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ABSTRACT: We describe a new method to produce histone H2B by semisynthesis with an engineered sortase transpeptidase. N-
Terminal tail site-specifically modified acetylated, lactylated, and β-hydroxybutyrylated histone H2Bs were incorporated into
nucleosomes and investigated as substrates of histone deacetylase (HDAC) complexes and sirtuins. A wide range of rates and site-
specificities were observed by these enzyme forms suggesting distinct biological roles in regulating chromatin structure and
epigenetics.

The writing, erasing, and reading of post-translational
modifications (PTMs) on histone tails are critical for

regulating chromatin structure and gene expression in healthy
and disease states.1 Chromatin is comprised of nucleosomes,
octameric assemblies of pairs of histones H2A, H2B, H3, and
H4 wrapped by ∼146 base pairs of double-stranded DNA.2

Extensive efforts to analyze the functions and enzymatic
regulation of PTMs on histones H33−5 and H46−8 tails in the
context of nucleosomes have benefited from site-specific
incorporation of PTMs from chemical biology approaches.9−11

By comparison, histone H2B N-terminal PTMs have been
understudied.12 Recent work, however, has revealed highly
dynamic Lys acetylation (Kac) sites on the tail of histone H2B
upon acute inhibition of p300/CBP.13 H2BK11ac and K12ac,
in particular, are among sites with the shortest cellular half-lives
(<15 min), while H2BK20ac has a relatively longer cellular
half-life (∼30 min) after p300/CBP inhibition. However, the
deacetylases responsible for regulating these sites are unknown.
By contrast, H2BK46ac, part of the histone H2B core region,
appears unaffected by p300/CBP inhibition.13 Histones have
also been shown to undergo metabolic state-dependent Lys
acylation including lactylation (Klac)14 and β-hydroxybutyr-
ylation (Kbhb)15 on human and mouse chromatin, particularly
in disease models,16 although with unclear function and
enzymatic regulation.17

There are two major types of Lys deacylases in mammalian
cells, Zn metallohydrolase enzymes known as HDACs, and
NAD-dependent deacylases known as the sirtuins.18 HDACs
like HDAC1 have been identified in a variety of multiprotein
complexes including CoREST,19 MiDAC,20 HMMR (NuRD
deacetylase module bound to MBD2),21 Sin3A,22 MIER,23 and
RERE.24 Each complex is thought to have distinct biological
functions, although differences in deacylase activity and site-
specificity are uncertain. Understanding the mechanisms of
HDAC and sirtuin substrate recognition depends on access to
homogeneously acylated protein and nucleosome substrates.

Here, we report the scarless semisynthesis of site-specifically
modified, full-length histone H2B with an engineered sortase,
and the use of these synthetic substrates in unraveling HDAC1
complex and sirtuin selectivity toward acylated nucleosome
substrates (Figure 1a,b).
Standard sortase A recognizes the peptide motif LPXTG,

where X is any amino acid, and catalyzes transamidation of the
LPXT fragment onto an N-terminal G displacing the C-
terminal G in the recognition motif.25 Prior efforts have
employed an engineered variant of sortase, F40,26 to generate
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Figure 1. H2B acylations and HDAC complexes. (a) Nucleosome
depicting histone H2B acylations and acylation sites, as well as the W4
recognition sequence. (b) HDAC1 complexes studied here.
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semisynthetic histone H3 by acting on the motif A29PATG33.
Histone H2B contains a similar sequence, H49PDTG53, and we
therefore sought a sortase variant that could accommodate a
His residue in the first position. Using site-directed muta-
genesis, we generated four new sortase mutants (W1−W4)
designed to enhance catalysis and/or alter substrate selectivity.
We tested these with a simplified H2B peptide containing the
HPDTG sequence as a model substrate (Figure S2G), and
identified W4 as the most active in cleaving the model
substrate (Figure S1, Figure S26, Table S1). We then explored
W4 as a catalyst for semisynthesis of X. laevis full-length
histone H2B.27,28 Building on prior work in sortase semisyn-
thesis, we prepared a synthetic N-terminal H2B (aa4−52)
peptide (N-H2B) with a depsipeptide (ester) linkage between
Thr52 and glycolic acid. Prior studies on histone H3 have
revealed the depsipeptide linkage can increase the yield of the
desired full-length protein.29 With minimal optimization, it was
observed that W4 sortase can ligate N-H2B peptide and
heterologously expressed C-H2B (aa53−125) (using the
corresponding human aa numbering) with ∼40% yield,
affording the full-length histone H2B (Figure 2a,b, Figure S3).

Using W4 sortase and the appropriate N-terminally modified
peptides, we generated six semisynthetic histone H2Bs
including H2BK11ac, H2BK12ac, H2BK20ac, H2B46ac,
H2BK11lac, and H2BK11bhb (Figure S4). With H2BK11lac
and H2BK11bhb substrates,30 we sought to uncover deacylases
for these unusual modifications. These semisynthetic H2B
histone proteins were purified by RP-HPLC and validated by
intact protein mass spectrometry (Figure S3, Figure S5). Each
of the modified semisynthetic histones was readily incorpo-
rated into histone octamers, and subsequently into nucleo-
somes with 146 bp 601 Widom dsDNA (Figure 2c).31

The modified nucleosomes were assayed with six HDAC1
complexes: CoREST, MiDAC, HMMR, Sin3A, MIER, and
RERE as well as free HDAC1,32 and four purified sirtuins:
Sirt1, Sirt2, Sirt3, and Sirt5 (Figure S6).33,34 For comparison,
each enzyme/complex was assayed with free semisynthetic
modified histone H2B protein. As previously described,32

Western blot time course assays with the relevant commercial
site-selective acetyl-Lys or acyl-Lys antibodies (Figure S7)
were employed (Figure 3). Dilute, free histone H2B appeared
to aggregate, particularly under the sirtuin assay conditions, as
a function of time so we adjusted the measurement period to
short windows to mitigate this complication (Figure S9). We
have previously studied the deacetylation kinetics of related

complexes using H3K9ac and K14ac nucleosome substrates, as
well as free H3K9ac protein, which we have assayed again here
to assess consistency with prior studies (Figures S10−16,
Figures S20−23). The rates, calculated as velocity/enzyme
concentration (V/[E]), are derived from exponential decay
curves and shown in Tables S2 and S3, and as heat maps
(Figure 4a,b). We have previously characterized the NuRD

deacetylase module and find that the HMMR complex displays
similar deacetylase activity with H3K9ac nucleosome substrate
(Figure S13A).32

There were several notable findings. As reported previously
with acetylated H3 nucleosome substrates,32 a wide range of
velocities were observed among the HDAC1 complexes with
acyl-H2B nucleosome substrates. Striking variation was
observed in HDAC1 complexes, with a greater than 2000-
fold difference between MiDAC (V/[E] = 2.4 min−1) and
Sin3A (V/[E] < 0.001 min−1) H2BK11ac deacetylation rates.
Free HDAC1 was inactive toward any of the H2B nucleosome
substrates, consistent with previous observations of acetylated
H3 nucleosomes.32 Sirtuins showed a narrower dynamic range
on modified H2B nucleosome substrates, showing a maximum

Figure 2. H2B semisynthesis. (a) Scheme for W4 sortase-catalyzed
H2B semisynthesis. (b) SDS-PAGE for H2B proteins with Coomassie
staining. (c) Native TBE gel for H2B nucleosomes.

Figure 3. Typical western-blot results for MiDAC assay on H2B
nucleosomes installed with (a) H2BK11ac, (b) H2BK11lac, and (c)
H2BK11bhb. (d) Exponential decay curve-fitting.

Figure 4. Heatmap for V/[E] (min−1) of HDAC1 complexes and
sirtuins assays with (a) acylated H3 and H2B nucleosomes, (b)
acylated free H3 and H2B proteins. Bar graph of V/[E] (min−1) on
nucleosome and histone free protein for (c) CoREST, (d) MiDAC. A
part of the data for H3K14ac, H3K18ac, H3K23ac, and H3K27ac for
both complexes are incorporated from our previous report.32
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rate with Sirt2 and H2BK20ac substrate (V/[E] = 0.015
min−1).
Most of the HDAC1 complexes, CoREST, HMMR, MIER,

and RERE, deacetylate H3K9ac nucleosomes faster than any
acetylated H2B nucleosomes. Sirt2 and Sirt3 were the only two
sirtuins with detectable activity on nucleosomes and showed
similar rates with H3K9ac nucleosomes and H2B acetylated
nucleosomes. MiDAC was the only complex found to
preferentially deacetylate an H2B site, with ∼2-fold greater
activity toward H2BK11ac nucleosome over H3K9ac nucleo-
some (Figure 4d, Table S2).
In general, nucleosomal H2BK20ac and H2BK46ac were

more slowly removed than H2BK11ac and H2BK12ac by both
HDAC1 complexes and sirtuins. This observation in
nucleosomes is consistent with the proximity of H2BK20 to
the DNA backbone, and the position of H2BK46 between α-
helices 1 and 2 of the H2B globular domain. This general
deacetylase selectivity (H2BK11ac,K12ac > K20ac > K46ac) is
consistent with observed cellular acetylation half-lives follow-
ing p300/CBP inhibition. It is therefore plausible that these
enzymes/complexes are principal drivers of cellular deacetyla-
tion of p300/CBP histone H2B acetylation sites. In a striking
example of site selectivity, the MiDAC complex was found to
deacetylate the H2BK11ac nucleosome about 1000-fold faster
than the H2BK20ac nucleosome (V/[E] = 0.0022 min−1 for
H2BK20ac) whereas, for the CoREST and RERE complexes,
these rate differences are only ∼2-fold when comparing these
two sites.
H2B deacetylation rates were generally slower for

nucleosomal substrates than for free histone substrates
(Table S2, Table S3) both with HDAC1 complexes and
sirtuins (typical examples are CoREST and Sirt3). These
results are consistent with deacetylation of modified histone
H3 substrates.32 Basic histone tails in nucleosomes favorably
interact with the acidic phosphate backbone of DNA; thus, it is
possible that the faster deacetylation of free histone tails is
related to their greater flexibility and accessibility.35 In an
exception to this trend, MiDAC preferentially processed
nucleosomal H2BK11ac (V/[E] = 2.4 min−1) and
H2BK12ac (V/[E] = 0.84 min−1) over the free histone
forms (V/[E] = 0.099 min−1 and 0.030 min−1 for H2BK11ac
and H2BK12ac respectively). This may be due to the high
affinity of MiDAC for nucleosomes.20

HDAC1 complexes have previously been shown to exhibit
little selectivity among H3K9ac, K14ac, K18ac, K23ac, and
K27ac free histone substrates.32 By contrast, both HDAC1
complexes and sirtuins exhibited considerable site selectivity
among free H2B acetylation sites. Moreover, some selectivities
diverge from nucleosomal substrate selectivities. Free HDAC1
and the HDAC1 complexes examined here prefer H2BK11ac
and K12ac over H2BK20ac and K46ac in free histone H2B
proteins. As a dramatic example, the CoREST complex
deacetylated H2BK11ac (V/[E] = 3.6 min−1) and
H2BK12ac (V/[E] = 4.3 min−1) ∼50-fold faster than
H2BK20ac (V/[E] = 0.073 min−1) and H2BK46ac (V/[E] =
0.083 min−1) (Figure 4c). The sirtuins, however, preferentially
deacetylate H2BK20ac relative to the three other sites. This
was best exemplified by Sirt2, which deacetylated H2BK20ac
(V/[E] = 1.5 min−1) ∼25-fold faster than H2BK11ac (V/[E]
= 0.059 min−1). The range of H2B deacetylation rates reported
here is broader than previously observed for H3 substrates,
suggesting more intricate molecular recognition of the H2B N-
terminal tail by these enzymes. Notably, the MIER complex,

characterized here for the first time, shows a greater than 100-
fold higher rate of deacetylation of H3K9ac protein (V/[E] =
28 min−1) compared to any H2B acetylation site (Figure S17).
Furthermore, deacetylation of H3K9ac protein by the MIER
complex is over 10-fold faster than any other HDAC1 complex
(the second fastest CoREST V/[E] = 2.1 min−1) (Table S3).
Consecutive pairs of Lys residues (11−12, 15−16, 20−21,

and 23−24) are a distinctive feature of the H2B tail, made
more interesting by the observation that all are known to be
acylated. Prior characterization of H3 deacetylation revealed a
significant role for consecutive Arg-Lys (RK) sequences in
directing HDAC1 complex activity. Switching the 8th and 13th
residue of nucleosomal H3 (H3K9acR8G and H3K14acG13R)
inverted the site selectivity of the CoREST complex, but had
little effect on the MiDAC complex.32 These observations
prompted the question of whether the Lys-Lys (KK) sequence
would be similarly discriminatory. HDAC1 complexes and
sirtuins showed diverse selectivities for H2BK11ac and K12ac,
supporting the role of the amino acid sequence around an
acetylation influencing selectivity. Thus, we integrated prior32

and current deacetylase kinetic data to visualize trends in
amino acid composition surrounding deacetylation sites
(Figure S24, Figure S25). We see the preference of HDAC
complexes for positively charged R or K flanking the modified
K. HDAC complexes further favored small (A, P) or flexible
(S, G) residues in the three positions on either side of the
modified Lys, with at least one hydrogen bond donor (S, T). A
preference for small and or flexible residues could facilitate
interaction with HDAC complexes in which folded scaffold
domains crowd the active site.21

As the local sequence influences molecular recognition of
the acylated lysine, so too does the structure of the acylation
itself. The rates of deacylation of H2BK11lac and H2BK11bhb
were in all cases slower with both nucleosome and histone
substrates than the corresponding rates of H2BK11ac removal
by both HDAC1 complexes and sirtuins. With nucleosome
substrates, only MiDAC and RERE measurably removed either
of these acyl-Lys modifications.
MiDAC removed both Klac and Kbhb, whereas RERE was

only active against Klac. For free histone H2B substrates, Klac
and/or Kbhb deacylase activities were observed with CoREST,
MIER, and Sirt1.17 To confirm the enzymatic nature of these
reactions, the CoREST complex assays were repeated in the
presence of the HDAC inhibitor SAHA,36 which abolished the
deacylase activities (Figure S18). Taken together, the slow
deacylation of Klac and/or Kbhb by the HDAC1 complexes
and sirtuins suggest that these acyl-Lys groups are nonprimary
targets of the HDAC1 complexes or sirtuins. However,
lactylation and β-hydroxybutyrylation of Lys residues in
proteins, whether enzymatic or nonenzymatic,37 also appear
to be very slow such that the attachment and removal kinetics
appear commensurate.
In summary, we have described a new approach for the

semisynthesis of scarless histone H2B using an engineered
sortase enzyme. It expands the versatility of sortases in
chemical biology38 and protein engineering.39 This approach
allows for the facile incorporation of a range of chemical
modifications from the N-terminus to the core region of H2B.
With the semisynthetic acyl H2B nucleosomes, we have
identified the MiDAC and CoREST complexes as the most
robust deacetylases, and detected activity across a range of
other HDAC1 complexes and sirtuins. Diverse site selectivities
and magnitudes of the deacetylase activity were observed
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among the complexes and sirtuins with nucleosomal and free
histone H2B substrates. The remarkable variation in HDAC1
complex activity, despite sharing an identical catalytic core
polypeptide, HDAC1, highlights the importance of the other
subunits in controlling deacetylase activities and molecular
recognition. This is consistent with putative specific biological
roles of different deacetylases and their complexes in different
cellular functions and states. We have also found that Klac and
Kbhb modifications in histone H2B are susceptible to
enzymatic cleavage, albeit at moderate rates. Overall, we
believe that these findings provide a framework for elucidating
how specific modifications of histone H2B may influence gene
regulation and cellular behaviors.
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