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ABSTRACT

Purpose

We previously developed an approach to calibrate computational tools for clinical variant

classification, updating recommendations for the reliable use of variant impact predictors to

provide evidence strength up to Strong. A new generation of tools using distinctive approaches

have since been released, and these methods must be independently calibrated for clinical

application.

Method

Using our local posterior probability-based calibration and our established data set of ClinVar

pathogenic and benign variants, we determined the strength of evidence provided by three new

tools (AlphaMissense, ESM1b, VARITY) and calibrated scores meeting each evidence strength.

Results

All three tools reached the Strong level of evidence for variant pathogenicity and Moderate for

benignity, though sometimes for few variants. Compared to previously recommended tools,

these yielded at best only modest improvements in the tradeoffs of evidence strength and false

positive predictions.

Conclusion

At calibrated thresholds, three new computational predictors provided evidence for variant

pathogenicity at similar strength to the four previously recommended predictors (and

comparable with functional assays for some variants). This calibration broadens the scope of

computational tools for application in clinical variant classification. Their new approaches offer

promise for future advancement of the field.
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INTRODUCTION

The classification of variants as pathogenic or benign by clinical genetic testing laboratories is a

key component of modern genomic medicine. The American College of Medical Genetics and

Genomics (ACMG) and the Association for Molecular Pathology (AMP) have made

recommendations to standardize the practice of clinical variant classification.1 These

recommendations identified distinct sources of evidence regarding the pathogenicity or

benignity of a variant (e.g., genetic, functional, computational, case observation, and population

data), assigned strengths to them, and specified rules to combine evidence to classify a variant

into one of five classes: pathogenic, likely pathogenic, uncertain significance, likely benign or

benign. Within the Richards et al. ACMG/AMP recommendations, the PP3 and BP4 criteria

generally specified that evidence from computational tools (e.g., rule-based, statistical and/or

machine learning-based) was considered to be the weakest, i.e., Supporting evidence.

However, powerful, new variant impact predictors (VIPs) have rapidly emerged, with over 400

now developed.2

Recently, we undertook a rigorous quantitative calibration of computational tools, which

demonstrates that some tools could reliably provide higher levels of evidence strength.3 Our

approach maps scores from a computational tool to local posterior probabilities, which in turn,

map to levels of evidential strength in the ACMG/AMP recommendations and their subsequent

adaptation into a point-based system using a Bayesian formulation: Indeterminate or 0 points,

Supporting or ±1 point, Moderate or ±2 points, Strong or ±4 points, and Very Strong or ±8

points.4,5 By applying this approach to 13 tools that predict the impact of missense variation, we

demonstrated that at certain score thresholds, four tools can provide Strong evidence for

pathogenicity and Moderate evidence for benignity: BayesDel,6 MutPred2,7 REVEL,8 and

VEST4.9 Based on our findings, ClinGen10 recommended modifications to the PP3 and BP4

criteria that stipulated consistent use of a single tool defined in advance (per laboratory or per

gene) with score thresholds calibrated to specific evidential strength levels up to Moderate
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benign (BP4_Moderate; -2 points) and Strong pathogenic (PP3_Strong; +4 points). Additional

context about these clinical recommendations is provided in Stenton et al.,11 along with practical

guidance on their intended use and their implications for variant curation in disease-associated

genes.

Since then, advances in protein structure prediction, protein language models, and

assay technologies such as deep mutational scanning (DMS) and massively parallel reporter

assays (MPRAs), among others, have led to the emergence of new VIPs, with claimed

improvements in predictive performance when compared to existing tools.12–16 However, it is

unclear if these improvements in performance translate to the clinical context, in which

computational tools serve as one line of evidence for variant pathogenicity/benignity among

many. Furthermore, the objectives of these tools may vary, often focusing on the discovery of

novel variants in research studies rather than the assertion of clinical pathogenicity, and

predicting different notions of variant impact, e.g., distinguishing unobserved from observed

ones. Thus, default score thresholds for these tools do not necessarily correspond to those for

appropriate strength of evidence defined by the ACMG/AMP recommendations. Here, we

estimate thresholds for newer tools corresponding to evidential strength in these

recommendations, employing the same rigorous data sets and approaches. We also estimate

additional thresholds for the above four previously calibrated tools corresponding to the

ACMG/AMP point-based system for variant classification.5 We then compare and contrast these

clinically performant methods against three recently published ones. Finally, we discuss our

findings in light of the development and use of computational tools in the clinical classification of

variants, reiterating the important role that we expect such tools to play in the future.

MATERIALS AND METHODS

Data sets, calibration procedures and post hoc analyses
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We applied the methods and data sets developed in Pejaver et al.3 Specifically, we employed

the ClinVar 2019 data set for calibration and the ClinVar 2020 set for post hoc assessments of

tools and their thresholds. We used the gnomAD data set (v2.1.1) for both calibration and post

hoc assessments.17 We calibrated each tool using our local posterior probability-based

approach, and estimated score thresholds through bootstrapping, with the same parameters

and local likelihood ratio cutoffs as before. We adopted the same post hoc assessment pipelines

as in the Pejaver et al. study.

Selection of computational tools and processing of their outputs

We selected tools for this study using a purposive sampling strategy. Based on recency of

publication (within the past three years), the use of modern machine learning approaches (such

as protein language models), their performance in the “Annotate All Missense” challenge18 in the

Critical Assessment of Genome Interpretation (CAGI),19 anecdotal feedback on interest in

adoption by the clinical genetics community, and the minimal need for access to original training

data, we chose four tools for calibration: AlphaMissense,15 ESM1b,14 EVE,12 and VARITY13

(specifically, VARITY_R, the model trained on only rare variants). Important for this effort and

also for utility within the clinical genetics community, these tools make precomputed scores for

all possible single nucleotide or amino acid variants freely and publicly available, albeit in

slightly different formats and with gene/protein identifiers from different databases.

We developed customized mapping protocols for each tool to maximize the number of

variants in our data sets with scores. For AlphaMissense, we used three complementary

mapping approaches. First, we linked precomputed scores to our data sets using chromosomal

coordinates and Ensembl transcript identifiers as the key.20 Second, to ensure that the correct

isoform was being considered, we undertook the mapping based on the Ensembl transcript

identifier and amino acid substitution. Third, we undertook an additional mapping based on

UniProt protein identifiers, using the corresponding mapping file provided by AlphaMissense.21

For ESM1b, we mapped precomputed scores to our data sets using the provided UniProt

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.17.611902doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?BClnef
https://www.zotero.org/google-docs/?roBcyU
https://www.zotero.org/google-docs/?36KJHP
https://www.zotero.org/google-docs/?ZVQlga
https://www.zotero.org/google-docs/?nR2YtJ
https://www.zotero.org/google-docs/?K3PKpo
https://www.zotero.org/google-docs/?tV8ZhK
https://www.zotero.org/google-docs/?x8Zxrb
https://www.zotero.org/google-docs/?gC3nvX
https://www.zotero.org/google-docs/?336Iae
https://doi.org/10.1101/2024.09.17.611902
http://creativecommons.org/licenses/by-nc/4.0/


identifiers (with and without isoform-specificity) and amino acid substitutions. For variants that

still remained unmapped, we used dbNSFP v4.4a22 to reannotate our variant list with the most

up-to-date UniProt annotations, which were in turn used to map precomputed scores to our data

sets. For EVE, we first mapped variants using UniProt or Ensembl transcript identifiers and

amino acid substitution. We further matched all remaining unmapped variants to the UniProt

gene name and amino acid substitution. For VARITY, we first mapped precomputed scores to

variants in our data sets using UniProt protein identifiers, without consideration of the specific

isoform. We then mapped the remaining variants strictly using chromosomal coordinates.

Except for VARITY, none of these tools were explicitly trained on variants from ClinVar.23

However, for VARITY, the precomputed score for each variant was assigned by a version of the

model that did not include that variant in the training set. Therefore, no additional filtering of the

data sets against the training data set of each tool was performed.

RESULTS

Recently published tools can provide up to Strong evidence for pathogenicity

Our local posterior probability-based calibration approach enabled the estimation of score

thresholds for AlphaMissense, ESM1b, and VARITY_R that corresponded to distinct evidential

strength levels within the ACMG/AMP variant classification guidelines. We found that all three

tools were able to reach at least the Moderate level for benignity (with VARITY_R reaching

Strong) (BP4) and the Strong level of evidence for pathogenicity (PP3) (Table 1, Fig. 1A).

However, the score thresholds at which these were achieved were more stringent than the

thresholds recommended by the tool developers. In fact, the recommended thresholds for

AlphaMissense (0.564) and ESM1b (-7.5) do not meet the Supporting level of evidence for

pathogenicity or benignity, based on our calibration. Overall, all three tools exhibited similar

behavior to the four best-performing tools from our previous study, even when considering

newer intervals between Moderate and Strong according to the ACMG/AMP point-based system
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(Table 1). When we attempted to calibrate EVE, it nominally appeared to reach the Moderate

level of evidential strength for both pathogenicity and benignity. Score thresholds for Supporting

and Moderate were 0.684 and 0.845, respectively, for pathogenicity, and 0.137 and 0.209,

respectively, for benignity. However, EVE predictions were available only for a subset of genes

in our calibration set, leaving about half of the benign/likely benign variants unscored.

Furthermore, unscored genes showed a marked skew in ratio of pathogenic to benign variants.

Due to potential sampling bias, we lack confidence in the applicability of the measured

thresholds, rendering us currently unable to recommend their use in clinical variant

classification.

Table 1. Estimated threshold intervals for all tools in this and our previous study according to the
ACMG/AMP recommendations for sequence variant interpretation. The intervals correspond to the
three pathogenic, one indeterminate, and three benign intervals (Very Strong not shown as it was never
reached) in the current guidelines. The ACMG/AMP guidelines are expected to transition to a point-based
system,5 and the numbers in parentheses in the header indicate point values corresponding to each
evidential strength interval in this system. Although the 2015 guidelines do not include a strength level
between Moderate (2 points) and Strong (4 points), intervals for the 3-point strength of evidence are also
reported, as 3-point evidence will be recommended for future editions of the guidelines. A “–” implies that
the given tool did not meet the posterior probability (likelihood ratio) threshold for that strength. All
methods calibrated in this study are indicated in bold. For the remaining methods, all intervals are the
same as those reported in our previous study,3 with additional columns for the interval corresponding to
the Indeterminate range and ±3 points as per the point-based system.

Method
Benign (BP4)

Indeterminate
(0)

Pathogenic (PP3)

Strong
(-4) (-3) Moderate

(-2)
Supporting

(-1)
Supporting

(+1)
Moderate

(+2) (+3) Strong
(+4)

BayesDel - ≤ -0.520 [-0.519,
-0.360]

[-0.359,
-0.180] [-0.179, 0.129] [0.130,

0.269]
[0.270,
0.409]

[0.410,
0.499] ≥ 0.500

MutPred2 ≤ 0.010 [0.011,
0.031]

[0.032,
0.197]

[0.198,
0.391] [0.392, 0.736] [0.737,

0.828]
[0.829,
0.894]

[0.895,
0.931] ≥ 0.932

REVEL ≤ 0.016 [0.017,
0.052]

[0.053,
0.183]

[0.184,
0.290] [0.291, 0.643] [0.644,

0.772]
[0.773,
0.878]

[0.879,
0.931] ≥ 0.932

VEST4 - ≤ 0.077 [0.078,
0.302]

[0.303,
0.449] [0.450, 0.763] [0.764,

0.860]
[0.861,
0.908]

[0.909,
0.964] ≥ 0.965

AlphaMissense - ≤ 0.070 [0.071,
0.099]

[0.100,
0.169] [0.170, 0.791] [0.792,

0.905]
[0.906,
0.971]

[0.972,
0.989] ≥ 0.990

ESM1b - ≥ 8.8 [-3.1, 8.7] [-6.3, -3.2] [-10.6, -6.2] [-12.1,
-10.7]

[-13.9,
-12.2]

[-23.9,
-14.0] ≤ -24.0

VARITY_R ≤ 0.036 [0.037,
0.063]

[0.064,
0.116]

[0.117,
0.251] [0.252, 0.674] [0.675,

0.841]
[0.842,
0.914]

[0.915,
0.964] ≥ 0.965
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Clinical calibration shows modest improvements over existing computational predictors

We assessed the validity of our calibration by using the score thresholds estimated in Table 1 to

group variants from the ClinVar 2020 (not used in calibration) and gnomAD data sets, while also

comparing them to the four previously calibrated tools (Fig. 1B and 1C). For the ClinVar 2020

set, we calculated likelihood ratios within each interval defined by these thresholds, reflective of

true and false positive rates for the classification of pathogenic variants. All tools met or

exceeded (or, for benignity, were less than) the expected likelihood ratio values corresponding

to each interval. The only exception to this was that some of the previously calibrated tools did

not meet the thresholds for the 3-point intervals (Fig. 1B). VARITY_R and AlphaMissense

resulted in higher likelihood ratios in the interval corresponding to Strong for PP3 than the four

previously calibrated tools. However, it is unclear to what extent this is driven by the small

number of variants in this interval relative to other intervals. No variant in the ClinVar 2020 set

received an ESM1b score of -24.0, effectively capping the maximal strength achieved by

ESM1b at Moderate in practice. For the gnomAD set, we calculated the proportion of variants

lying within each interval to assess how evidential strength is distributed for each tool in variants

from the population (Fig. 1C). VARITY_R and AlphaMissense behaved as expected, in a

manner similar to the four previously calibrated tools, with the proportion of variants in the

Strong interval for pathogenicity being within the estimated prior probability of pathogenicity

(0.0441). However, AlphaMissense classified the smallest proportion of variants as being within

all three pathogenic intervals (0.125), slightly lower than REVEL (0.133). It is unclear if this

results from AlphaMissense being trained on variants from gnomAD as a proxy for

non-pathogenic variants.
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Figure 1. Local posterior probability curves and comparison with previously calibrated tools. (A)
Pairs of curves for AlphaMissense, ESM1b and VARITY_R. For each tool, the curve on the left is for
pathogenicity (red horizontal lines) and the curve on the right is for benignity (blue horizontal lines). The
horizontal lines represent the posterior probability thresholds for Supporting, Moderate, Strong, and Very
strong evidence as per current ACMG/AMP guidelines. A horizontal line representing the 3-point strength
of evidence is also shown. The black curves represent the posterior probability estimated from the ClinVar
2019 set. The gray curves represent one-sided 95% confidence intervals (in the direction of more
stringent thresholds), calculated from 10,000 bootstrap samples of this data set. The points at which the
gray curves intersect the horizontal lines represent the thresholds for the relevant intervals. (B) The
likelihood ratios within each interval on the independent ClinVar 2020 set. Darker colors indicate higher
values for pathogenicity and lower values for benignity (because these are positive likelihood ratios). The
limits for the color gradients are asymmetric, with ranges set between zero and one for benignity, and one
and 100 for pathogenicity. A gray rectangle is introduced at the center for comparability with (C). (C) The
percentage of variants predicted to be within the interval in the gnomAD set. Blue and red distinguish the
evidential strength intervals for benignity from pathogenicity, respectively, with the indeterminate interval
colored gray. The color gradient corresponds to the value in the cells, regardless of color. Darker colors
indicate higher proportions. A white cell without a value indicates that the tool did not reach thresholds
corresponding to that interval. The indeterminate interval also included variants without any scores.
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DISCUSSION

In this study, we calibrated three recently published computational tools to be usable within the

ACMG/AMP guidelines for clinical variant classification and found that all tools reach evidential

strength levels that are clinically useful. However, their recommended (default) thresholds did

not meet even the Supporting level of evidence for variant pathogenicity. Furthermore, these

three recent tools largely behaved similarly to four tools that we previously calibrated, and at

best offer modest improvements in the strength of evidence that can be applied while minimizing

the number of false positive predictions in the Supporting and Moderate categories. We also

extended our previous study to include intervals corresponding to three points, in light of the

point-based system to weight evidence that will be recommended in the next version of the

ACMG/AMP standards. We did not calibrate methods that incorporate allele frequency as an

explicit or strong implicit feature for two reasons. First, use of a predictor incorporating allele

frequency will limit use of lines of evidence depending upon allele frequency, such as BA1, in

variant classification. In practice, this means such methods are impractical to use in most clinical

classification pipelines. Second, methods using allele frequency (AF) need to be calibrated

distinctly for different AF thresholds (or once for the most stringent AF group), for which we

currently lack sufficient data.18

This calibration shares the limitations of our previous study, including those related to the

representativeness of data, potential circularities, estimation of prior probabilities, applicability

and variability for specific genes and diseases.3,24 Of particular note, the gap in time between

data set construction and the publication of some of these tools meant that there would

invariably be irreconcilable differences among gene, protein and/or variant identifiers in our data

sets compared to the files with precomputed scores for each tool. We expect this to be a major

issue only if the differences in missing data were non-random, which was not the case here

(average proportion of missing-at-random scores < 10%). For example, EVE12 was excluded
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because predictions were available only for a subset of genes in our calibration set, specifically

leaving about half of the benign/likely benign variants in our data set unscored, and thus

potentially introducing sampling bias.

The development of more advanced computational predictors of variant impact has often

been motivated by the idea that no computational method can yet “be relied on alone for genetic

diagnosis.”25 However, this is an inappropriate and unachievable benchmark for utility, because

no single source of evidence other than high allele frequency–computational or otherwise–can

presently be the sole criterion to determine the role of a variant in disease. Clinical standards for

the classification of rare genetic variants always require the integration of multiple lines of

evidence. This is a fundamental principle, integral to the ACMG/AMP clinical classification

framework.1 As such, AlphaMissense authors’ assertion that it classifies “32% of all missense

variants as likely pathogenic” employs the term “likely pathogenic” in a manner inconsistent with

that used in clinical variant classification.

Historically, computational tools have been trained or calibrated to predict various

proxies for variant pathogenicity that do not necessarily meet these clinical standards. As a

consequence, their utility in clinical variant classification was initially limited to providing

Supporting evidence. Our calibration provides a means to reconcile this misalignment of

developers’ and clinical perspectives by providing data-driven, tool-specific guidance on use in

clinical variant classification. We found that the AlphaMissense and ESM1b developers’

proposed thresholds did not achieve a Supporting degree of evidence, and our calibration

recommends a higher threshold to reach Supporting. Our calibration also finds that for even

higher thresholds, AlphaMissense and VARITY_R can reach Moderate and Strong pathogenicity

evidence for some variants. This underscores the importance of independent calibration of

methods used in clinical variant classification, just as critical assessments (such as CASP26 and

CAGI19) have revealed how developers’ subtle knowledge of their methods and data

inadvertently influence the results of their own assessments. Together with the ability to provide
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Supporting and Moderate benign evidence, we recommend these calibrated tools as potential

alternatives alongside the previously recommended tools.

Our results continue to suggest increasingly important roles for computational predictors

of variant impact in the interpretation of genomic data for clinical diagnosis and screening. The

initial releases of this new generation of tools performed comparably to the best predecessors,

suggesting potential for their future improvement. Moreover, the distinct approaches may offer

independent information valuable for metapredictors. Relative to most other lines of evidence,

computational tools have an outsized role because they can be readily applied to every relevant

genomic variant. The continued development of enhanced in silico variant impact prediction

methods augurs promising advances in clinical variant classification.
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