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Fusion genes in gynecologic tumors: the occurrence, molecular
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Gene fusions are thought to be driver mutations in multiple cancers and are an important factor for poor patient prognosis. Most of
them appear in specific cancers, thus satisfactory strategies can be developed for the precise treatment of these types of cancer.
Currently, there are few targeted drugs to treat gynecologic tumors, and patients with gynecologic cancer often have a poor
prognosis because of tumor progression or recurrence. With the application of massively parallel sequencing, a large number of
fusion genes have been discovered in gynecologic tumors, and some fusions have been confirmed to be involved in the biological
process of tumor progression. To this end, the present article reviews the current research status of all confirmed fusion genes in
gynecologic tumors, including their rearrangement mechanism and frequency in ovarian cancer, endometrial cancer, endometrial
stromal sarcoma, and other types of uterine tumors. We also describe the mechanisms by which fusion genes are generated and
their oncogenic mechanism. Finally, we discuss the prospect of fusion genes as therapeutic targets in gynecologic tumors.
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FACTS

● Fusion genes are cancer-specific and considered to be the
driving events of cancer.

● Chromosome instability and genome reassembly are the
structural basis for fusion genes.

● Cancer-related exposure factors are closely related to the
occurrence of fusion genes.

● Fusion genes change the biological behavior of cancer cells
through their molecular functions.

OPEN QUESTIONS

● What is the cause of fusion genes?
● How fusion genes are involved in tumorigenesis and what are

the molecular mechanisms?
● What are the characteristics of recurrent fusions in gynecolo-

gical tumors?
● Are there carcinogenic fusions in gynecological tumors?
● What is the potential of fusion genes in gynecological tumors

as therapeutic targets?

BACKGROUND
Fusion genes can be defined as new genes that are formed by
chromosome breakage and re-splicing at the genome level [1].

Generally, at the genome level, the fusion gene may be expressed;
however, if the promoter region or other important elements are
destroyed, it may not be expressed. In 1973, researchers first
discovered the rearrangement of chromosomes 9 and 22 in
chronic myeloid leukemia (CML) and the rearrangement of
chromosomes 8 and 21 in acute myeloid leukemia (AML) through
chromosome banding technology [2, 3]. Subsequently, researchers
carried out cytogenetic analysis of other hematological tumors,
and discovered a variety of cancer-characteristic gene rearrange-
ments. For example, t(8;14)(q24; q32), t(2;8)(p11;q24), and t(8;22)
(q24;q11) in Burkitt’s lymphoma [4, 5]; t(4;11)(q21;q23) in acute
lymphoblastic leukemia (ALL) [6]; t (15;17) (q22;q21) in acute
promyelocytic leukemia (APL) [7]; and t(14;18)(q32;q21) in follicular
lymphoma [8]. In recent years, deep sequencing technology has
been used widely used, and more cancer-related fusion genes
have been characterized. Currently, the identification of fusion
genes can be based on whole-genome sequencing (WGS),
transcriptome sequencing (RNA-seq), or a combination of the
two technologies [9, 10]. Fusion genes identified using WGS alone
can be determined to be caused by the rearrangement at the
genome level; however, if there is no transcriptome sequencing
data, it is impossible to accurately determine whether the new
fusion gene is expressed or its expression level. Fusion genes
identified by RNA-seq alone can be determined to be expressed
(Fig. 1a) [11], but it cannot be completely determined whether this
is caused by a genomic mutation or RNA fusion that occurs after
the transcription of different genes. Therefore, combining the
technology of WGS and RNA-seq can obtain more accurate results.
For further verification and analysis, methods such as designing
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specific primers for PCR or real-time fluorescent quantitative PCR
followed by DNA gel electrophoresis can be adopted.
Gene fusion is considered an important driving event for

multiple cancers [12]. Some cancer-specific fusion events can be
used as diagnostic markers or therapeutic targets, and have
achieved good results. In recent years, a large number of fusion
events have been described in gynecologic tumors (Fig. 1b, c) [13];
however, their potential roles are not fully understood. Moreover,
gene fusion profiles vary in different types of gynecologic tumors.
Understanding their occurrence and carcinogenic mechanism will
help to identify new therapeutic targets for gynecologic tumors.
Therefore, the present article summarizes and classifies the
research progress on fusion genes in gynecologic tumors.

GENERATION MECHANISM OF FUSION GENES
The structural basis of fusion genes
Chromosome rearrangements and extensive mutations in the
genome are significant features of cancer [14, 15]. Fusion events
are usually caused by chromosomal rearrangements, including
translocations, inversions, and deletions [16, 17], and some fusions
are caused by cis or trans splicing of adjacent genes transcripts
[18, 19]. In the past, it was generally believed that chromosome
instability and chromosome rearrangement were the basis of gene
fusion, accompanied by breakage at certain specific sites. When
the breakpoint is located in the intron region or the exon
boundary, a fusion transcript of the complete exon can be
retained; however, when the breakpoint is located inside an exon,
the corresponding transcript may be destroyed, leading to
changes in gene expression profiles [20].

Physical, chemical, and biological exposure factors induce
fusion genes
Exposure to physical, chemical, and biological factors can cause
mutations in the genome and induce gene fusion (Fig. 2). After the
Chernobyl nuclear leak, many studies reported that radiation
exposure has a strong correlation with gene mutation and gene
fusion in thyroid cancer. The frequency of RET fusions in radiation-
induced papillary thyroid carcinoma (PTC) is very high, ranging
from 35 to 80% [21–23]. A meta-analysis of the distribution of
NCOA4-RET, including 2395 cases of radioactive and sporadic PTC,
found that radiation exposure caused an increased risk of RET/PTC,
although this association was limited to the NCOA4-RET subtype in
the Western population [24]. In addition, the ETV6-NTRK3 fusion
was found in 14.5% of PTC cases caused by the Chernobyl incident,
and this fusion is also considered to correlate strongly with
radiation exposure [25]. A study on the relationship between
ionizing radiation with RET fusion in lung adenocarcinoma found
that 201T human lung cells exposed to 1 Gy of gamma rays

induced RET fusion, and RET rearrangement was also found in 2 of
37 cases of radiation exposure [26]. Another study on the
frequency of gene fusion in lung cancer showed that patients
exposed to tobacco and coal had the highest gene fusion
frequency, and ALK fusion and total gene rearrangement were
closely related to these exposures [27]. A genomic study of small
cell lung cancer with complex tobacco exposure identified the
tandem replication of CHD7 exons 3–8 and a cell line with PVT1-
CHD7 fusion [28]. In a study of the relationship between
insecticides and cancer-related gene damage, the ETV6-RUNX1
fusion was detected in peripheral blood mononuclear cells
(PBMCs) that were exposed acutely to permethrin. Exposure to
permethrin could induce the fusion of ETV6-RUNX1 and IGH-BCL2
in the K562 cell line, while malathion can induce the fusion of
KMT2A-AFF1 and ETV6-RUNX1 [29]. In squamous cell carcinoma of
the head, the EGFR-PPARGC1A fusion is associated with long-term
sunlight exposure [30]. Hyperglycemia can induce IGFBP2, which
increases the frequency of gene fusion, along with a decrease in
PKC DNA levels, suggesting that they are mediated by changes in
the rate of double-strand break repair. By contrast, IGF1 and EGF
are induced under insulin conditions, which reduces the incidence
of gene fusion [31]. Some apoptotic signals, such as serum
starvation, etoposide, and salicylic acid, can induce TEL (ETV6) gene
disruption and fusion in immature B lymphocytes. The TEL-AML1
fusion is one of the most common genetic mutations in childhood
acute lymphoblastic leukemia [32]. It is generally believed that
prostate cancer is related to male androgen levels. In-depth studies
have found that androgen signaling can induce the TMPRSS2 and
ERG genes at the genome level, and cells exposed to gamma-rays
experience DNA double-strand breaks, thereby promoting
TMPRSS2-ERG gene fusion [33]. Interestingly, the expression of
the TMPRSS2-ERG fusion gene changed the chemical and radio
reactivity of androgen-independent prostate cancer cells [34].
In summary, stimulation by physical, chemical, and biological

factors might be crucial conditions for the generation of genomic
mutations and gene fusion. Understanding the effects of these
exposure factors will help to explore the mechanism of fusion
genes in tumorigenesis and provide protective strategies in cancer
prevention and treatment.

GENERAL MECHANISM OF FUSION GENES IN CANCER
Gene fusions can result in the production of new fusion transcripts or
fusion proteins. Some fusion products play a key driving role in
cancer, such as BCR/ABL and AML1/ETO fusions in hematological
malignancies [35, 36]. In recent years, many potential molecular
functions of oncogenic fusion proteins have been discovered. Here,
we summarize the carcinogenic mechanisms of several fusion genes
(Fig. 3), including: destroying protein functional domains, affecting the

a b c

454

414

771 380

Fusion genes in cancer

ACC BLCA

BRCA CESC

CHOL COAD

DLBC ESCA

GBM HNSC

KICH KIRC

KIRP LAML

LGG LIHC

LUAD LUSC

MESO OV

PAAD PCPG

PRAD READ

SARC SKCM

STAD TGCT

THCA THYM

UCEC UCS

UVM

Fig. 1 Gene fusions in gynecological tumors. The pie chart shows the number of gene fusions in different types of cancer (a). The data
comes from the Tumorfusion database. The circos diagram shows the fusion gene on the chromosome in gynecological tumors (b), (c).
Bioinformatic analysis was performed using the OmicStudio tools at https://www.omicstudio.cn/tool.
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function of protein complexes, changing molecular subcellular
localization, obtaining active or strong promoters, evading regulation
by microRNAs (miRNAs), and upregulation of downstream effectors.

Loss of protein functional domains
Some gene fusions result in the loss of part of the coding exons
during the rearrangement process, depending on the location of the
breakpoint. The loss of important structural domains will cause

functional defects (Fig. 3a). The MLL gene encodes a DNA binding
protein containing a SET domain, which has H3K4 methyltransferase
activity [37]. The MLL gene can regulate positively the expression of a
series of downstream HOX genes in hematopoietic stem cells through
its H3K4 methyltransferase activity. The fused MLL gene produces a
truncated MLL protein lacking the SET domain, resulting in its inability
to catalyze H3K4 methylation, which drives the occurrence of
leukemia.
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Fig. 2 Cancer-related exposure factors induce the corresponding fusion genes. Here, we summarize the fusion genes and their exposure
factors in several common cancers, including nuclear radiation and RET fusions; ionizing radiation, tobacco, coal and RETfusions, ALK fusions;
insecticides, permethrin, malathion and ETV6-RUNX1, IGH-BCL2, KMN2A-AFF1; long-term sunlight exposure and EGFR-PDARGC1A; serum
starvation, etoposide, salicylic acid, and TEL-AML1; male androgen and TMPRSS1-ERG; The relationship between fusion frequency and
hyperglycemia/insulin conditions.
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Effects on the function of protein complexes
Functional protein complexes are common, and structural
integrity is crucial for their normal function. Repeated chromoso-
mal rearrangement is an important sign of synovial sarcoma. The
SS18-SSX fusion produced by t(X;18) has been confirmed to be a
carcinogenic fusion in synovial sarcoma (Fig. 3b) [38]. SS18
encodes a subunit of the SWI/SNF (BAF) complex and this gene is
often rearranged in synovial sarcoma. The SS18-SSX fusion protein
competes with the wild-type SS18 protein for binding to the BAF
complex, resulting in the loss of the BAF47 subunit (a tumor
suppressor) from the complex, which promoting the expression of
downstream SOX2 and other genes [39]. In addition, the synergy
of the SS18-SSX fusion protein and SWI/SNF complex plays an
important role in chromatin structure regulation and histone
modification, which jointly promote the tumorigenesis and
development of synovial sarcoma [40].

Change in molecular subcellular location
The correct subcellular location of a protein is a significant factor
for signal transduction and protein molecular function. Some
partner genes that express proteins with specific subcellular
localization sequences can play a role by changing the localization
of the fusion protein (Fig. 3c). MAN2A1-FER is a common recurrent
fusion in liver cancer, esophageal adenocarcinoma, and non-small
cell lung cancer, and has carcinogenic effects [41, 42]. The fused
MAN2A1 protein retains its signal peptide, resulting in the
MAN2A1-FER fusion protein being located in the Golgi apparatus,
which results in the ectopic activation FER. The FER-related
tyrosine kinase activity of the fusion protein is almost four times
that of wild-type FER, which activates downstream signaling
molecules significantly, such as BRAF, MEK, and AKT.

Acquisition of an active or strong promoter
The promoter is an important element of gene expression, and
its activity is a key factor in determining gene transcription
efficiency. It has been reported that some genes acquire active
promoters or cis-regulatory elements through fusion events to
achieve higher expression levels (Fig. 3d) [43]. For example, the
TMPRSS2-ERG fusion is a carcinogenic fusion event in prostate
cancer. The fusion allows the ERG gene to share clusters of
regulatory elements (COREs) from the TMPRSS2 gene, includ-
ing its promoter. ERG is as a key transcription factor that
maintains the expression of genes required for cancer cell
proliferation and metabolism. The EML4-ALK fusion is a
successful target for the treatment of non-small cell lung
cancer. The fused ALK acquires an active promoter and
dimerization site from the EML4 gene, resulting in constitu-
tively activated ALK kinase [44]. Therefore, obtaining a strong
promoter is an important mechanism by which oncogenic
transcription factors or kinases drive cancer.

Avoiding miRNA regulation
MicroRNAs are small non-coding RNAs with a length of 18–22
nt. miRNAs target and bind to the 3′ untranslated region (UTR)
of their target gene mRNAs, leading to mRNA degradation or
translational silencing, which play negative roles in the
regulation of gene expression (Fig. 3e) [45]. It has been
reported that FGFR3 is the target gene of miR-99a and is
negatively regulated by miR-99a. In FGFR3-TACC3 fusion-
positive gliomas, the fused FGFR3 loses its 3′ UTR region;
therefore, it is no longer negatively regulated by miR-99a,
which increases the FGFR3 tyrosine kinase signal, thereby
promoting tumor progression [46].

d. Acquisition of an active or strong promoter f. Upregulating downstream effectorse. Avoiding miRNA regulation

c. Change in molecular subcellular locationb. Effects on the function of protein complexesa. Lost of protein functional domains

Fig. 3 General mechanism of fusion genes in cancer. MLL fusions lost its functional domain which catalyze H3K4 methylation in Leukemia
tumorigenesis (a). SS18-SSX fusion protein cause the lost of BAF47 subunit of BAF complex in synovial sarcoma (b). MAN2A1-FER fusion allows
the FER molecule to be located to the Golgi apparatus, thereby activating its tyrosine kinase activity (c). Fusion genes allow some transcription
factors or kinases to acquire strong promoters, thereby activating downstream genes (d). FGFR3-TACC3 fusion avoids the regulation of
miR199a in tumorigenesis (e). Some fusion proteins act as effectors to activate the target enhancers or genes (f).
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Upregulating downstream effectors
The enhancer region is important to regulate gene transcription
activity, and the silencing or activation of an enhancer is usually
mediated by certain transcriptional activation or repressor
factors. For example, the transcriptional activator STAT5
activates the transcription of target genes (such as MYC and
BCL2) by binding to their enhancer regions and co-exists with
enhancer markers such as BRD4, P300, and H3K27ac. The
NUP214-ABL fusion is considered to be a key factor in inducing
acute T-cell leukemia (Fig. 3f). The fused protein can activate
STAT5 through phosphorylation, and activated STAT5 can
increase the transcriptional activity of its target genes
significantly [47, 48]. In AML, the RUNXI-ETO fusion protein is
considered to be an oncogenic transcription factor (Fig. 3f). The
RUNX1-ETO fusion protein replaces the wild-type RUNX1
protein and binds to the open chromatin region upstream of
the CCND2 transcription start site (TSS), resulting in the
abnormal activation of CCND2, which drives the occurrence of
AML [49].

CURRENT RESEARCH STATUS OF FUSION GENES IN
GYNECOLOGIC TUMORS
The research progress into gene fusions in various types of
gynecologic tumors varies. There have been more studies
related to ovarian cancer and uterine sarcoma, and fewer
studies related to cervical cancer and endometrial cancer. In this
section, we describe gene fusions in various types of
gynecologic tumors, including the frequency of fusion genes,
the method of fusions, the relationship between the genes and
cancer, and the mechanism of oncogenic fusion (Table 1). All
fusion genes have been confirmed in the relevant literature. The
identification methods of fusion genes include RT-PCR, FISH or
Sanger sequencing.

Fusion genes in ovarian cancer
Among gynecologic tumors, ovarian cancer is a highly
malignant tumor that is prone to metastasis and recurrence.
Approximately 70–80% of patients with advanced ovarian
cancer experience recurrence within 5 years [50, 51]. The fusion
genes that have been identified in ovarian cancer are PCMTD1-
CCNL2, ANXA5-CCNA2, CCN4-NRG4, SLC25A40-ABCB1, DPP9-
PPP6R3, MAN2A1-FER, CDKN2D-WDFY2, BCAM-AKT2, and FHL2-
GLI2. These fusion genes involve cyclin family genes, multi-drug
resistance related MDR/TAP subfamily genes, tyrosine kinase
family genes, and AKT signaling pathway-related genes [52].
The frequency of the PCMTD1-CCNL2 fusion in endometrioid

ovarian cancer is 22% (4/18). It is formed by the rearrangement
of the PCMTD1 gene on chromosome 8 and the CCNL2 gene on
chromosome 1. The upstream part of the fusion junction is exon
3 of PCMTD1, and the downstream part is exon 6 of CCNL2. The
parental gene CCNL2 encodes a cyclin family protein that can
interact with a variety of proteins to induce cell cycle arrest and
apoptosis in lung cancer and mouse embryonic cancer cells
[53, 54]. Interestingly, the other parent gene, PCMTD1, encodes
a member of the methyltransferase superfamily, which has
methyltransferase activity. Unfortunately, no studies have
confirmed that this gene fusion affects the occurrence or
development of ovarian cancer or other cancers.
The SLC25A40-ABCB1 fusion is the most common rearrange-

ment involving ABCB1, occurring in 15.7% (20/108) of cases of
high-grade serous ovarian cancer [55]. Most of the breakpoints
of ABCB1 fusions occur in the intron 1 region, and the fusion
includes exon 2 and the following sequence. ABCB1 fusion
transcription promoters are mostly replaced by partner gene
promoters. ABCB1 fusion-positive tumor tissues are usually
accompanied by upregulation of ABCB1 expression, suggesting
that gene fusion might allow ABCB1 to escape negativeTa

b
le

1
co
nt
in
ue

d

Fu
si
on

ge
ne

s
Fr
eq

ue
nc
y

C
an

ce
r
ty
pe

C
hr
om

os
om

e
Ju
nc
ti
on

M
ol
ec
ul
ar

m
ec
ha

ni
sm

R
ol
e
in

ca
nc
er

R
ef
er
en

ce
s

TI
M
P3

-A
LK

9%
(1
/1
1)

U
te
ri
n
e
in
fl
am

m
at
o
ry

m
yo

fi
b
ro
b
la
st
o
m
a

22
,2

1,
19

&
20

–
–

G
RE

B
1-
N
C
O
A
2

–
U
TR

O
SC

T
2,

8
3,

14
–

Tu
m
o
rs

w
it
h
G
R
EB

1
re
ar
ra
n
g
em

en
ts

ar
e
m
o
re

ag
g
re
ss
iv
e

[1
13

]

G
RE

B
1-
N
R
4A

3
–

U
TR

O
SC

T
2,

9
7,

2
–

G
RE

B
1-
SS

18
–

U
TR

O
SC

T
2,

18
7,

6
–

G
RE

B
1-
N
C
O
A
1

–
U
TR

O
SC

T
2,

2
7,

13
–

Th
e
ta
b
le

sh
o
w
s
th
e
fr
eq

u
en

cy
,c
an

ce
r
ty
p
e,

ch
ro
m
o
so
m
e
lo
ca
ti
o
n
,
th
e
si
te

o
f
th
e
ju
n
ct
io
n
,m

o
le
cu

la
r
m
ec
h
an

is
m
,
an

d
ro
le

in
ca
n
ce
r
o
f
al
l
th
e
co

n
fi
rm

ed
fu
si
o
n
g
en

es
.

B. Lu et al.

6

Cell Death and Disease          (2021) 12:783 



regulation and obtain a strong promoter. The SLC25A40 gene is
commonly expressed in tissues and has not been shown to be
related to tumors. MDR1, the protein encoded by ABCB1, is a
member of the MDR/TAP subfamily, which mediates the efflux of
chemotherapeutic drugs and is associated with multidrug
resistance in tumors [42, 56].
Although the frequency of MAN2A1-FER fusion in ovarian

cancer is only 1.7% (1/60), it appears in a variety of tumors. The
frequency of MAN2A1-FER is higher in esophageal adenocarci-
noma (25.9%), liver cancer (15.7%), and non-small cell lung cancer
(16.8%) [42]. The MAN2A1-FER fusion is formed by the cis splicing
of exons 1–13 of MAN2A1 and exons 1–6 of FER on chromosome
5. The parental gene MAN2A1 encodes a glycosyl hydrolase
located in the Golgi apparatus that catalyzes the final hydrolysis
step in the maturation pathway of asparagine-linked oligosac-
charides (N-glycans). MAN2A1 has been shown to be involved in
the immune regulation of tumors, and inhibition of MAN2A1 can
enhance the tumor’s immune response to anti-PD-L1 drugs [57].
The encoded product of FER is a member of the receptor tyrosine
kinase family, which regulates cell adhesion and is related to the
epithelial-mesenchymal transition process of tumors [58]. Mechan-
istically, the MAN2A1-FER fusion protein retains the signal peptide
of MAN2A1, which results in the fusion protein being located in
the Golgi apparatus, significantly increasing the activity of the
fused FER tyrosine kinase [42].
The CDKN2D-WDFY2 fusion is cancer-specific and has only been

identified in ovarian cancer. The fusion is formed by the
rearrangement of CDKN2D on chromosome 19 and WDFY2 on
chromosome 13, including exon 1 of CDKN2D and exons 3–12 of
WDFY2, with a fusion frequency of 20% (12/60) [59]. CDKN2D
encodes a cell cycle regulator that is involved in the DNA repair
process. WDFY2 encodes a protein containing two WD domains
and an FYVE zinc finger region, which can specifically target AKT2,
leading to decreased phosphorylation of downstream molecules of
AKT (such as BAD and FOX3A) [60]. Studies have shown that
overexpression of WDFY2 can inhibit the biological behavior of
prostate cancer by affecting the AKT pathway [61]. The CDKN2D-
WDFY2 fusion resulted in the loss of wild-type WDFY2 protein
expression, and the truncated WDFY2 protein was expressed at the
same time. The fused WDFY2 protein lacks the AKT-binding domain
and results in increased downstream BAD and FOX3A expression.
The BCAM-AKT2 fusion is a specific rearrangement in high-

grade serous ovarian cancer. The fusion frequency is 7% (4/60).
The fusion gene comprises exons 1–13 of BCAM and exons 5 and
the following sequence of AKT2 on chromosome 19. BCAM
encodes a receptor for the extracellular matrix protein laminin,
which mediates the adhesion of red blood cells [62] and is related
to the metastasis of colorectal cancer [63–65]. AKT2 is a known
oncogene encoding a serine/threonine kinase subfamily protein
that can phosphorylate a variety of proteins. Mechanistically, the
BCAM-AKT2 fusion protein uses the membrane localization
domain of BCAM to guide the fused AKT2 to the membrane
where it is activated by phosphorylation [64, 66].
The FHL2-GLI2 fusion is unique to sclerosing stromal tumors of

the ovary (SST), with a fusion frequency of 65% (17/26). It consists
of exons 1–5 of FHL2 and exons 8–12 GLI2 on chromosome 2 [67].
FHL2 has been reported to play a role in a variety of tumors,
participating in epithelial-mesenchymal transition and stabilizing
EGFR [68, 69]. The encoded product of GLI2 is a member of the
transcription factor of the Gli family, which participates in the
Sonic hedgehog (Shh) signaling pathway and promotes tumor
progression [70, 71].
Although the TMEM123-MMP27, ZBTB46-WFDC13, PLXNB1-

PRKAR2A, and other fusions have been reported in only a few
cases of ovarian cancer, it is interesting that the above fusions
increase the expression of the 3′ end gene [72] 5. In addition, a
study reported that the expression levels of 48 genes located near
the fusion gene were upregulated significantly, which also

indicated that fusion gene remodeling of the cancer transcrip-
tome is a complicated process [73].

Fusion genes in endometrial cancer
The pathogenesis of endometrial cancer is still unclear. Studies
have shown that mutations in some genes or pathways are
important driving events of uterine corpus endometrial carcinoma
(UCEC), such as the mutation of the P53 gene, the PIK3CA
pathway, the KRAS gene, and overexpression of the HER2 gene
[74]. In recent years, with the development of deep sequencing
technology, a large number of fusion events have been
discovered (see Table 1), among which CPQ-PRKDC and TSNAX-
DISC1 are two representative fusions [75]. CPQ-PRKDC occurs at a
low frequency in endometrial cancer (2.5%, 3/122), and is formed
by the rearrangement of exons 1–2 of CPQ and exons 80–87 of
PRKDC on chromosome 8 [76]. The TSNAX-DISC1 fusion is not a
gene-level rearrangement. It is formed by the splicing of TSNAX
and DISC1 transcripts and occurs with a frequency of 71.2% (123/
176) in UCEC. Unfortunately, there is no research to show whether
these two fusions play a role in cancer.

Fusion genes in cervical cancer
Chronic persistent infection of high-risk human papillomavirus
(HPV) is the main cause of cervical cancer, and more than 90% of
cases are accompanied by HPV virus infection [77]. However, only
1% of women infected with high-risk HPV eventually develop into
cervical cancer. This suggests that there may be other carcino-
genic factors besides HPV infections, such as gene mutations and
chromosome rearrangement. We found 454 fusions in the
Tumorfusion database (Fig. 1a) [11], but only the FGFR3-TACC3
fusion has been confirmed [78]. This fusion is formed by the cis
splicing of two adjacent genes on the P16 arm of chromosome 4,
including exons 1–17 of FGFR3 and exons 4–16 or 6–16 of TACC3,
with an incidence of 1.9% (2/103). FGFR3 encodes a member of
the fibroblast growth factor receptor (FGFR) family and contains a
tyrosine kinase domain. TACC3 encodes a member of the acidic
Escherichia coli chain protein family, which plays a role in the
differentiation and growth of certain cancer cells. In glioma, FGFR3
is regulated negatively by miR-99a, while in cervical cancer,
FGFR3-TACC3, which has lost the FGFR3 3′ UTR region, has been
proven to be a carcinogenic fusion that activates the MAPK
pathway by increasing its FGFR3 signal [79]. In addition, the
FGFR3-TACC3 fusion protein can replace the EGFR-ERK signaling
pathway in tumors, mediating the drug bypass resistance
mechanism [80]. This suggests that FGFR3 fusions can fully exert
their carcinogenic effects by escaping the negative regulation of
miR-99a [81, 82]. Studies have reported that FGFR3-TACC3 is a
common fusion in many tumors, and the fusion frequency is
similar in various cancers [83]. The FGFR3-TACC3 fusion is a clear
oncogene, and its targeted inhibition has achieved good results in
other cancers.

Fusion genes in endometrial stromal sarcoma (ESS)
The cause of ESS is unclear; however, it has a high recurrence rate
and poor prognosis. It is generally believed that chromosomal
rearrangement is closely related to the occurrence of ESS [84]. The
instability of chromosomes 6, 7, 10, and 17 in ESS is the cause of
some fusions, such as PHF1, JAZF1, EPC1, YWHAE, and MBTD1-
CXorf67 fusions.
EPC1 fusion is a rare event in ESS, being only reported in a few

cases. Its partner genes include SUZ12, BCOR, and PHF1. EPC1-
PHF1 has been reported very early and is associated with the
morphology and clinical features of low-grade ESS, which is
produced by t (6;10) (p21; p11). By contrast, EPC1-SUZ12 and
EPC1-BCOR are more prone to occur in aggressive high-grade ESS,
corresponding to t (10;17) (p11; q11) and t (10; x) (p11; p11),
respectively [85, 86]. EPC1 is an oncogene that can act as both a
transcriptional activator and a repressor, and is related to
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apoptosis and DNA repair [87, 88]. For example, the EPC1
promoter physically combines with E2F1 to activate transcriptional
activity, thereby inducing anti-apoptosis-related genes and
promoting cancer growth. Interestingly, the three partner genes
are all related to transcriptional regulation [89–91], suggesting
that the fusion of EPC1 and its partner genes allows them to be
physically close, which might promote its participation in
transcriptional regulation.
PHF1 fusions mainly include MEAF6-PHF1, EPC1-PHF1, BRD8-

PHF1, EPC2-PHF1, and JAZF1-PHF1 [92–94]. The PHF1 gene is
located on chromosome 6 (6p21), JAZF1 is located at 7p15, EPC2 is
located at 2q23, and EPC2 is located at 10p11. The rearrangement
of EPC1 or MEAF6 from 1p34 is a recurrent fusion in ESS. The
encoded product of PHF1 is a polycomb group protein, which
forms a PRC2 complex with, for example, MTF2 and PHF19 to
mediate the methylation of histone H3K27 [95]. The PRC2 complex
is a methyltransferase that is commonly dysregulated in human
cancers. Overexpression of PRC2 is a significant sign of poor
prognosis in human cancer [96]. Similar to the EPC1 fusion, most
of the PHF1 fusion partner genes are also involved in transcrip-
tional regulation, which suggests that fusion genes might be a
mechanism of transcription disorders in ESS.
YWHAE-FAM22A/B fusion is a rearrangement of chromosome

17 arm p13 with chromosome 10 arms q23 and q22, including
exons 1–5 of YWHAE and exons 2–7 of FAM22A, with a
frequency of 26–58% in ESS [97, 98]. Compared with JAZF1
fusions, YWHAE fusions ESS tend to be associated with higher
disease stages and more frequent recurrences, and have
diagnostic specificity for high-grade ESS. The encoded product
of YWHAE is 14-3-3ε, which belongs to the 14-3-3 protein family,
and mediates signal transduction by binding to proteins
containing phosphoserine residues. For example, the combina-
tion of 14-3-3ε and FBX4 promotes the dimerization of FBX4 and
promotes its E3 ligase activity [99]. In prostate cancer, the
combination of 14-3-3ε and APAF-1 inhibits cytochrome c from
activating the downstream caspase and protects the survival of
cancer cells [100]. FAM22A/B encodes a protein with a nuclear
localization signal; however, its role in cancer is unclear. The
YWHAE-FAM22A/B fusion retains the nuclear localization
sequence of FAM22A/B and maintains the complete 14-3-3ε
domain. YWHAE, which is directed to the nucleus from the
cytoplasm, activates the expression of a series of downstream
genes, such as CCND1 and CEBPA [98].
JAZF1-SUZ12 is a carcinogenic fusion related to low-grade ESS.

Its fusion frequency is reported to be 75% in endometrial stromal
nodule (ESN), 50% in low grade (LG)-ESS, and 15% in high grade
(HG)-ESS, and can be used to distinguish LG-ESS from HG-ESS
[101]. This fusion is the result of a rearrangement between p15 of
the arm of chromosome 7 and q21 of the arm of chromosome 17,
which contains exons 1–3 of JAZF1 and exons 2–16 of SUZ12.
JAZF1 encodes a nuclear protein with a zinc finger structure. This
protein binds to the orphan nuclear receptor TAK1 and acts as a
transcriptional regulator [102], which can play a role in tumor
suppression or cancer promotion [103, 104]. SUZ12 encodes an
important component of the PRC2 complex, which mediates the
modification of H3K9 and H3K27 methylation, and is related to
chromatin remodeling and gene silencing [105]. The JAZF1-SUZ12
fusion protein in ESS replaces the wild-type SUZ12 protein, which
changes the structure of the PRC2 complex and inhibits its H3K27
methylation activity, thus increasing the expression of down-
stream genes HOXA9 and WNT11 [106].
The fusion frequency of MBTD1-CXorf67 in ESS is 7% (1/14). The

MBTD1-CXorf67 fusion is composed of exons 1–16 of MBTD1 and
exon 1 of CXorf67 [107]. The result of the MBTD1-CXorf67 fusion in
ESS increased the expression of CXorf67 by 5–9 times. Although it
is not clear whether CXorf67 has an oncogene effect in ESS,
studies have confirmed that CXorf67 affects the DNA repair
pathway of homologous recombination in the ependymoma and

blocks the methyltransferase activity of EZH2, which plays an
important role in glioma tumorigenesis.

Fusion genes in other types of uterine tumors
Uterine inflammatory myofibroblastoma (IMT) is a rare mesench-
ymal tumor with low-grade malignancy, the recurrence of which
can be effectively avoided by complete surgical resection [108].
IMT is usually accompanied by ALK expression and ALK fusion.
Common gene fusions in IMT include IGFBP5-ALK, THBS1-ALK,
FN1-ALK, and TIMP3-ALK. ALK fusion is considered a diagnostic
indicator of IMT [109]. A study found that 10 of 11 IMT tumors
contained ALK rearrangements, among which IGFBP5-ALK repre-
sented 27% (3/11), THBS1-ALK represented 27% (3/11), FN1-ALK
represented 18% (2/11), and TIMP3-ALK represented 9% (1/11)
[110]. Another study detected ALK gene fusions in 14 cases of IMT,
which indicated that the incidence of ALK fusions in IMT is
extremely high [109]. ALK encodes a well-known receptor tyrosine
kinase. The ALK fusion partner usually produces oncogenic
constitutive tyrosine kinase activity by promoting the polymeriza-
tion and autophosphorylation of ALK [111].
Uterine tumors similar to ovarian sex cord stromal tumors

(UTROSCT) are rare uterine stromal tumors of unknown etiology.
Although most of them are benign, some of them recur [112].
Chromosome rearrangement has recently been reported in
UTROSCT cases, where ESR1 fusion and GREB1 fusion are
common, including ESR1-NCOA2, ESR1-GREB1, GREB1-NCOA2,
GREB1-NR4A3, GREB1-SS18, GREB1-NCOA1, and GREB1-CTNNB1.
In a recent study, four cases of UTROSCT with GREB1 rearrange-
ments were identified, including GREB1-NCOA2, GREB1-NR4A3,
GREB1-SS18, and GREB1-NCOA1. UTROSCTs with these rearrange-
ments were found to be more aggressive than those with ESR1
rearrangements [113]. GREB1 is an early estrogen-responsive gene
in the estrogen receptor regulatory pathway. It is believed to
stimulate the proliferation of breast, ovarian, and prostate cancer
cells [114], and mediate resistance to tamoxifen [115]. NCOA1 and
NCOA2 are common partner gene and their encoded proteins act
as transcriptional co-activators of steroid and nuclear hormone
receptors. They contain nuclear localization signals and bHLH and
PAS domains. ESR1 encodes a transcription factor that activates
estrogen receptors and ligands, and is considered to be a driving
event for breast and endometrial cancer [116, 117]. These reports
suggest that fusion genes of the estrogen regulatory pathway
have potential carcinogenic effects in UTROSCT.

THE PROSPECT OF GENE FUSIONS AS THERAPEUTIC TARGETS
IN GYNECOLOGIC TUMORS
For more than half a century, gene fusion has been regarded as a
key driving event in cancer. The results of gene fusion can change
the expression pattern of the original gene. Some fusion genes
can activate protein functions or produce new chimeric proteins,
and can participate in the occurrence and development of cancers
by changing signaling pathways, affecting protein interaction,
changing subcellular localizations, or activating neighboring
genes. Chromosome rearrangement and gene fusions are valuable
in the diagnosis or classification of cancers [16]. Studies also
suggested that gene fusion can be used as a method to monitor
the residual small lesions after treatment [118]. Many cancers
characterized by fusion genes have a poor prognosis; therefore,
targeting specific oncogenic fusion proteins might bring unex-
pected results. In recent years, targeted drug therapy for gene
fusion-positive cancers has significantly improved the prognosis of
patients with cancer. For example, tyrosine kinase inhibitors have
achieved satisfactory results in a variety of cancers. With the
development of deep sequencing technology, scientists have
discovered that fusion genes not only exist in sarcomas and
hematological malignancies, but also exist in large amounts in
some solid tumors [119, 120]. Although most of the fusion events
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seem to occur accidentally and have no pathogenic character-
istics, there are some valuable fusions among the few commonly
recurring fusions.
Some of the fusions described in this article have potential

value for the management of gynecologic tumors. For example,
the JAZF1-SUZ12 fusion related to low-grade ESS and the YWHAE-
FAM22 fusion related to high-grade ESS have been confirmed to
play a role in the progression of ESS [98, 106]. The CDKN2D-
WDFY2 fusion had a detection rate of 20% in 60 cases of ovarian
cancer, and it is not found in normal ovarian and fallopian tube
tissues [59]. WDFY2 is an important regulator of AKT phosphoryla-
tion, and thus might represent a promising target in the diagnosis
and treatment of ovarian cancer. The MAN2A1-FER fusion in
ovarian cancer can significantly enhance tyrosine kinase activity. In
vivo experiments have also confirmed that the fusion promotes
tumor progression. Therefore, the application of tyrosine kinase
inhibitors to MAN2A1-FER fusion-positive cancers might be a
valuable choice [42]. In cervical cancer, glioma, and other tumors,
FGFR3-TACC3 is a recurrent and carcinogenic fusion [46, 79], and is
sensitive to FGFR inhibitors [83]; therefore, FGFR3-TACC3 fusion
protein inhibitors have the potential to treat fusion-positive
cancers. At present, the targeted drugs used in gynecologic
tumors mainly include VEGF inhibitors, EGF inhibitors, and PARP
inhibitors. Although these drugs have achieved certain results, the
rates of recurrence and metastasis are still high.

CONCLUSIONS
A full understanding of the frequency, associated pathways, and
carcinogenic mechanisms of fusion genes in gynecologic tumors
have great prospects to identify valuable oncogenic fusions and
potential targets.
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