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The high-throughput genome-wide chromosome conformation capture (Hi-C) method has recently
become an important tool to study chromosomal interactions where one can extract meaningful biolog-
ical information including P(s) curve, topologically associated domains, A/B compartments, and other bio-
logically relevant signals. Normalization is a critical pre-processing step of downstream analyses for the
elimination of systematic and technical biases from chromatin contact matrices due to different mappa-
bility, GC content, and restriction fragment lengths. Especially, the problem of high sparsity puts forward
a huge challenge on the correction, indicating the urgent need for a stable and efficient method for Hi-C
data normalization. Recently, some matrix balancing methods have been developed to normalize Hi-C
data, such as the Knight-Ruiz (KR) algorithm, but it failed to normalize contact matrices with high spar-
sity. Here, we presented an algorithm, Hi-C Matrix Balancing (HCMB), based on an iterative solution of
equations, combining with linear search and projection strategy to normalize the Hi-C original interac-
tion data. Both the simulated and experimental data demonstrated that HCMB is robust and efficient
in normalizing Hi-C data and preserving the biologically relevant Hi-C features even facing very high
sparsity. HCMB is implemented in Python and is freely accessible to non-commercial users at GitHub:
https://github.com/HUST-DataMan/HCMB.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The high-throughput genome-wide chromosome conformation
capture (Hi-C) method has been widely adopted to measure pair-
wise contacts between pairs of genomic loci that are distant in
the linear genome and significantly facilitated the study of spatial
genomics [1,2]. Researches in recent years have certificated how
this technology plays an important role in various biological fields
ranging from genome assembly and haplotyping [3–5] to discover-
ing the potential associations between changes in chromatin hier-
archical organization and genome function [6–9]. In order to
comprehensively and correctly interpret the results and in-depth
understand the chromatin structure and the genetic significance
behind it, complete workflows and sophisticated algorithms are
required, and it is necessary to ensure the accuracy of each step
in Hi-C data processing.

The main processing procedure of raw Hi-C data consists of four
steps: alignment, filtering, binning and normalization [10,11]. The
first step is the alignment of the raw reads on a reference genome,
and then proceed with the detection and filtering of valid interac-
tion products, so that the analysis carries on the retained
high-quality sequences [12]. In the third step, the whole genome
is partitioned into small equal-sized regions (usually called bins),
inside which the counting number of paired-end reads was
reserved to evaluate the observed interactions between genomic
loci, thereby transforming the dataset into a square symmetric
matrix that also known as raw contact matrix. Specifically, each
bin corresponds to each row or each column in the matrix, and
the size of each bin measured by the unit kilobase (kb) is called
the resolution of Hi-C contact matrix.

Subsequently, the contact matrix needs to be normalized for the
purpose of removing experimental and technical biases that affect
downstream analysis including P(s) estimation, topologically asso-
ciated domains (TADs) calling, compartments annotation, and
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detection of other biologically relevant signals [13,14]. It is
regarded as a crucial step that can have a strong impact on the
results [15], cause it was reported as a major caveat call for special
attention that the incorrect normalization of sequencing data may
bring about the risk of artifacts in data interpretation especially in
Hi-C type of approaches [16]. Although the entries of the raw chro-
matin interaction data matrices in the Hi-C data would be propor-
tional to the true contact frequency ideally, systematic and
experiment biases due to different mappability, GC content and
restriction fragment lengths of these data can strongly affect the
prior probability of generating and sequencing Hi-C ligation prod-
ucts and may result in more reads regardless of actual interaction
frequency [13,17]. These biases could strongly affect the measure-
ment of both interchromosomal (trans) and intrachromosomal (cis)
contact probabilities between different chromosomal loci, reduc-
ing the correlation between replicate experiments and the compa-
rability between Hi-C datasets [18]. The normalization is an
important preprocessing step that aims to address this issue by
somehow mitigate and eliminate these biases, and thus facilitating
Hi-C data analysis which could characterize chromosome structure
at a higher resolution and provides reproducible global insights
into chromosome architecture. Previous studies have demon-
strated that the normalization significantly increases the corre-
spondence between contact maps and improves the consistency
of coverage curves [13,18].

Several normalization software packages are available for Hi-
C data process and are discussed in multiple reviews [13,17–19].
Commonly used normalization methods can be divided into two
main categories: explicit factors correction and matrix balancing
(implicit). Explicit methods such as Yaffy and Tanay’s integrated
probabilistic background multiplicative model that considers
three major factors [18], and HiCNorm based on the Poisson
regression distribution [17]. This type method requires a large
number of explicit parameters to be estimated or make appro-
priate statistical distribution assumptions on the data to be pro-
cessed in advance. The implicit method is built on the
assumption that all loci on the genome should have equal visi-
bility [13]. It does not require consideration of the specific
sources of system biases, but correct collectively for all factors
affecting experimental visibility. Here, the normalization of Hi-
C contact maps can be transformed into a matrix balancing
problem of rescaling a given square nonnegative matrix to a
doubly stochastic matrix, where every row and column sums
to one, by multiplying two diagonal matrices [10,20,21]. Exam-
ples include Knight-Ruiz (KR) algorithm, Sinkhorn & Knopp
(SK) algorithm, iterative Correction (IC) algorithm and Vanilla-
Coverage (VC) algorithm, etc., in which the KR algorithm [20]
was widely used because of its high convergence rate and
numerical stability [22–24]. However, it was observed that the
KR algorithm may fail to result in a balanced matrix when the
original matrix shows high sparsity at high resolutions [21]
and we also verified this issue on high-performance computing
clusters.

To fill in this gap, we proposed a novel algorithm named Hi-C
Matrix Balancing (HCMB) to tackle matrix balancing and bias cor-
rection task of raw large-scale Hi-C contact data. This algorithm
HCMB is architected on an iterative solution of equations combin-
ing with a linear search and projection strategy to normalize the
Hi-C original interaction data. It can be seen as a variant of the
Levenberg-Marquardt-type method, of which one salient charac-
teristic is that the coefficient matrix of linear equations will usually
be dense during the iterative process [25]. The experiments we
performed showed that our HCMB method is efficient for normal-
izing Hi-C contact map data as well as the KR method, and also is
able to preserve the biologically relevant Hi-C features including P
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(s) curve, A/B compartments and TADs. Furthermore, the HCMB
algorithm outperforms the KR algorithm in terms of fewer number
iterations and a more robust practical behavior on highly sparse
matrices.
2. Materials and methods

In this section, we first provided the technicalities about the
implementation of the HCMB algorithm, and then illustrated how
to generate the simulated and real biological datasets for verifica-
tion and comparison of algorithms. Finally, we described the eval-
uative dimension of the display results.

2.1. Algorithms and implementation

To handle the normalization of Hi-C contact maps, the HCMB
algorithm applies the same matrix balancing model as the KR
method [20]. The matrix balancing can be defined as the problem
of rescaling a given square nonnegative matrixM 2 Rn�n to a doubly
stochastic matrix P, where every row and column sums to one, by
multiplying two diagonal matrices D1 and D2. For symmetric matri-
ces, D1 ¼ D2. Because of the symmetric characteristic of the Hi-C
raw contact matrix, we consider that M is a symmetric matrix. So,
for balancing symmetric matrices, we need to solve the following
transformed system of nonlinear equations [20] F xð Þ ¼ D xð ÞMx�
e ¼ 0:The Jacobian matrix of the F xð Þ at x is JF xð Þ ¼ D xð ÞM þ D Mxð Þ:

The following mathematical notations will be used. The sub-
script T denotes transposed of a matrix, Rn denotes the set of n-di-
mensional real column vectors. Rn�n denotes the set of n-by-n
dimensional real matrix. D xð Þ represents the diagonal matrix with
the vector x on its diagonal. x½ �þ stands for the Euclidean projection
of the vector x on the nonnegative orthant of Rn, i.e., the plus oper-
ator is applied component wise max 0; xf g. Let e represent a vector
of ones. The E stands for an identity matrix that is a square n-by-n
matrix with ones along the diagonal from the upper left to the bot-
tom right and zeros elsewhere. The symbol k � k stands for the
Euclidean norm of the vector.

The HCMB algorithm uses Levenberg-Marquardt-type (LMT) as
a method for solving the balancing problem of symmetric matrices.
Levenberg-Marquardt-type (LMT) method is a classical and widely
used method for solving the system of nonlinear equations and has
locally fast convergent rates [26,27]. The main principle of LMT is
to solve the approximate linear equations ðHT

kHk þ lkEÞd ¼
�HT

kFðxkÞ and take the solution of this system of linear equations
as a search direction in each iteration step, where lk is a sequence
of positive parameters. The coefficient matrix of the iterative linear
equations is always symmetric and positive definite, which makes
the iterative linearized equations always have solutions. Based on
LMT method, HCMB solves only one system of linearized equations
per iteration and combines with a linear search and Euclidean pro-
jection strategy to solve transformed nonlinear equation F xð Þ ¼ 0
and normalize the Hi-C original interaction data.

Let f ðxÞ ¼ 1
2 kFðxÞk

2 be the natural merit function corresponding

to the mapping FðxÞ, and its gradient is rf ðxÞ ¼ JFðxÞTFðxÞ. The
HCMB algorithm is described in details for matrix balancing as
follows:

Step 0 Initialization: Choose constants
b;r; c 2 ð0;1Þ;l > 0; � ¼ 10�5;q > 0; m > 1. Let x0 2 Rn be an arbi-
trary point and set k ¼ 0;l0 ¼ 10�8f ðx0Þ.

Step 1 If kFðxkÞk � �, STOP

Step 2 Set Hk ¼ JFðxkÞ 2 Rn�n and find a solution dk 2 Rn of the
following linear system
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ðHT
kHk þ lkEÞd ¼ �HT

kFðxkÞ ð1Þ

Set sk ¼ ½xk þ dk�þ � xk.
Step 3 If

kFðxk þ skÞk � ckFðxkÞk ð2Þ
Then set xkþ1 ¼ xk þ sk andperformStep6.Otherwise go to Step 4.
Step 4 If (2) is not satisfied but the condition

rf xk
� �T

sk � �qkskkm ð3Þ

is satisfied, then compute a stepsize tk ¼ max biji ¼ 0;1;2; � � �
n o

such that

f xk þ tksk
� � � f ðxkÞ þ rtkrf xk

� �T
sk ð4Þ

Set xkþ1 ¼ xk þ tksk and perform Step 6.Otherwise go to Step 5.
Step 5 If none of the above conditions (2) and (3) is met,

then setxkðtÞ ¼ xk � trf ðxkÞ� �
þ and compute a stepsize tk ¼

max biji ¼ 0;1;2; � � �
n o

such that

f xkðtkÞ
� � � f ðxkÞ þ rrf xk

� �TðxkðtkÞ � xkÞ ð5Þ
Set xkþ1 ¼ xkðtkÞ and go to Step 6.

Step 6 Set lkþ1 ¼ min lk;lkFðxkÞk
2n o

, and k ¼ kþ 1. Return to

Step 1.

2.2. Hi-C contact datasets

The contact matrix datasets used for experimental verification
are divided into two parts: computer simulated datasets and real
experimental datasets.

2.2.1. Simulated datasets
In our simulations, to approximate the characteristics of real

raw Hi-C contact maps as possible, we produced symmetric non-
negative matrices randomly with two dimensions of 100-by-100
and 1000-by-1000 respectively, each matrix sampled from Poisson
distributions entries. We repeated the experiment test with two
different random seeds. For follow-up investigation, we removed
a certain fraction of the total values for each dataset to create a cer-
tain coverage of sparsity, which was defined as the proportion of
zero elements. In order to test the performance of the algorithms
under different sparsity levels, we simulated matrices with spar-
sity levels from 0% to 100% as test data sets.

2.2.2. Real Hi-C datasets
This paper uses Hi-C datasets from different studies to conduct

the evaluation experiments, all of which are available for download
from public websites.

(1) Bulk Hi-C dataset [21]: This dataset contains Hi-C maps of
eight diverse human cell lines and one mouse cell line. The raw
observed contact matrices at different base pair delimited resolu-
tions from human mammary epithelial cells with strain ID
CC2551 (HMEC) and normal human epidermal keratinocytes cells
with strain ID 192,627 (NHEK) were selected for this study. The
dataset is available under NCBI Gene Expression Omnibus (GEO)
GSE63525.

(2) Single-cell Hi-C (scHi-C) dataset [28]: This dataset con-
tains single-cell Hi-C data of CD4 + T cells from male mouse
spleen. We randomly select raw contact map data of
GSM1173502_cell-10 for the study. It can be downloaded from
NCBI GEO GSE48262.
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(3) Capture Hi-C (CHi-C) dataset [29]: This dataset contains cap-
ture Hi-C data for the long-range interactions of all promoters in 2
human blood cell types. The data from CD34 + is selected for this
study. The interaction data of TS5_CD34 is available in the ArrayEx-
press database under accession E-MTAB-2323. (https://www.ebi.
ac.uk/arrayexpress/experiments/E-MTAB-2323/).

In general, the sparsity of the Hi-C matrix is dependent on the
data resolution and the depth of coverage. There exist three cases
of the extremely sparse interactome data including 5 kb resolution
bulk Hi-C data [30], scHi-C dataset [28] and Capture Hi-C dataset
[29]. For the two bulk datasets, the sparsity is obviously correlated
with resolution: the smaller the resolution, the higher the sparsity.
At the tested highest resolution of 5 kb, the sparsity levels for the
HMEC and NHEK datasets ranged between 98.04% and 99.41%, and
between 97.39% and 99.23%, respectively. When the resolution
reaches 50 kb, the sparsity of bulk Hi-C data is generally below
80%, while the sparsity levels of scHi-C data range from 99.41%
to 99.99%, and those of CHi-C map data range from 98.35% to
99.99% (Supplementary Table S1).

With the express purpose of detecting the operation of the algo-
rithm for the case of very high matrix sparsity, the raw Hi-C con-
tact maps for HMEC at the highest resolution 5 kb were chosen.
In terms of chromosome selection, we divided all 23 chromosomes
into three groups according to their size (The chromosome X is
placed between chromosomes 6 and 7). The first group contained
chromosomes 1–6 and X and the latter groups each contained 8
chromosomes, from which chromosome 10, 22 and X were ran-
domly selected for comparison of algorithms at different sparsity
levels under real-world scenarios. By plotting heatmaps of 5 kb
resolution raw contact map data of chromosome 10, 22
and X, we identified chromosomal intervals of low read coverage
as the chromosomal regions chosen for the verification experi-
ments. Considering to set up matrices with extensive and continu-
ous sparsity, we intercepted the chromosome regions using a
sliding window with a distance of 100 bins per move (Supplemen-
tary Table S2). The selected chromosome regions for verification
was detailed in Supplementary Figure S1.

2.3. Evaluation dimensions

We evaluated the HCMB algorithm from different dimensions in
this paper. We first assessed the efficiency of the HCMB algorithm
generated normalized contact matrices for all intrachromosomal
raw maps at different resolutions on real datasets. The stratum
adjusted correlation coefficient (SCC) [31] and the root-mean-
square deviation (RMSD) were used for quantifying the similarity
and consistency between normalized Hi-C contact matrices gener-
ated by the HCMB algorithm and the KR algorithm. Furthermore,
we quantitatively evaluated the performance represented by the
number of iterations and the processing running time of both algo-
rithms at different contact matrix sparsity levels. The faster conver-
gence means reaching the solution’s approximation after a smaller
number of iterations. Moreover, we discussed the robustness of
the HCMB method under diverse distribution characteristics of
matrix entries. At last, we demonstrated the efficacy of the proposed
HCMB for P(s) curve estimation, TAD calls and A/B compartments
annotation.Weconfirmed the presence of TADs in thedatasetHMEC
near the DXZ4 region on Chromosome X [21], and normalized the
raw contact map matrices of chromosome X using both algorithms
at 5 kb and 250 kb resolution, respectively. After that, FAN-C [32]
toolkit was used for the analysis of the above chromosomes hierar-
chical structures. We compared the consistency between the called
TADs (measured by BPscore), A/B compartments (measured by Jac-
card index) and P(s) curves of the normalizedmatrices generated by
the HCMB algorithm and the KR algorithm.

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2323/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2323/
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3. Results

3.1. The efficiency of HCMB

The availability of the HCMB algorithm was validated on four
real Hi-C datasets including two bulk datasets, one scHi-C dataset
and one CHi-C dataset. We compared all intrachromosomal raw
maps and normalized contact matrices generated by the HCMB
algorithm at 50 kb, 100 kb, and 250 kb resolutions. Seen from a
chromosome example at 100 kb resolution in Fig. 1 (Examples
from the other three datasets and at different resolutions in Sup-
plementary Figure S2-S4), the HCMB matrix balancing analyses
were all done and achieved well. The raw maps were successfully
converted to doubly stochastic matrices, where every sum of rows
and columns are equal to one.

Besides, to quantitatively evaluate the performance of the
HCMB algorithm, we further compared the normalized maps cre-
ated by the HCMB algorithm with the current mainstream KR algo-
rithm by calculating the SCCs and RMSDs. We found out that the
RMSDs between the normalized contact maps are close to zero,
and the SCCs are 1.0 with statistical significance at all taken exper-
imental conditions (Supplementary Table S3), which exhibited that
both methods implemented normalization yield the almost exactly
same results. These results illustrated the high consistency
Fig. 1. Comparison of Hi-C contact maps before and after normalized by the HCMB algori
columns are equal to one.
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between the HCMB method and the KR method mathematically,
and also indicated that the results of the HCMB are available and
credible.

In summary, the HCMB algorithm achieves comparable compu-
tational efficiency in matrix balancing as well as the KR method.

3.2. HCMB normalized matrices with high sparsity

We delved into the performance of these two methods by
recording the number of iterations and processing running time
on simulated and real Hi-C contact matrices with different sparsity
(Figs. 2-3 and Supplementary Figure S5). We first conducted a sim-
ulation study in computer-generated matrices with two dimen-
sions of 100-by-100 and 1000-by-1000 respectively.

As shown on 100-by-100 simulated sparse contact matrices, the
number of iterations of the HCMB method is smaller, the perfor-
mance of HCMB is more stable than that of KR, and the HCMB
method ran faster than the KR method when sparsity ranges from
95% to 97% approximately(Fig. 2A and Fig. 2B). More importantly,
the HCMB algorithm succeeded in normalizing contact matrices
with sparsity up to 97% ormorewhile the KRmethod failed to solve.
Similar results came out when the dimension was expanded to
1000-by-1000 (Fig. 2C and Fig. 2D), the HCMB method successfully
normalized contact matrix with more than 99.55% sparsity which
thm on Chr1 of HMEC at 100 kb resolution. After normalization, the sum of rows and



Fig. 2. Performance comparison on the number of iterations and the runtime of the HCMB algorithm and the KR algorithm on the simulated datasets. (A) The number of
iterations on 100-by-100 simulated sparse contact matrices. (B) The runtime on 100-by-100 simulated sparse contact matrices. (C) The number of iterations on 1000-by-1000
simulated sparse contact matrices. (D) The runtime on 1000-by-1000 simulated sparse contact matrices. Note: When KR failed to convergence, the running time was shown
under the zero line.
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contrasted with KR and had fewer iterations at all sparse levels.
Besides, to increase the confidenceof the simulation, the experiment
was repeated usingmatrices generated by another different random
seed, and the results were similar (Supplementary Figure S5).

Furthermore, we examined whether the HCMB method can be
directly used to analyze real Hi-C datasets and whether the
above-mentioned tendency still holds by verifying on the real
1000-by-1000 Hi-C datasets from human cell type HMEC (Supple-
mentary Table S2). Observing the results on all three chromosomes
as a whole, the numbers of iterations of the HCMB algorithm were
relatively constant 5 ± 0 and the runtime lifts with the decreasing
sparsity, while both two properties of the KR algorithm varied
drastically with sparsity and showed an inconspicuous trend of
being superior with increasing sparsity(Fig. 3). Further specifying
the details, it is worth noting on data matrices from Chromosome
10, the HCMB algorithm achieved normalization under different
sparsity, and the runtime of the HCMB method had an approxi-
mately linear relationship with matrix sparsity. Contrary to this
phenomenon, when the sparsity was about 91% or more, the KR
algorithm showed unstable performance, including four failures
and dramatic fluctuations in processing iterations and runtime
(Fig. 3A and Fig. 3B). Experiments on chromosome 22 yielded a
clear result that the HCMB method implemented faster than KR
with matrix sparsity more than about 88% (Fig. 3C and Fig. 3D).
As seen from results on Chromosome X, there was a distinct
boundary at the sparsity approximation of 92.5%. When the spar-
sity was below the boundary, the overall trend of the performance
curves of the two algorithms was trend-approximate as the spar-
sity decreases; However, on the other side of the boundary, the
HCMB method still maintained a steady performance while the
KR method had sharply fluctuating iterations and overall slower
runtime (Fig. 3E and Fig. 3F). These results demonstrated that the
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HCMB algorithm performs a robust practical behavior on the nor-
malization of Hi-C data with very high sparsity.

It is worth mentioning that previous studies have addressed
this disadvantage of the KR method by adopting the protocol to
remove the low-coverage bins. This traditional way (hereinafter
referred to as the Traditional Approach) worked with Hi-C data
at relatively high resolutions by throwing out the sparsest rows
and columns with sparsity up to 95% in the original matrix and
then renormalize it still using the KR algorithm [21]. We used
the same datasets as in Fig. 3 to compare among the HCMB algo-
rithm, the KR algorithm and the Traditional Approach, and the
results demonstrated that the Traditional Approach has notably
fewer iterations than using the KR algorithm directly, and can
guarantee the success rate of normalization without failures due
to the high sparsity (Supplementary Table S4). Even with this in
mind, the HCMB algorithm still exhibits superior performance: it
requires fewer iterations even comparing with the Traditional
Approach. To sum up the above, the comparison with the direct
KR algorithm and the Traditional Approach once again confirms
the advantage of the HCMB algorithm in normalizing highly sparse
Hi-C interaction matrices.
3.3. HCMB performs robustly on matrices with diverse distribution
characteristics

Subsequently, we discussed the robustness of the HCMB
method and the KR method on matrices with diverse distribution
characteristics. To avoid the biases caused by sparsity and other
influence factors, we deliberately selected several regions on the
same chromosome with almost the same sparsity for comparison
and analysis.



Fig. 3. Performance comparison on the number of iterations and the runtime of the HCMB algorithm and the KR algorithm on the real Hi-C dataset HMEC. (A) The number of
iterations on 1000-by-1000 Hi-C data matrices from Chr10. (B) The runtime on 1000-by-1000 Hi-C data matrices from Chr10. (C) The number of iterations on 1000-by-1000
Hi-C data matrices from Chr22. (D) The runtime on 1000-by-1000 Hi-C data matrices from Chr22. (E) The number of iterations on 1000-by-1000 Hi-C data matrices from
ChrX. (F) The runtime on 1000-by-1000 Hi-C data matrices from ChrX. Note: When KR failed to convergence, the running time was shown under the zero line.
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The three examples on chromosome 10 suggested that in the
case of roughly equal sparsity (around 93.65%), the HCMB algo-
rithm had a consistently robust performance even when handling
with different matrix distribution characteristics of Hi-C data
(Fig. 4 and Supplementary Figure S6). In contrast to this, the KR
algorithm was strongly affected by the distribution characteristics
of matrix entries which leads to its seemingly erratic success rate
and undulating iterations and runtime. We also picked up regions
of similar sparsity on chromosome X and the results implied the
above conclusion once again (Supplementary Figure S7 and Fig-
ure S8). However, we did not replicate this procedure on chromo-
some 22, because the overall degree of sparsity on chromosome 22
varied greatly and we were unsuccessful to locate typical cases
with close sparsity and distinct matrix characteristics.
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3.4. HCMB preserves the biologically relevant Hi-C features

As previously stated, the purpose of the Hi-C data normalization
is to remove experimental and technical biases that affect the
downstream biological analysis, such as P(s) curve plotting, TADs
and A/B compartments calling, etc. To justify the efficacy of the
HCMB algorithm to accomplish these biological tasks, we com-
pared the consistency between the TADs, A/B compartments and
P(s) curves of the normalized matrices.

The result showed that at different sparsity, the BPscores are
0.00, Jaccard indexes are 1.00, and the P(s) curves are also com-
pletely overlapping (Supplementary Table S5 and Figure S9), which
demonstrated that the TADs, A/B compartments and P(s) curve
called using the Hi-C matrices normalized by the HCMB algorithm



Fig. 4. (A)Performance comparison on the number of iterations of the HCMB algorithm and the KR algorithm with but different chromosomal intervals on Chr10 from HMEC.
The radius of bubble represents the sparsity of raw contact maps. The smaller the radius, the higher the sparsity. (B) Heatmaps of raw contact maps with similar sparsity but
different chromosomal intervals on Chr10 from HMEC. Three chromosomal intervals were chosen due to the approximately equal sparsity and different distribution
characteristics of matrix entries.
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are similar to those that obtained by the KR algorithm. The HCMB
algorithm is able to preserve the biological features and pave the
way to investigate the biological mechanism of spatial genomics.
4. Discussions

With the continuous development of Hi-C technology, mass and
growing Hi-C raw datasets with diverse characteristics need to be
processed accurately to fulfill the increasing requirements. In mul-
tiple steps of data preprocessing, normalization is an essential pro-
cedure because of its effectiveness in reducing biases. As of now,
several relatively mature normalization algorithms have been pro-
gressed to normalize Hi-C interaction data, each of which is not
perfect and has its own shortcomings. The limitations of the expli-
cit balancing method have been briefly introduced, and as for the
implicit matrix balancing methods to which the HCMB algorithm
belongs, it can also be broadly classified into two groups. The
HCMB algorithm and the KR algorithm belong to the same group
which is based on the principle of transforming the matrix balanc-
ing problem into solving a system of nonlinear equations to get
normalized factor vectors, thus normalizing the Hi-C matrix.

The IC and VC methods belong to another different class of
methods and are all derived from the SK algorithm with some
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improvements. From the principle of achieving matrix normaliza-
tion, these SK type methods are an iterative method for matrix bal-
ancing by alternately normalizing columns and rows in a sequence
of iterative matrices using some eigenvalue until convergence is
achieved, and the convergence rate is linear. Some numerical
experiments have shown that the KR algorithm converges two
orders of magnitude faster than the SK type algorithm[20]. How-
ever, the KR algorithm also induced a new problem about handling
the high sparsity [21]. Inspired by this, our proposed new HCMB
algorithm hopes to solve the normalization problem of highly
sparse matrices without discarding the original information, and
at the same time achieve better performance.

In this work, we have developed HCMB, a stable and efficient
algorithm for processing the normalization of raw Hi-C contact
maps, especially with high sparsity. The HCMB algorithm is a kind
of implicit method based on an iterative solution of equations,
combining with linear search and projection strategy. The effi-
ciency and robustness of the HCMB method has been certificated
by the comparison with the mainstream KR method. HCMB is
implemented in Python and is freely accessible to non-
commercial users at GitHub: https://github.com/HUST-DataMan/
HCMB

Conducted experiments have revealed that our HCMB method
is as efficient as the KR method for normalizing Hi-C contact

https://github.com/HUST-DataMan/HCMB
https://github.com/HUST-DataMan/HCMB
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map data, both mathematically and biologically. Notably, biologi-
cal features such as compartments and P(s) curve are dependent
on the probabilities of long-range interactions that are typically
very small and might be affected by differences between very sim-
ilar balancing techniques. Therefore, it is particularly vital to guar-
antee that the HCMB algorithm can accurately preserve of
biological relevant characteristics which reflect the cells’ regula-
tory and cell cycle state in the Hi-C experiments. Based on this
study, we consider that the HCMB algorithm and the KR algorithm
indeed can be used interchangeably for routine Hi-C analysis when
both algorithms can successfully normalize the raw Hi-C contact
matrix.

The core concern of HCMB in this study is the high sparsity
degree of the matrix. According to our survey, since the KR algo-
rithm may fail to handle highly sparse matrices, some packaged
Hi-C data processing software formulate accompanying solutions,
such as setting different cut-off schemes for different resolutions
to discard very sparse rows and columns during normalizations
[24]. It is noteworthy that while our study provided an indirect
verification of traditional approach’s ability to solve the problem
of highly sparse matrices and relatively robust and efficient perfor-
mance compare with the simple KR method, it has been suggested
that sparse rows and columns in the Hi-C interaction matrix are
also biologically significant and relevant to the detection of small
differences at high resolution [33]. Therefore, the direct discarding
of these sparse rows and columns will inevitably lead to the loss of
information and may even miss meaningful biological discoveries.
Back to HCMB, as a Levenberg-Marquardt-type variant method, it
is characterized by maintaining matrix density during the conver-
gence process [25]. By the way, this is the first time that
Levenberg-Marquardt-type methods were proposed to solve
matrix balancing directly to our knowledge. As explained in the
above results, both simulated and experimental data confirmed
that the HCMB method with fewer number of iterations and
shorter runtime performs better and remains steadier than the
KR methods in highly sparse matrices.

This advantage of the HCMB method in dealing with high
sparsity matrices can bring it many application scenarios. One of
the most probably frequent application is small-resolution bulk
Hi-C data. Hi-C data at high resolution can offer deep insights into
more elaborate chromatin 3D structures like chromatin loop, but at
the same time, a typical drawback of the finer resolution is that the
high proportion of zero-contact counts between loci (especially
long-range contacts) in the matrix [34]. Besides, the paradoxical
combination of deep sequencing depth resolution and lower
sequencing costs (which also may lead to high sparsity) is always
encountered in practical research. Hence, the HCMB method may
help researchers acquire a smooth and reliable analysis result of
Hi-C data with less sequencing cost. In addition, there are two
other popular types of data that use unique C-technologies,
scHi-C data and CHi-C data. The scHi-C technique is designed to
capture the unique DNA proximities of individual cells and elimi-
nate noises caused by the variability of each cell [28,35,36], and
the CHi-C enables deep sequencing of specific loci like examining
the long-range interactions promoters [29]. As expected and calcu-
lated, both techniques acquire sparser genomic interaction data
than multi-cell Hi-C datasets [29,34]. However, although some
researchers have proposed workflow using algorithms based on
similar iterative correction method [37,38], the analysis for scHi-
C data is not yet standardized and raises novel bioinformatic chal-
lenges. It’s necessary to state in particular that currently there are
no studies explicitly demonstrated that scHi-C data follow the
assumptions of the implicit normalization method (i.e. matrix-
balancing normalization method, based on the assumption that
each genomic locus should have ‘‘equal visibility” instead of rely-
ing on any specific assumptions on the sources of biases in Hi-C
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read counts [11]). On the other side, the normalization of Chi-C
data may also require additional background correction after bal-
ancing the matrix [39,40]. Consequently, the HCMB methods may
be a choice to be considered for normalization to satisfy the
multi-zero nature of scHi-C and Chi-C data, but its applicability
also needs to be explored in greater depth.

Finally, there is still room for further advancement in the imple-
mentation of the HCMB method in the future. For instance, we
observed that HCMB requires a larger demand of computer mem-
ory and takes a longer runtime per iteration step, especially at high
resolution. With the current hardware, each iteration may occupy
about 50 GB to 100 GB of memory when the resolution reaches
1 kb to 5 kb. In subsequent research, improvements can be made
in various ways to reduce memory and speed up each iteration,
such as using matrix chunking parallelly distributed computation
and lower-level programming language implementations such as
C/C++. In fact, although multiple algorithms have been developed
for the same normalization function, each algorithm has its corre-
sponding assumptions and priorities. In further studies, we
researchers need to enhance the understanding of the performance
and influencing factors of the algorithms to clarify the adaptable
circumstances for suitable selection.
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