Genomes 7: 63–77.
- Ghislain, M., D.M. Spooner, F. Rodriguez, F. Villamón, J. Núñez, C. Vásquez, R. Waugh and M. Bonierbale (2004) Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theor. Appl. Genet. 108: 881–890.
- Ghislain, M., J. Núñez, M. Rosario Herrera, J. Pignataro, F. Guzman, M. Bonierbale and D.M. Spooner (2009) Robust and highly informative microsatellite-based genetic identity kit for potato. Mol. Breed. 23: 377–388.
- Hammond, H.A., L. Jin, Y.Zhong, C.T. Caskey and R. Chakraborty (1994) Evaluation of 13 short tandem repeat loci for use in personal identification applications. Am. J. Hum. Genet. 55: 175–189.
- Hellmann, A.P., U. Rohleder, C. Eichmann, I. Pfeiffer, W. Parson and U. Schleenbecker (2006) A proposal for standardization in forensic canine DNA typing: allele nomenclature of six canine-specific STR loci. J. Forensic Sci. 51: 274–281.
- Hirsch, C.D., J.P. Hamilton, K.L. Childs, J. Cepela, E. Crisovan, B. Vaillancourt, C.N. Hirsch, M. Habermann, B. Neal and C.R. Buell (2014) Spud DB: A resource for mining sequences, genotypes, and phenotypes to accelerate potato breeding. Plant Genome 7: 1–12.
- Milbourne, D., R.C. Meyer, A.J. Collins, L.D. Ramsay, C. Gebhardt and R. Waugh (1998) Isolation, characterisation and mapping of simple sequence repeat loci in potato. Mol. Gen. Genet. 259: 233–245.
- Pieterse, L. and J. Judd (2014) World Catalogue of potato varieties 6th edition. Agrimedia, Clenze.
- Reid, A., L. Hof, G. Felix, B. Ruecker, S. Tams, E. Milczynska, D. Esselink, G. Uenk, B. Vosman and A. Weitz (2011) Construction of an integrated microsatellite and key morphological characteristic database of potato varieties on the EU Common Catalogue. Euphytica 182: 239–249.
- Ruitberg, C.M., D.J. Reeder and J.M. Butler (2001) STRBase: A short tandem repeat DNA database for the human identity testing community. Nucleic Acids Res. 29: 320–322.
- Wang, R.J., X.F. Gao, X.R. Kong and J. Yang (2016) An efficient identification strategy of clonal tea cultivars using long-core motif SSR markers. Springerplus 5: 1152.