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Abstract
Millions of people rely on the ecosystem services provided by coral reefs, but sustaining

these benefits requires an understanding of how reefs and their biotic communities are

affected by local human-induced disturbances and global climate change. Ecosystem-

based management that explicitly considers the indirect and cumulative effects of multiple

disturbances has been recommended and adopted in policies in many places around the

globe. Ecosystem models give insight into complex reef dynamics and their responses to

multiple disturbances and are useful tools to support planning and implementation of eco-

system-based management. We adapted the Atlantis EcosystemModel to incorporate key

dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used

this model to quantify the effects of predicted climate and ocean changes and current levels

of current land-based sources of pollution (LBSP) and fishing. We used the following six

ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1)

ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) bio-

mass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups

and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each

of the three drivers separately suggest that by mid-century climate change will have the

largest overall effect on this suite of ecosystem metrics due to substantial negative effects

on coral cover. The effects of fishing were also important, negatively influencing five out of

the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly

as would be expected under additive assumptions, although the magnitude of the effects of

LBSP are sensitive to uncertainty associated with primary productivity. Over longer time

spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction

with other drivers, generally meaning that declines in ecosystem metrics are not as steep as

the sum of individual effects of the drivers. These analyses offer one way to quantify impacts
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and interactions of particular stressors in an ecosystem context and so provide guidance to

managers. For example, the model showed that improving water quality, rather than prohib-

iting fishing, extended the timescales over which corals can maintain high abundance by at

least 5–8 years. This result, in turn, provides more scope for corals to adapt or for resilient

species to become established and for local and global management efforts to reduce or

reverse stressors.

Introduction
The future of coral reefs and the economic and societal benefits they provide are uncertain.
Reefs are increasingly affected by local human-induced disturbances and climate change. Man-
aging and understanding the consequences of these stressors and maintaining the reefs’ high
biodiversity, productivity and multitude of dynamic interactions necessitate an integrated eco-
system approach. This complexity also challenges assessing management outcomes [1, 2].
Comprehensive, integrated ecosystem modeling is a useful tool to gain insight into reef dynam-
ics while considering the multiple interacting stressors to these ecosystems [3, 4]. The utility of
model projections depends on the model’s ability to simulate key processes and components of
the reef ecosystem and how these are influenced by and respond to different disturbances and
management scenarios. To better address societal objectives, ecosystem models should also
consider the socioeconomic consequences of changes in ecosystem state. Whole-of-system or
end-to-end models differ from previous models by comprising the entire ecosystem, including
the human component, and the associated abiotic processes extending through to climate
change effects. These models also dynamically couple or integrate physical and biological pro-
cesses at different time scales making them more realistic [5, 6].

During an international coral reef stakeholder workshop [7, 8], four economically impor-
tant ecosystem services were identified: (1) shoreline protection, which is influenced by the
structural complexity of a reef system; (2) tourism and recreational opportunities, which are
influenced by turbidity (land-based sources of pollution) and algal and faunal communities;
(3) production of fish; and (4) production of other natural products. Furthermore, stakeholders
identified maximizing reef ecosystem integrity as a key objective [8, 9]. Most existing coral reef
models focus on biological feedback mechanisms (e.g., [10, 11]), though a smaller subset of
ecosystem models include physical and biological disturbances [12–14] and human uses (fish-
eries) [11, 15, 16]. Only a few models dynamically integrate socioeconomic and biophysical
processes [17–20], which is necessary for exploring potential changes in the coral reef ecosys-
tem services identified by stakeholders. A comparison study of coral reef ecosystem models
suitable as a decision-support tool for management, suggested the Atlantis framework would
be most appropriate [21]. The suitability of the Atlantis framework for assessing the impacts of
interactions between species and fisheries and their implications for marine fisheries manage-
ment [21–24] was also suggested by an ecosystem modeling review study [25].

Effective ecosystem-based management relies upon understanding the relative ecosystem
effects of multiple disturbances acting concurrently [26]. The relative impact of each of these
disturbances on reef status is uncertain, and this uncertainty hinders cost-effective reef man-
agement and conservation [27]. Ecosystem models, such as Atlantis, can simulate these distur-
bances simultaneously and allow for the exploration both of their impacts individually and
their interactive and cumulative effects. By improving our understanding of these interacting
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influences on the ecosystem, we can gain insights into how better to manage human activities
associated with coral reef ecosystems.

In this paper, we use the developed Guam Atlantis Coral Reef Ecosystem Model (Guam
Atlantis; on-line S1 Text and [28]) to explore the interactive effects of three main drivers: cli-
mate change, land-based pollution sources of pollution (LBSP, i.e., additional nutrients and
sediments to the ecosystem) and fishing. We simulate the effects of two and three drivers
simultaneously and analyze the interactive effects on the reef ecosystem surrounding Guam.
Additionally, to make the model output more relevant to resource managers, we assess whether
local management strategies can mitigate the effects of climate change as has been suggested in
other studies [2, 3, 29, 30]. In a companion paper (currently in review at PloSONE) we compli-
ment this approach by using the Guam Atlantis model to consider a series of scenarios with
different levels of fishing and LBSP, similar to other ecosystem modeling efforts [31, 32] that
evaluate the socio-ecological tradeoffs of alternative management scenarios.

Methods

Modeling framework
The Atlantis framework consists of spatially explicit, three-dimensional irregular polygons or
boxes and, for each box and water layer, incorporates information on the biological, geochemi-
cal, and physical forcings [22, 33]. Atlantis integrates these dynamics through two-way cou-
pling and combines them with the effects of different human user groups (fisheries, oil
extraction and mining or coastal development). Atlantis dynamically tracks the interaction of
all these factors over time and its simulations use a simple forward difference integration
scheme to solve a system of differential equations typically on a 12-h time step (finer adaptive
sub-steps are executed for high turn-over rate groups such as plankton). The dynamic pro-
cesses are user specific and many alternative model formulations can be selected to set com-
plexity at a desired level. Fulton et al. [24] gives an overview of the modular structure of
Atlantis and more information can be found on the Atlantis-wiki (best found by searching for
‘Atlantis CSIRO’) and in other publications of the application of the Atlantis ecosystem model,
such as, Griffith et al. [34]. Here we briefly discuss the spatial and oceanographic modules and
the adaptations made to the ecological module.

Guam Atlantis model components
Spatial module. We apply the Guam Atlantis model for the historical period of 1985–

2014 to calibrate the model and then simulate the period 2015–2050. Briefly, the Guam Atlantis
model incorporates spatially-differentiated habitats (polygons) and vertical stratification (i.e.,
water layers) allowing for the representation of hydrodynamic and biological processes (e.g.,
migration of fish to different habitat types in their lifecycles, larval connectivity between reef
areas, vertebrate movement between polygons and water layers (S2 Text)). Preliminary discus-
sions with ecologists and coral reef managers in Guam led to the use of two depth layers: 0–6 m
and 6–30 m. We limited the model domain to this shallow (< 30 m) depth range of the reef
system due to the availability of biomass and diversity data for species in these depth layers,
and the relative paucity of data from deeper habitats. Biological data for the initial conditions
are primarily from NOAA’s Pacific Islands Fisheries Science Center, Coral Reef Ecosystem
Division (CRED) supplemented with data from Guam Coastal Zone Management Program,
University of GuamMarine Laboratory, Guam Division of Aquatic and Wildlife Resources
(DAWR) and Guam Environmental Protection Agency. Outer polygons (30–100 m) are
included for oceanic forcing (nutrient import/export, larval connectivity, and water, heat and
salinity fluxes). Based on the benthic habitat, fish assemblages, prevailing oceanographic
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conditions, fisheries reporting zones and the existing managed areas, we delineated 55 marine
spatial units, 25 shallow, 23 deep and 7 outer boundary boxes (Fig 1).

We delineated 25 shallow (< 6 m), 23 deep (6–30 m) dynamic boxes, 7 non-dynamic
boundary boxes (outer-most 7 polygons), for the advection of nutrients and plankton, and the
island of Guam as a non- active box. The star in the inset map shows the location of Guam in
the western Pacific Ocean. Polygons with nutrient and/or sediment inputs are numbered 3, 7,
8, 10, 16, 17, 22, 23, 24, 26, 30, 32, 48, 49, 52, and 53. Data source inset map came from Arc-
GIS-online (ArcGIS and ArcMap are the intellectual property of Esri and are used herein
under license) and the topography of Guam island from USGS [35].

Oceanographic module. The oceanographic module consists of two main data inputs
based on a Regional Ocean Modeling System (ROMS) developed for the Coral Triangle (CT)
in the western Pacific Ocean [36] (downloaded from http://www.ctroms.ucar.edu/, October 24,
2014). The main focus of this CT-ROMS model was the larger Coral Triangle region, but the
model domain includes Guam at its northern boundary. The data used from the CT-ROMS
model include: (1) horizontal fluxes (to estimate the magnitude and direction of the currents)
that cross each face (or side) of the Atlantis polygons per daily time step, and (2) average verti-
cal velocity, temperature and salinity per Atlantis polygon per daily time step. The available
data were from 1957–2007 with a spatial resolution of 5 km. We extracted the grid points
around Guam from 1985–2007 to calculate horizontal velocity, solar irradiance, temperature
and salinity. The last year of data was repeated for years 2008–2050. Vertical velocity was not
included in the CT-ROMS model output, hence, simulated values were created by taking ran-
dom values with a mean of zero and standard deviation taken from field data [37–39].

Ecological module. The reef’s ecological module differs frommost coral reef models devel-
oped to date, as it is process based and uses empirical parameterizations of basic metabolism
(e.g., production, consumption, waste) and ecological dynamics instead of derived parameters,
such as productivity over biomass and consumption over biomass [40]. Furthermore, trophody-
namic flows are fully coupled and the detrital pathways (both in the water column and in the
sediment layer) are explicitly modeled. To represent those pathways, we included 42 functional
groups consisting of 3 detrital, 2 bacteria, 5 plankton, 3 algal, 3 sessile invertebrate, 6 mobile
invertebrate and 20 vertebrate groups (S1 Table). To accommodate improved understanding of
reef resilience we grouped fishes by their life-history characteristics, habitat preferences and diet
in the following functional groups: piscivores, corallivores, invertivores, planktivores, detriti-
vores and herbivores. We have further classified the herbivores by their ecological roles as exca-
vators/bio-eroders, scrapers, grazers and browsers [41–45]. Based on the biomass of each
species in 2011 [46], we took the weighted mean of species-specific data on diet and life history
parameters (e.g., growth rate, natural mortality, maximum age, age at maturity, size of recruits,
length of pelagic larval development, von Bertalanffy growth coefficients, swim speed) for the
overall estimation of those parameters for each functional group (S1 Table). Biomass estimates,
spatial distribution, and fisheries data are detailed further in Weijerman et al. [28].

We avoided aggregating fished and unfished species into the same functional groups, and
identified fishery target species based on shore-based creel surveys conducted since 1985 by
Guam’s Division of Aquatic andWildlife Resources (DAWR) [47]. We chose to limit the fishery
data to shore-based creel surveys and not include the boat-based creel surveys as we assumed
that the shore-based fishery took place entirely in our model domain while the boat-based fish-
ery is mostly focused on trolling and demersal fishing in deeper waters [46]. Although this may
have been an erroneous assumption (see S1 Text for exploration of this topic). In addition to
these living and detritus groups, ammonia, nitrate and silica are represented dynamically. The
model’s initial conditions represent 1985 (after a 10-year‘burn-in' phase) and we projected this
forward for 30–65 years under the set of scenarios described below.
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Fig 1. Spatial polygons of GuamAtlantis.

doi:10.1371/journal.pone.0144165.g001
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The coral framework is the foundation for coral reef ecosystems; hence, corals are integrally
linked to most reef dynamics. Corals are consumers by night and photosynthesize by day, but
are also a source of food to corallivorous invertebrates and fishes. Due to their three-dimen-
sional structure, corals also provide habitat and shelter for many reef species [48, 49]. Even
dead corals continue to harbor diverse communities until erosion processes unbalanced by
growth lead to the loss of three-dimensional structure [50].

Coral species have different life history dynamics and sensitivities to environmental factors
(e.g., sediments, elevated temperature, disease) that influence mortality and growth. We
grouped corals into massive and encrusting corals (‘massive’)—with lower growth rates and a
lower sensitivity to stressors—and branching/tabular/columnar corals (‘branching’)—with
higher growth rates and higher sensitivity to stressors [51, 52].

After a literature review we identified key coral reef dynamics and the form of the relation-
ships for those dynamics and added corresponding code (Table A1 in S1 Text). These relation-
ships were derived from empirical data or from other modeling studies. Coral specific
parameters are included in S2 Table. We detailed the dynamics of coral growth (and growth-
related complexity) and competition with benthic algae that are influenced by three main driv-
ers (Fig A1 in S1 Text): (1) climate change (a global stressor); (2) LBSP (a local stressor); and
fishing activities (also a local stressor). We acknowledge that we have only captured the main
processes in any degree of detail and have omitted or simplified other processes (e.g., symbi-
onts’ dynamics [13], microbe-induced coral mortality [53], coral and algal diseases [54, 55],
linear relationship between herbivore size and bio-erosion [10] and others).

Model validation
In the on-line supporting information (S1 Text) and Weijerman et al. [28], the methods and
assumptions made for the development of this integrated coral reef ecosystem model are
described in detail. A critical aspect of this includes description of data sources, calibration and
validation. In previous applications of Atlantis models, corals were simply modeled as benthic
filter feeders [32, 56–59]. We added code that addresses how corals are affected by (1) climate
change (including ocean warming and acidification), (2) changes in land use (eutrophication
and sedimentation) and (3) fishing activities. By including extensive empirical data collected
from field studies in Guam, local-scale dynamics are projected over decades, and trends that
will likely manifest themselves locally are identified. We carefully validated the model in two
ways, first by examining the model behavior over 30–75 years without any disturbances, i.e., a
‘control’ system, and secondly by comparing model projections for historical periods to avail-
able abundance time series, following guidelines for Atlantis model development [58–60]. The
only available time series data were those of the reconstructed fish biomass from 1985 to 2011
which was based on catch-per-unit-effort (CPUE) fishery data [47]. Weijerman et al [47]used
the CPUE data and fishery-independent visual estimates of fish biomass from 2009–2011 to
reconstruct the relative biomass of eight functional species groups exploited in the fishery.
Since we had no time series data of the impacts of other drivers (LBSP, climate change) on the
coral or fish biomass at the scale of our entire model domain, we evaluated the model skill with
a widely accepted method that involves pattern matching [61]. With pattern matching, coral
biomass trajectories from simulations of each of the disturbances (climate change, sediments,
and nutrients) were compared with results of empirical studies from particular sites in Guam
or from regional sites if local information was not available (S1 Text).

We performed sensitivity analyses by investigating key dynamics in coral reef ecosystems as
identified by empirical and theoretical studies (S1 Text). These included (1) coral-algal space
competition that structures the reef benthos; (2) primary productivity that influences the
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energy flow; and (3) structural complexity that determines the shelter capacity of the reef
framework for juvenile and small fishes and hence influences fish biomass and diversity (S1
Text). Results from these analyses showed that uncertainty in primary productivity had the
greatest influence on the model outcomes (Figs A17-A19 in S1 Text). Therefore, we ran addi-
tional simulations with the bounded parameter values for growth rates of small and large phy-
toplankton [62, 63]. This uncertainty was incorporated into our analysis of the impacts of the
individual stressors on the coral reef ecosystem.

Model validation, verification and sensitivity analyses are further discussed in the online S1
Text. One important caveat stemming from this is that the effects of acidification are likely
underestimated by the model. A second caveat, as stated above, is that coral biomass is sensitive
to the growth rate of primary producers. Improving the relationship between reef organisms
and acidification, obtaining more accurate downscaled time series of projected change in pCO2

and obtaining better growth rates and biomass estimates of phytoplankton communities will
likely enhance the model’s capabilities to make projections. Additionally, the model skill in
estimating fish biomass had a clear bias and overestimated a number of groups (Fig A20 in S1
Text). More research is necessary to explain the bias and then correct for it (e.g., better fishery
data, diet data of apex predators, recruitment data for the overestimated fish groups). However,
with the current information available it is still possible to make relative comparisons.

Simulations and model output
To explore the effects of individual stressors relative to a ‘no-disturbances’ scenario we first
simulated a ‘control’ run (S1 Text) that did not include any of the identified stressors. The out-
comes of this control run were subsequently compared with outcomes from runs with the
added stressors: climate change (i.e., ocean warming and acidification), LBSP and fishing.
Models were run for 30 years (1985–2015) to explore the effect of each of the stressors on the
present conditions and for 65 years (1985–2050) to explore the effect of these stressors on
future conditions. We supplemented these ‘main’ simulations with simulations parameterized
with high and low phytoplankton growth rates, which illustrate uncertainty in the model out-
come due to uncertainty in primary productivity.

Predicted changes in atmospheric CO2 concentrations came from the IPCC Fifth Assess-
ment Report using the highest emission scenario, Representative Concentration Pathway
(RCP) 8.5 projection [64]. These increased CO2 concentrations for emission scenario RCP8.5
led to a decrease in the oceanic pH which in turn led to a reduction in the aragonite saturation
state. This resulted in reduced calcification rates modeled as a reduced growth rate of corals (S1
Text which also explains relationships between pH and several other organisms).

Predicted sea surface temperature data also came from the RCP8.5 projection using the Had-
GEM-AOmodel output (data downloaded from the Coupled Model Intercomparison Project
Phase5 (CMIP5): http://apdrc.soest.hawaii.edu/las8/UI.vm), as the historical 1985–1990 mod-
eled data corresponded well with satellite-derived SST data for Guam during the same time
period. We overlaid this trend on the existing time series of temperature from the CT-ROMS
model output [36] for each Atlantis grid (or polygon) and created a projected temperature time
series for each grid cell out to 2050 while maintaining spatial differences around Guam.

Land-based sources of pollution (LBSP) were modeled as additional input of nitrogen and
sediments into coastal polygons that had riverine runoff or sewage outflow pipes (S1 Text,
[28]). The sediment and nutrient loads were based on data collected from 2005–2011 (Guam
Environmental Protection Agency, War-of-the-Pacific National Park and CRED) and used as
initial condition input data for the model. River flow and additional nutrient and sediment
input data were based on outflow time series from 1991 and 2011 and the last year was repeated
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for future projections. These outflow time series did not show any temporal trend (Fig A13 in
S1 Text) and, for simplicity, we assumed no future changes in land-use or the amount of rain
fall (and hence river out flow).

Fishing mortality was calculated for each functional group based on the historical catches
from shore-based creel surveys conducted by DAWR. Effort stayed constant between the early
1985–1990 period and the recent 2007–2011 period [46] and for simplicity we assumed fishing
mortality stayed constant at 2010–2012 levels (S1 Text). In a companion paper (currently in
review at PlosOne) we varied levels of LBSP and fishing to evaluate the socio-ecological trade-
offs of alternative management scenarios with the Guam Atlantis model.

Ecosystem metrics used to score the effect size were based on performance indicators for
reef resilience [62, 65, 66], plus one additional indicator: the ratio of biomass of targeted species
in the recreational reef fishery at the end relative to the start of a simulation (Table 1). We used
that metric as a proxy for one source of socioeconomic benefits from the reef ecosystem—avail-
ability of preferred target fishery species.

Ecosystem metrics were calculated as the average over the last three years of a simulation, to
smooth over intra-and inter-annual variation, and results for each Atlantis polygon were
summed to get results for the entire model domain. For each of the six ecosystem metrics, the
response ratio was calculated as the ratio of the metric under a scenario (e.g., climate change)
relative to the value of that metric in the control run, following the methods in Kaplan et al.
[67]. The interactive effects among the drivers were explored to see if their combined effect led
to higher values (negative interaction) or lower values (positive interaction) than would be
expected based on the sum of the impacts of the individual drivers [67]. To determine the
interactive effect size another two simulations were conducted: one with two drivers acting
simultaneously (adding the two stressors with the largest effects individually) and the other
with all three drivers. For instance, if two drivers individually caused a 2% and 3% decline in a
metric, the additive expectation of combining both drivers is a 5% decline. If simultaneously
applying the drivers actually led to only a 4% decline, the interaction is slightly positive; if
simultaneously applying the drivers led to a 6% decline, the interaction is slightly negative.
Based on the assumption that the sum of the individual effects is simply additive, the difference

Table 1. Ecosystemmetrics used to determine effect size of simulation of scenario runs.

Metric Description Rationale

Ratio of benthic calcifiers to non-
calcifiers

Ratio of total biomass of corals and crustose
coralline algae (CCA) to total biomass of turf and
fleshy macroalgae in the model domain

Corals form the framework of coral reef ecosystems and CCA
the ‘glue’ that cements the reef together; a high ratio of
calcifiers to non-calcifiers implies a more structurally complex
system that provides more desirable ecosystem goods and
services than a macroalgal-dominated (flat) system [62]

Mean trophic level of the
community

Biomass-weighted average of the trophic level of all
functional groups in the ecosystem.

Indication of maturity for ecosystems; higher value represents
more ecosystems [62]

Biomass of apex predators Sum of biomass of apex predator groups (sharks,
roving piscivores, benthic piscivores and mid-water
piscivores).

Indication of ‘health’ for ecosystems; higher value represents
‘healthier’ ecosystem. In general, more apex predators
decrease community susceptibility to perturbations [65].

Biomass of herbivorous fishes Sum of biomass of all herbivorous fish groups. Indication of resilience with more herbivores leading to less
chance of ecosystem shifts to undesirable algal-dominated
state [66].

Total biomass (excluding detritus) Sum of biomass of all species. Indication of maturity/stability of ecosystems; higher value
represents more mature or stable ecosystem [62]

Ratio of biomass of target fishery
species at the end to the start of a
simulation

Total biomass of all fish species that are targeted in
the reef fishery at the end vs start of simulation run.

Indicator of socioeconomic condition; higher value means
higher availability of target species to recreational fisherman

doi:10.1371/journal.pone.0144165.t001
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between the results of the simulation with concurrent drivers and the simulation results of the
two or three individual drivers should be zero. To determine this interactive effect size, d, we
added the relative control value (always 1 because results are standardized to the control) to
the result of the scenario run with two or three drivers acting concurrently, and subtracted the
individual effect sizes of the drivers according to:

d1;2; ¼ YAB þ Ycontrol � YA � YB

d1;2;3 ¼ YABC þ 2Ycontrol � YA � YB � YC

where YAB is the value of the ecosystem metric resulting from having two interactive drivers
acting concurrently and YABC is the ecosystem metric resulting from three interacting drivers.
A, B, and C are the three drivers (climate change, LBSP, and present day fishery). Ycontrol is the
relative control value (with the coefficient 2 to ensure that the expected interaction d is 0 if
effects are simply additive), resulting from a simulation of the control run, and YA, YB, and YC

indicate the value of the simulation of just the one driver.

Results

Model validation
In the control simulation (scenario with no disturbances) fish biomass reached a level between
that seen in the marine reserves in Guam and in unfished areas around the Northern Mariana
Islands and invertebrates reached a stable biomass (Fig A2 in S1 Text). Atlantis also tracks indi-
vidual vertebrate functional groups over time and weight-at-age remained stable and age-class
size showed an expected distribution during a 50-year simulation (Figs A3 and A4 in S1 Text).
As explained in detail in S1 Text, after adjusting the fishery catch data for assumed underre-
porting in the fishery data, the modeled biomass trend of most functional species groups corre-
sponded well with the trend in the reconstructed biomass (Fig 2).

In general, the pattern of modeled coral biomass trajectories agreed with the expectation
from empirical studies on the effects of climate change on corals (Fig A12 in S1 Text) and the
effect of LBSP on the coral, algae and suspended solids trajectories (Fig A14 in S1 Text). These
results led us to conclude that the model can adequately reproduce biomass trajectories after
disturbances (e.g., effects of climate change and sediment and nutrient inputs) giving us confi-
dence in the model validity (S1 Text).

Individual drivers
Among the three 30-year (1985–2015) single stressor scenarios, fishing clearly had the largest
overall ecosystem impacts based on the performance metrics used, mostly due to the large neg-
ative effect on the biomass of apex predators and the start-to-end ratio of biomass of fish
groups targeted by recreational fishers (Fig 3). Global climate change almost exclusively
affected the ratio of calcifiers to non-calcifiers resulting in a shift from coral and crustose coral-
line algae to turf and macroalgae (Fig 3). LBSP had the largest effect on the ratio of calcifiers to
non-calcifiers and clear effects on the biomass of apex predators and total biomass.

Out of the three tested stressors, the LBSP scenario was most sensitive to parameterization
of phytoplankton productivity (Fig 3). For four of the ecosystem metrics, altering the produc-
tivity changed the magnitude, but not the direction, of the effect. For the other two ecosystem
metrics, the ratio of calcifiers to non-calcifiers and total biomass, results in our ‘main’ simula-
tion led to a negative effect while the simulation with low phytoplankton growth rates led to a
positive effect. Under the lower growth rate of phytoplankton, corals and demersal
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Fig 2. Atlantis biomass trajectories (in diamonds) compared to reconstructed time series (in triangles) of functional species groups exploited by
fishers in Guam.Reconstructed biomass time series fromWeijerman et al [46].

doi:10.1371/journal.pone.0144165.g002
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zooplankton were able to grow faster (increase in biomass ranging from 1.8 for corals to 3.3 for
demersal zooplankton) which resulted in the increased ratio of calcifiers to non-calcifiers, and
led to more energy flow to higher trophic levels especially invertebrate feeders and piscivores,
which in turn resulted in the higher overall biomass and therefore a positive effect.

The high productivity simulation in the LBSP scenario led to unstable model outcomes.
When we coupled nutrient inputs with high productivity, the model became numerically
unstable and stopped running after approximately 8000 days which suggests that the static sys-
tem structure and parameterization used was insufficient to reflect potential system changes in
strongly perturbed systems under such high phytoplankton growth rates. Therefore, in the fur-
ther analysis no data were available for the high phytoplankton growth rate simulation for the
LBSP scenario.

Trophic level was least affected of the ecosystem metrics, possibly because of the taxonomic
resolution of the model. Target and non-target groups had similar trophic levels and the bio-
mass of apex predators was low in all simulations (e.g., 14% of total fish biomass in control sce-
nario) compared to the biomass of the other fish groups. Consequently, even the 35%
reduction in apex predator biomass due to fishing, and 18% reduction due to land-based
sources of pollution, did not have a great influence on the overall trophic level of the
community.

Climate change effects dominate model dynamics at longer time scales (65 year simulations,
1985–2050). Using projected sea surface temperature rises, the bleaching threshold would be
exceeded every year from 2023 onwards (S1 Text, year 48 in Fig A12). Therefore, it is not sur-
prising that the effects of climate change are extremely high for the calcifiers to non-calcifiers

Fig 3. Standardized response ratio of individual drivers’ effect to control effect of the six ecosystemmetrics after 30-year simulations with
uncertainty stemming from uncertainty in phytoplankton growth rates indicated by the bars. LBSP is land-based sources of pollution.

doi:10.1371/journal.pone.0144165.g003

EcosystemModeling to Support Coral Reef Management

PLOS ONE | DOI:10.1371/journal.pone.0144165 December 16, 2015 11 / 23



ratio (ratio = 0.24 in climate change scenario versus 1.33 in control). In this longer simulation,
climate change also had a negative effect on total biomass (Fig 4), including a decrease in most
prey species other than some of the herbivorous fishes (Fig 5). Similar to the 30-year simula-
tion, fishing affected almost all ecosystem metrics negatively, but particularly the biomass of
apex predators and target fishes (Fig 4). The results for the LBSP scenario were again highly
sensitive to assumptions about primary productivity. For instance, coral biomass was 80%
higher for both 30 and 65 year simulations of low phytoplankton growth compared to the
‘main’ simulation of the LBSP scenario leading to the high uncertainty in the ratio of calcifiers
(including corals) to non-calcifiers.

Sensitivity to parameterization of phytoplankton growth rate was highly dependent on the
driver being tested (Fig 5). For the climate change scenario biomass of 12 vertebrate groups
showed no sensitivity to the assumptions about primary productivity. For the remaining eight
vertebrate groups, results of the main simulation was in general higher compared to the low
phytoplankton growth rate simulation and lower compared to the high phytoplankton growth
rate simulation (Fig 5A). For the LBSP scenarios, under a low-phytoplankton growth rate sim-
ulation, the biomass of nine vertebrate functional groups was higher compared to the main
simulation (Fig 5B). For the fishing scenario assumptions about primary productivity had little
effect on 16 of the 20 vertebrate groups, but the biomass of mid-water piscivores (in particular)
and, to a lesser extent, the biomass of planktivores and roving piscivores were higher under the
low phytoplankton growth rate simulation (Fig 5C). Overall, among the modeled vertebrate
groups, turtles and mid-water piscivores came out as ‘winners’, as their predators, sharks,

Fig 4. Standardized response ratio of individual drivers’ effect to control effect of the six ecosystemmetrics after 65-year simulations with
uncertainty stemming from uncertainty in phytoplankton growth rates indicated by the bars. LBSP is land-based sources of pollution.

doi:10.1371/journal.pone.0144165.g004

EcosystemModeling to Support Coral Reef Management

PLOS ONE | DOI:10.1371/journal.pone.0144165 December 16, 2015 12 / 23



declined, and, in the case of turtles, competition for food (algae) also declined due to the
decline in herbivore biomass under the fishing scenario (Fig 5).

Averaging all metrics (Fig 6) emphasizes that climate change is the dominant driver over
the long term (65-year projections through year 2050), while fishing and LBSP appear to have
influenced the performance of the system (as measured by our ecosystem metrics) most in the
last 30 years (to 2015). Highest uncertainty in model outcome among the three drivers was for
the LBSP simulations. In the main simulation mean effects on ecosystem metrics were negative,
but under low plankton growth rates simulations ecosystem metrics responded positively to
additional nutrients, especially the ratio of calcifiers to non-calcifiers and total biomass.

Fig 5. Vertebrate biomass response to each of the three simulated drivers, relative to the control biomass with uncertainty stemming from
uncertainty in phytoplankton growth rates indicated by the bars. Each panel represents the biomass response to a driver: (A) Climate change, (B) Land-
based sources of pollution (LBSP), (C) Fishing. Biomass responses are end values for year 2050 (65 year run). LowPLPS and HighPLPS represent results
from low and high growth rates of phytoplankton parameterizations respectively.

doi:10.1371/journal.pone.0144165.g005
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Concurrent drivers
For the present-day conditions (30-year simulation), fishing appeared to have had the greatest
impact closely followed by LBSP (Fig 6). Simulating those two drivers concurrently showed
slight positive interactions for five out of six ecosystem metrics, i.e., the combined effects of
concurrently simulating the two drivers were more positive than the additive effects of the two
individual drivers. That was also true in simulations of all three drivers concurrently (Fig 7),
but in both cases these antagonistic effects were� 0.1. Note that strong declines in the ecosys-
tem metrics were still observed in scenarios with concurrent drivers, for instance the biomass
of apex predators declined to only 55% of the value under the control scenario.

For the 65-year simulation, climate change had the largest individual effect followed by fish-
ing and LBSP (Fig 6), so we simulated those two drivers concurrently first, and then simulated

Fig 6. Average response ratio across all six ecosystemmetrics of climate change, land-based sources of pollution (LBSP), and fishing after 30
(grey columns) and 65 (blue columns) years with uncertainty stemming from uncertainty in phytoplankton growth rates indicated by the bars.

doi:10.1371/journal.pone.0144165.g006

Fig 7. Interactive effect size on six ecosystemmetrics (x-axis) in 2015.Results are based on simulations of fishing and LBSP concurrently and all three
drivers (also including climate change) at the end of a 30-year run. The difference between the expected effect size, if these were simply additive, and the
actual effect size of simulations with the two or three drivers concurrently is indicated by the black and grey bars respectively.

doi:10.1371/journal.pone.0144165.g007
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all three drivers concurrently. Just as in the 30-year simulation, the interactive effect size was
mostly positive, especially when all three drivers acted concurrently, i.e., a scenario with con-
current drivers led to slightly higher values of ecosystem metrics than could have been pre-
dicted from simply adding the individual driver effects (Fig 8). As with the 30-year simulation,
despite the slight positive interactions of the concurrent drivers, actual effects were negative,
just not as extreme as might be expected by summing the individual driver effects. For instance,
despite the 0.21 positive interaction of the ratio of calcifiers to non-calcifiers (Fig 8), the combi-
nation of three drivers drove this ratio to only 19% of the control scenario result; the ratio of
calcifiers to non-calcifiers was 0.24 if just climate change was simulated and 1.40 if just fishing
was simulated, suggesting that the benefits of fishing for this metric were not fully realized
when combined with climate change. Note also, that in the fishing simulations we did assume a
constant fishing effort at the 2011 levels. If fishing pressure (e.g. form shore-based anglers)
were to increase into the future then these results would need to be interpreted as minimal and
the actual effects might be larger.

In terms of management applications of these model results, reducing LBSP appears to have
a noticeable effect on coral biomass, giving corals some additional capacity to deal with the
early effects of climate change under the RCP8.5 scenario for CO2 emissions. However, when
ocean temperature exceeds the bleaching threshold every year, the prognosis for corals is bleak
(Fig 9). Our study indicates that when just fishing is restricted, coral biomass follows the same
trend as under a status quo scenario (Fig 9).

For the same time frame, the trend for the biomass of apex predators and of herbivores (Fig
10), showed, not surprisingly, that the no-fishing scenarios (short dashed and dotted lines in
Fig 10) resulted in the highest fish biomass. Similar results were obtained for the relative
change in biomass of target species compared to the initial biomass: a declining and stabilizing
trend at around 53% of initial biomass for status quo and at 55% for no LBSP scenarios and sta-
bilizing at 80% for no fishing and at 85% for no fishing and no LBSP scenarios. What was sur-
prising though, is that the herbivorous fish biomass stayed stable despite the reduction in coral
biomass (and hence structural complexity and hiding places) in the last 15 years possibly
because there was more food available (Fig 10).

However, a 110-year simulation (only simulated for the status-quo scenario) does indicate
that the biomass of the herbivorous prey fish slowly declines after coral cover has declined with a
lag-time of about 15 years (. These 15 years correspond well to their mean generational age-span

Fig 8. Interactive effect size on six ecosystemmetrics (x-axis) by mid-century. Results based on simulations of climate change and fishery
concurrently, and all three drivers at the end of a 65-year simulation. The difference between the expected effect size, if these were simply additive, and the
actual effect size of simulations with the two or three drivers is indicated by the black and grey bars respectively.

doi:10.1371/journal.pone.0144165.g008
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of 12.3 (SD 6.4) years. This result could indicate that habitat is a more important factor in the life
history of herbivorous fishes than food availability. Main ‘winners’ projected by the model at the
end of this century under a status-quo scenario with climate change were turtles (100% increase),
benthic filter feeders (600% increase) and detritivorous invertebrates (300% increase).

Discussion
Ecosystem-based management considers the indirect and cumulative effects of multiple threats
to a system. Ecosystems can frequently recover from short-term low-intensity disturbances, but
when disturbances occur too frequently or when multiple disturbances impact the system in a
short time span (i.e., before the system is recovered), recovery is limited or may not happen at
all [11, 68, 69]. Quantifying the interactive effect size of disturbances is one way to gain insight
into how these disturbances cumulatively affect the ecosystem. Looking first at the disturbances
individually, climate change, including ocean warming and acidification, had the largest effect
on the ecosystem compared to LBSP and fishing, with fishing being a close second when com-
paring ecosystemmetrics at the end of 65-year simulations. Whereas climate change primarily
affected the benthic reef community, fishing impacted all ecosystemmetrics, and four out of six
metrics negatively. Fishing had the strongest negative effect on the biomass of target species and

Fig 9. Projected effects of predicted climate changes concurrent with local threats (LBSP and fishing) onmassive and branching coral biomass.
The result of a no fishing scenario corresponded with the status quo scenario for both coral groups and was left out for clarity. Climate change predictions
came from IPCC AR5 RCP8.5 scenario for pCO2 emissions.

doi:10.1371/journal.pone.0144165.g009

Fig 10. Projected effects of predicted climate changes concurrent with local threats (LBSP and fishing) on biomass of herbivorous fish and apex
predators.Climate change predictions came from IPCC AR5 RCP8.5 scenario for pCO2 emissions.

doi:10.1371/journal.pone.0144165.g010
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apex predators. This result is expected from any selective fishery [70, 71]. However, contrary to
what has been observed on Caribbean reefs [72, 73] fishing actually had a beneficial effect on
the ratio of calcifiers to non-calcifiers. This increased ratio was due to an increase in coral bio-
mass and a decrease in algal biomass. This positive effect of fishing on the ratio of calcifiers to
non-calcifiers can be partly explained by the projected increase in turtle biomass, which were
less preyed upon as the shark (main predator) populations had declined, and by less bio-erosion,
especially from large parrotfishes as their biomass declined as well (Fig 5C). Although in terms
of relative weight, in our results changes in coral biomass could be driven more directly by bot-
tom-up forces (nutrients, sediments) and less so by top-down (grazing) forces.

Uncertainty stemming from sensitivity to primary productivity was most notable in the
effects of LBSP on ecosystem metrics, especially on the ratio of calcifiers to non-calcifiers and
total biomass. Recently the role of phytoplankton in structuring fish communities has received
more attention and helped explain the large regional differences in fish biomass between reefs
close to populated and unpopulated areas [74], corroborating the importance of obtaining
good estimates of these phytoplankton groups.

Results also suggest that presently (end of 30-year simulation for the 1985 to 2014 period)
fishing affects almost all ecosystem metrics negatively and that LBSP exacerbates this effect for
all metrics, but not quite as badly as would be expected under additive assumptions. In the case
of biomass of herbivores, fishing had a negative effect, but LBSP had a slight positive effect.
The scenario with those concurrent drivers led to a slightly lower value of that ecosystem met-
ric than could have been predicted from simply adding the individual driver effects. This result
is likely because the input of nutrients and sediments, which led to an increase in food abun-
dance, offset the reduction in biomass of herbivores through their extraction due to fishing.
This pattern also held up after concurrently simulating the third driver, climate change.
Despite the low interactive value, the combination of two and all three drivers drove the herbi-
vore biomass to 84% of the value under the control scenario.

Cumulative effects of combining all three drivers in the 65-year simulation were negative.
This corresponds with temperate fisheries systems where the ecosystem was worse off once all
three drivers came into play [75, 76]. Estimated interactions were slightly positive, meaning
that the combined effects were only slightly less than a null assumption of summing the indi-
vidual effects of each of the three drivers.

In correspondence with the suggestions from some studies that by mitigating local stressors
to reefs the coral’s resilience to climate change increases [3, 11, 29, 30], we found that when
LBSP were stopped, coral biomass increased and stayed higher longer compared to the status
quo scenario. Based on the uncertainty around the LBSP simulations, a lower phytoplankton
growth rate could lead to an even higher biomass of corals, corroborating the importance of
reducing LBSP. However, in contrast to the general idea that a fishing moratorium could miti-
gate the decline in coral biomass, our simulations suggests that this increasing trend in coral
biomass was only slightly improved when fishing was also stopped (Fig 9). This result was also
seen in a study in the Indian Ocean where fishery closures did not change hard coral cover
[16]. Though studies in the Caribbean [11, 77] showed that high herbivore populations are
important for the recovery of coral populations in some situations, our results do not suggest
that this provides a substantial buffer against climate change for coral cover. Indeed, a study in
the Great Barrier Reef [78] and a global meta-analysis [79] showed a similar demise of coral
cover when bleaching events were taken into account despite the establishment of MPAs. In
the Caribbean study, depending on the location, a high presence of herbivores did postpone
the most detrimental effects of ocean warming on coral cover by 18–50 years [11]. This dis-
crepancy in the influence of herbivores could be caused by the way herbivore populations were
modelled. In the Edwards et al. [11] model, grazing intensity was fixed at 40% in the high
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grazing scenario and contrasted with a 10% grazing term in the low grazing scenario. In our
model, although the total biomass of herbivores was lower in the status quo scenario, the graz-
ing intensity appeared to still be high enough to keep the biomass of macroalgae down allowing
corals to cope with their competitive pressure and remain at higher biomasses. Model skill
results (S1 Text) showed that the model over-estimates some herbivorous fish groups, most
notably the small-bodied parrotfish. This over-estimation of small-bodied parrotfish may con-
tribute to our projection of the relatively weak fishing effects on coral biomass.

Our results indicate that water quality is a key local threat in the decline of coral biomass.
Improving the water quality might delay the coral’s ultimate climate-driven decline by 5 to 8
years or more if phytoplankton growth rate is low. This improvement could buy corals time to
acclimate to higher temperatures [80]. A study on the coral genus Pocillopora from Guam sug-
gested that corals can, at least in part, acclimate to temperatures of 32°C which would be suffi-
cient for persistence under the RCP8.5 scenario [81]. If corals cannot acclimate over such short
time spans (5–8 years) and we experience the RCP8.5 pathway, our model suggests that reef-
building corals will be severely impacted by 2035–2040 (Fig 9). This result is similar to a more
general modeling result from Pacific reefs where coral cover dropped to 5% by the year 2050
and close to zero in the year 2055 [82]. Ortiz et al. [82] suggested that corals in the Pacific
could recover if we can reduce to the RCP 2.6 low CO2 emission scenario.

With the reduction of the structural framework of a degraded coral reef, after a time lag of
about 15 years, the biomass of herbivorous fish declined. This time lag is in between those
observed in the western Indian Ocean (5–10 years [83]) and the Caribbean (25–30 years [84]).
In general, roving herbivores, such as surgeonfishes and parrotfishes, can increase in abundance
after mass bleaching events [27], but their recruits are dependent on coral habitat and are
responsible for the lag-time effect in the ultimate decline in population size [83]. Indirect effects
of coral loss also include an abundance of sponges [85] and a decrease in reef fish, mostly obli-
gate corallivorous species, pomacentridae and gobies [86]. Our study shows that benthic filter
feeders (including sponges) had doubled in biomass whereas sea stars (including the corallivor-
ous crown-of-thorns seastars) declined. Corallivorous fish did not decline but, in fact, increased.
This increase is likely because the modeled corallivorous fish functional group included species
that also feed on soft coral and sponges. Similarly, the functional group planktivores (including
pomacentrids) were not restricted to the small planktivores that are always associated with
(mostly branching) corals, but also included large-bodied species, for example, unicorn fishes,
resulting in less of a decline that would be expected from truly reef dependent species [27, 87].

Concluding remarks
We successfully developed an integrated coral reef ecosystem model that takes into account the
key reef dynamics and their relationship to disturbances. The adapted Guam Atlantis model
met the three main criteria for model development and is stable with plausible biomass trajec-
tories. Furthermore, model simulations of these dynamics corresponded well with empirical
data from around Guam and regional studies. The model would, however, still benefit from
further refinement. In particular, fishery data, and the nutrient, phytoplankton, and zooplank-
ton dynamics could be improved, as should the handling of vertical mixing. Besides those
improvements, alternative predictions of pH and aragonite saturation could more realistically
project changes to calcifying organisms, including corals. Nevertheless, we are confident that
the current model still provides a good indication of the relative short- and long-term impor-
tance of the different drivers examined.

Quantifying an ecosystem models’ uncertainty and performing skill assessments are still an
under-studied part of ecosystem modeling, partly because of the complexity (and hence long run
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times and large number of parameters) of ecosystemmodels that computationally prohibits the
use of well-established statistical analyses. Naturally, however, those results would greatly
enhance the models’ robustness and management applicability. By providing insights within a
consistent setting, this version of the Guam Atlantis model can be used as a decision-support
tool to quantify the relative trade-offs of alternative ecosystem-based management scenarios.
Guam Atlantis is capable of simulating the consequences of different management strategies
(e.g., reduction in land-based sources of pollution or fishing), while simultaneously allowing for
the expected effects of ocean warming and acidification, and therefore has utility for a range of
regional (e.g., regulating pollution, land use and fisheries) and global (e.g., world-wide mitiga-
tions of CO2 and other greenhouse gasses) management applications.

Simulating the main stressors on coral reef ecosystems suggests that the reefs around Guam
are presently predominantly affected by fishing and secondarily by the input of nutrients and
sediments although there is considerable uncertainty regarding the results of LBSP scenarios
depending on the growth rate used in the model for phytoplankton. In the near future (20–30
years from now), the predicted climate change will have the most profound effect on coral reefs.
Reducing additional nutrients and sediments could mitigate the loss of coral biomass for at least
5 to 8 years, but once the temperature exceeds the bleaching threshold annually, corals are
unlikely to survive. A consequence of the loss of corals is the slow decline in fish abundance,
particularly of those that use the corals as habitat during a part of their life cycle, and this decline
could impact the reef-fish fishery negatively.

Supporting Information
S1 Table. Functional groups of the Guam Atlantis Model.
(DOCX)

S2 Table. Coral related parameters used in Guam Atlantis.
(DOCX)

S3 Table. Guam Atlantis model output data.
(XLSX)

S1 Text. Detailed information on the development and validation of the Guam Atlantis
Ecosystem Model.
(DOCX)

S2 Text. Equations for vertebrate movement.
(DOCX)

Acknowledgments
Funding was provided to MW by the NOAA Coral Reef Conservation Program and NOAA
Office of Habitat. We would like to thank Ivor Williams, John Rooney, Jeff Polovina and anon-
ymous reviewers for their improvements to the manuscript. The scientific results and conclu-
sions, and any views or opinions expressed herein, are those of the authors and do not
necessarily reflect those of NOAA or the Department of Commerce.

Author Contributions
Conceived and designed the experiments: MW EF IK. Performed the experiments: MW. Ana-
lyzed the data: MW EF IK. Contributed reagents/materials/analysis tools: RG. Wrote the
paper: MW EF IK RLWM RB.

EcosystemModeling to Support Coral Reef Management

PLOS ONE | DOI:10.1371/journal.pone.0144165 December 16, 2015 19 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0144165.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0144165.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0144165.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0144165.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0144165.s005


References
1. NyströmM, Norström A, Blenckner T, la Torre-Castro M, Eklöf J, Folke C, et al. Confronting feedbacks

of degraded marine ecosystems. Ecosystems. 2012; 15(5):695–710. doi: 10.1007/s10021-012-9530-6

2. McClanahan TR, Graham NAJ, Darling ES. Coral reefs in a crystal ball: predicting the future from the
vulnerability of corals and reef fishes to multiple stressors. Current Opinion in Environmental Sustain-
ability. 2014; 7(0):59–64. doi: 10.1016/j.cosust.2013.11.028

3. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL. Projecting coral reef futures under global warming
and ocean acidification. Science. 2011; 333(6041):418–22. doi: 10.1126/science.1204794 PMID:
21778392

4. Riegl B, Berumen M, Bruckner A. Coral population trajectories, increased disturbance and manage-
ment intervention: a sensitivity analysis. Ecology and evolution. 2013; 3(4):1050–64. doi: 10.1002/
ece3.519 PMID: 23610643

5. Travers M, Shin YJ, Jennings S, Cury P. Towards end-to-end models for investigating the effects of cli-
mate and fishing in marine ecosystems. Progress In Oceanography. 2007; 75(4):751–70. doi: 10.1016/
j.pocean.2007.08.001

6. Fulton EA. Approaches to end-to-end ecosystemmodels. Journal of Marine Systems. 2010; 81(1–
2):171–83. doi: 10.1016/j.jmarsys.2009.12.012

7. Principe PP, Bradley P, Yee SH, Fisher WS, Johnson ED, Allen P, et al. Quantifying Coral Reef Eco-
system Services. Washighton, D.C.: U.S. Environmental Protection Agency, 2012.

8. Yee SH, Carriger JF, Bradley P, Fisher WS, Dyson B. Developing scientific information to support deci-
sions for sustainable coral reef ecosystem services. Ecological Economics. 2014.

9. Carriger JF, Fisher WS, Stockton TB Jr, Sturm PE. Advancing the Guánica Bay (Puerto Rico) Water-
shed Management Plan. Coastal Management. 2013; 41(1):19–38.

10. Mumby P. The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs. Eco-
logical Applications. 2006; 16(2):747–69. PMID: 16711060

11. Edwards HJ, Elliott IA, Eakin CM, Irikawa A, Madin JS, Mcfield M, et al. Howmuch time can herbivore
protection buy for coral reefs under realistic regimes of hurricanes and coral bleaching? Global Change
Biology. 2011; 17:2033–48. doi: 10.1111/j.1365-2486.2010.02366.x

12. Wolanski E, Richmond RH, McCook L. A model of the effects of land-based, human activities on the
health of coral reefs in the Great Barrier Reef and in Fouha Bay, Guam, Micronesia. Journal of Marine
Systems. 2004; 46(1–4):133–44. doi: 10.1016/j.jmarsys.2003.11.018

13. Baskett ML, Gaines SD, Nisbet RM. Symbiont diversity may help coral reefs survive moderate climate
change. Ecological Applications. 2009; 19(1):3–17. PMID: 19323170

14. Hoeke RK, Jokiel PL, Buddemeier RW, Brainard RE. Projected changes to growth and mortality of
Hawaiian corals over the next 100 years. PLoS ONE. 2011; 6(3):e18038. doi: 10.1371/journal.pone.
0018038 PMID: 21479235

15. Ruiz Sebastián C, McClanahan TR. Description and validation of production processes in the coral reef
ecosystemmodel CAFFEE (Coral–Algae–Fish-Fisheries Ecosystem Energetics) with a fisheries clo-
sure and climatic disturbance. Ecological Modelling. 2013; 263. doi: 10.1016/j.ecolmodel.2013.05.012

16. McClanahan T. Recovery of functional groups and trophic relationships in tropical fisheries closures.
Marine Ecology Progress Series. 2014; 497:13–23. doi: 10.3354/meps10605

17. Ainsworth CH, Varkey DA, Pitcher TJ. Ecosystem simulations supporting ecosystem-based fisheries
management in the Coral Triangle, Indonesia. Ecological Modelling. 2008; 214(2–4):361–74. doi: 10.
1016/j.ecolmodel.2008.02.039

18. Fung T. Local scale models of coral reef ecosystems for scenario testing and decision support. Lon-
don: University College London; 2009.

19. Melbourne-Thomas J, Johnson CR, Perez P, Eustache J, Fulton EA, Cleland D. Coupling Biophysical
and Socioeconomic Models for Coral Reef Systems in Quintana Roo, Mexican Caribbean. Ecology and
Society. 2011; 16(3):23.

20. Ainsworth CH, Mumby P. Coral–algal phase shifts alter fish communities and reduce fisheries produc-
tion. Global Change Biology. 2014.

21. WeijermanM, Fulton EA, Janssen AB, Kuiper JJ, Leemans R, Robson BJ, et al. Howmodels can sup-
port ecosystem-based management of coral reefs. Progress In Oceanography. 2015.

22. Fulton EA. The effects of model structure and complexity on the behaviour and performance of marine
ecosystemmodels. Hobart: University of Tasmania; 2001.

23. Fulton EA, Smith ADM, Punt AE. Which ecological indicators can robustly detect effects of fishing?
ICES Journal of Marine Science: Journal du Conseil. 2005; 62(3):540–51. doi: 10.1016/j.icesjms.2004.
12.012

EcosystemModeling to Support Coral Reef Management

PLOS ONE | DOI:10.1371/journal.pone.0144165 December 16, 2015 20 / 23

http://dx.doi.org/10.1007/s10021-012-9530-6
http://dx.doi.org/10.1016/j.cosust.2013.11.028
http://dx.doi.org/10.1126/science.1204794
http://www.ncbi.nlm.nih.gov/pubmed/21778392
http://dx.doi.org/10.1002/ece3.519
http://dx.doi.org/10.1002/ece3.519
http://www.ncbi.nlm.nih.gov/pubmed/23610643
http://dx.doi.org/10.1016/j.pocean.2007.08.001
http://dx.doi.org/10.1016/j.pocean.2007.08.001
http://dx.doi.org/10.1016/j.jmarsys.2009.12.012
http://www.ncbi.nlm.nih.gov/pubmed/16711060
http://dx.doi.org/10.1111/j.1365-2486.2010.02366.x
http://dx.doi.org/10.1016/j.jmarsys.2003.11.018
http://www.ncbi.nlm.nih.gov/pubmed/19323170
http://dx.doi.org/10.1371/journal.pone.0018038
http://dx.doi.org/10.1371/journal.pone.0018038
http://www.ncbi.nlm.nih.gov/pubmed/21479235
http://dx.doi.org/10.1016/j.ecolmodel.2013.05.012
http://dx.doi.org/10.3354/meps10605
http://dx.doi.org/10.1016/j.ecolmodel.2008.02.039
http://dx.doi.org/10.1016/j.ecolmodel.2008.02.039
http://dx.doi.org/10.1016/j.icesjms.2004.12.012
http://dx.doi.org/10.1016/j.icesjms.2004.12.012


24. Fulton EA, Link JS, Kaplan IC, Savina-Rolland M, Johnson P, Ainsworth C, et al. Lessons in modelling
and management of marine ecosystems: the Atlantis experience. Fish and Fisheries. 2011; 12:171–88.
doi: 10.1111/j.1467-2979.2011.00412.x

25. Plagányi ÉE. Models for an ecosystem approach to fisheries. FAO fisheries technical paper. 2007;
477:126.

26. Balmford A, BondW. Trends in the state of nature and their implications for human well-being. Ecology
Letters. 2005; 8(11):1218–34. doi: 10.1111/j.1461-0248.2005.00814.x PMID: 21352446

27. Baker AC, Glynn PW, Riegl B. Climate change and coral reef bleaching: An ecological assessment of
long-term impacts, recovery trends and future outlook. Estuarine, coastal and shelf science. 2008; 80
(4):435–71. doi: 10.1016/j.ecss.2008.09.003

28. WeijermanM, Kaplan IC, Fulton EA, Gorton R, Grafeld S, Brainard R. Design and parameterization of a
coral reef ecosystemmodel for Guam. U.S. Dep. Commer., NOAA Tech. Memo., NOAA-TM-NMFS-
PIFSC-43, 2014.

29. Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS. Rising to the challenge of sustaining
coral reef resilience. Trends in Ecology & Evolution. 2010; 25(11):633–42.

30. Kennedy Emma V, Perry Chris T, Halloran Paul R, Iglesias-Prieto R, Schönberg Christine HL, Wisshak
M, et al. Avoiding coral reef functional collapse requires local and global action. Current Biology. 2013;
23(10):912–8. doi: 10.1016/j.cub.2013.04.020 PMID: 23664976

31. Fulton EA, Smith ADM, Smith DC, Johnson P. An integrated approach is needed for Ecosystem Based
Fisheries Management: Insights from ecosystem-level management strategy evaluation. PLoS ONE.
2014; 9(1):e84242. doi: 10.1371/journal.pone.0084242 PMID: 24454722

32. Kaplan IC, Horne PJ, Levin PS. Screening California Current fishery management scenarios using the
Atlantis end-to-end ecosystemmodel. Progress In Oceanography. 2012; 102(0):5–18. doi: 10.1016/j.
pocean.2012.03.009

33. Fulton EA, Smith ADM, Smith DC. Alternative management strategies for Southeast Australian Com-
monwealth Fisheries: Stage 2: Quantitative management strategy evaluation Deakin West, ACT: Fish-
eries Research and Development Corp., 2007.

34. Griffith GP, Fulton EA, Gorton R, Richardson AJ. Predicting Interactions among Fishing, OceanWarm-
ing, and Ocean Acidification in a Marine System with Whole-EcosystemModels. Conservation Biology.
2012; 26(6):1145–52. doi: 10.1111/j.1523-1739.2012.01937.x PMID: 23009091

35. Gesch D. The national elevation dataset. In: Maune DF, editor. Digital elevation model technologies
and applications: the DEM users manual. Bethesda, Maryland: American Society for Photogrammetry
and Remote Sensing; 2007. p. 99–118.

36. Castruccio FS, Curchitser EN, Kleypas JA. A model for quantifying oceanic transport and mesoscale
variability in the Coral Triangle of the Indonesian/Philippines Archipelago. Journal of Geophysical
Research: Oceans. 2013; 118(11):6123–44.

37. Vetter O, Becker J, Merrifield M, Pequignet AC, Aucan J, Boc S, et al. Wave setup over a Pacific Island
fringing reef. Journal of Geophysical Research: Oceans (1978–2012). 2010; 115(C12).

38. Péquignet A-C, Becker J, Merrifield M, Boc S. The dissipation of wind wave energy across a fringing
reef at Ipan, Guam. Coral Reefs. 2011; 30(1):71–82.

39. Storlazzi CD, Cheriton OM, Lescinski JMR, Logan JB. Coastal circulation and water-column properties
in theWar in the Pacific National Historical Park, Guam—Measurements and modeling of waves, cur-
rents, temperature, salinity, and turbidity, April–August 2012.U.S. U.S.Geological Survey Open-File
Report 2014–1130, doi: 10.3133/ofr20141130: 2014.

40. Christensen V, Walters CJ, Pauly D, Forrest R. Ecopath with Ecosim version 6: user guide. November
2008. Fisheries Centre, University of British Columbia, Vancouver, Canada. 2008:235.

41. Bellwood DR, Choat JH. A functional analysis of grazing in parrotfishes (family Scaridae): the ecologi-
cal implications. Environmental Biology of Fishes. 1990; 28(1):189–214. doi: 10.1007/bf00751035

42. Paddack MJ, Cowen RK, Sponaugle S. Grazing pressure of herbivorous coral reef fishes on low coral-
cover reefs. Coral Reefs. 2006; 25(3):461–72.

43. Green AL, Bellwood DR, Choat H. Monitoring functional groups of herbivorous reef fishes as indicators
of coral reef resilience. Gland, Switzerland: The International Union for the Conservation of Nature
and Natural Resources (IUCN), 2009.

44. Hoey AS, Bellwood DR. Suppression of herbivory by macroalgal density: a critical feedback on coral
reefs? Ecology Letters. 2011; 14(3):267–73. doi: 10.1111/j.1461-0248.2010.01581.x PMID: 21265975

45. Heenan A, Williams ID. Monitoring herbivorous fishes as indicators of coral reef resilience in American
Samoa. PLoS ONE. 2013; 8(11):e79604. doi: 10.1371/journal.pone.0079604 PMID: 24223183

EcosystemModeling to Support Coral Reef Management

PLOS ONE | DOI:10.1371/journal.pone.0144165 December 16, 2015 21 / 23

http://dx.doi.org/10.1111/j.1467-2979.2011.00412.x
http://dx.doi.org/10.1111/j.1461-0248.2005.00814.x
http://www.ncbi.nlm.nih.gov/pubmed/21352446
http://dx.doi.org/10.1016/j.ecss.2008.09.003
http://dx.doi.org/10.1016/j.cub.2013.04.020
http://www.ncbi.nlm.nih.gov/pubmed/23664976
http://dx.doi.org/10.1371/journal.pone.0084242
http://www.ncbi.nlm.nih.gov/pubmed/24454722
http://dx.doi.org/10.1016/j.pocean.2012.03.009
http://dx.doi.org/10.1016/j.pocean.2012.03.009
http://dx.doi.org/10.1111/j.1523-1739.2012.01937.x
http://www.ncbi.nlm.nih.gov/pubmed/23009091
http://dx.doi.org/10.3133/ofr20141130
http://dx.doi.org/10.1007/bf00751035
http://dx.doi.org/10.1111/j.1461-0248.2010.01581.x
http://www.ncbi.nlm.nih.gov/pubmed/21265975
http://dx.doi.org/10.1371/journal.pone.0079604
http://www.ncbi.nlm.nih.gov/pubmed/24223183


46. Williams I, Zamzow J, Lino K, Ferguson M, Donham E. Status of coral reef fish assemblages and ben-
thic condition around Guam: A report based on underwater visual surveys in Guam and the Mariana
Archipelago, April-June 2011. U.S. Dep Commer, NOAA Tech. Memo., NOAA-TM-NMFS-PIFSC-33,
2012.

47. WeijermanM, Williams ID, Gutierrez J, Grafeld S, Tibbats B, Davis G. Coral reef-fish biomass trends
based on shore-based creel surveys in Guam. Fisheries bulletin. in press.

48. DeMartini EE, Anderson TW. Habitat associations and aggregation of recruit fishes on Hawaiian coral
reefs. Bulletin of Marine Science. 2007; 81(1):139–52. ISI:000248356500010.

49. Enochs I, Hockensmith G, editors. Effects of coral mortality on the community composition of cryptic
metazoans associated with Pocillopora damicornis. Proceedings 11th International Coral Reef Sympo-
sium; 2008.

50. Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR. Flattening of Caribbean coral reefs: region-
wide declines in architectural complexity. Proceedings of the Royal Society B: Biological Sciences.
2009; 276(1669):3019–25. doi: 10.1098/rspb.2009.0339 PMID: 19515663

51. Marshall PA, Baird AH. Bleaching of corals on the Great Barrier Reef: differential susceptibilities among
taxa. Coral Reefs. 2000; 19(2):155–63.

52. McClanahan TR, Ateweberhan M, Graham NAJ, Wilson SK, Sebastian CR, Guillaume MMM, et al.
Western Indian Ocean coral communities: bleaching responses and susceptibility to extinction. Marine
Ecology Progress Series. 2007; 337:1–13. ISI:000247105100001.

53. Smith JE, ShawM, Edwards RA, Obura D, Pantos O, Sala E, et al. Indirect effects of algae on coral:
algae-mediated, microbe-induced coral mortality. Ecology Letters. 2006; 9(7):835–45. doi: 10.1111/j.
1461-0248.2006.00937.x PMID: 16796574

54. Aeby G, Williams G, Franklin E, Haapkyla J, Harvell C. Growth Anomalies on the Coral Genera Acro-
pora and Porites Are Strongly Associated with Host Density and Human Population Size across the
Indo-Pacific. PloS ONE. 2011; 6(2):e16887. doi: 10.1371/journal.pone.0016887 PMID: 21365011

55. Williams GJ, Price NN, Ushijima B, Aeby GS, Callahan S, Davy SK, et al. Ocean warming and acidifica-
tion have complex interactive effects on the dynamics of a marine fungal disease. Proceedings of the
Royal Society B: Biological Sciences. 2014; 281(1778). doi: 10.1098/rspb.2013.3069

56. Brand E, Kaplan I, Harvey C, Levin P, Fulton E, Hermann A, et al. A spatially explicit ecosystemmodel
of the California Current's food web and oceanography. US Dept. Commerce, NOAA Technical Memo-
randum NMFS-NWFSC 84 1 45; 2007.

57. Kaplan IC, Burden M, Levin PS, Fulton EA. Fishing catch shares in the face of global change: a frame-
work for integrating cumulative impacts and single species management. Canadian Journal of Fisher-
ies and Aquatic Sciences. 2010; 67(12):1968–82.

58. Link JS, Fulton EJ, Gamble RJ. The northeast US application of ATLANTIS: A full systemmodel explor-
ing marine ecosystem dynamics in a living marine resource management context. Progress In Ocean-
ography. 2010; 87(1–4):214–34.

59. Ainsworth CH, Kaplan IC, Levin PS, Cudney-Bueno R, Fulton EA, Mangel M, et al. Atlantis model
development for the Northern Gulf of California. U.S. Dept. Commer., 2011.

60. Horne P, Kaplan I, Marshall K. Design and parameterization of a spatially explicit ecosystemmodel of
the central California Current. Technical Memo, NMFS-NWFSC-104, Dept. of Commerce, NOAA;
2010. p. 140.

61. Stow CA, Jolliff J, McGillicuddy DJ JR, Doney SC, Allen J, Friedrichs MA, et al. Skill assessment for
coupled biological/physical models of marine systems. Journal of Marine Systems. 2009; 76(1):4–15.

62. WeijermanM, Fulton EA, Parrish FA. Comparison of coral reef ecosystems along a fishing pressure
gradient. PLoS ONE. 2013; 8(5):e63797. doi: 10.1371/journal.pone.0063797 PMID: 23737951

63. Wang X, Behrenfeld M, Le Borgne R, Murtugudde R, Boss E. Regulation of phytoplankton carbon to
chlorophyll ratio by light, nutrients and temperature in the Equatorial Pacific Ocean: a basin-scale
model. Biogeosciences. 2008; 5:3869–903.

64. Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, et al. Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmen-
tal Panel on Climate Change 2013. Cambridge University Press, Cambridge, UK, and New York;
2013.

65. Bascompte J, Melián CJ, Sala E. Interaction strength combinations and the overfishing of a marine
food web. Proceedings of the National Academy of Sciences of the United States of America. 2005;
102(15):5443–7. PMID: 15802468

66. Bellwood DR, Hoey AS, Hughes TP. Human activity selectively impacts the ecosystem roles of parrot-
fishes on coral reefs. Proceedings of the Royal Society B: Biological Sciences. 2011.

EcosystemModeling to Support Coral Reef Management

PLOS ONE | DOI:10.1371/journal.pone.0144165 December 16, 2015 22 / 23

http://dx.doi.org/10.1098/rspb.2009.0339
http://www.ncbi.nlm.nih.gov/pubmed/19515663
http://dx.doi.org/10.1111/j.1461-0248.2006.00937.x
http://dx.doi.org/10.1111/j.1461-0248.2006.00937.x
http://www.ncbi.nlm.nih.gov/pubmed/16796574
http://dx.doi.org/10.1371/journal.pone.0016887
http://www.ncbi.nlm.nih.gov/pubmed/21365011
http://dx.doi.org/10.1098/rspb.2013.3069
http://dx.doi.org/10.1371/journal.pone.0063797
http://www.ncbi.nlm.nih.gov/pubmed/23737951
http://www.ncbi.nlm.nih.gov/pubmed/15802468


67. Kaplan IC, Gray IA, Levin PS. Cumulative impacts of fisheries in the California Current. Fish and Fisher-
ies. 2013; 14(4):515–27. doi: 10.1111/j.1467-2979.2012.00484.x

68. Paine RT, Tegner MJ, Johnson EA. Compounded Perturbations Yield Ecological Surprises. Ecosys-
tems. 1998; 1(6):535–45. doi: 10.1007/s100219900049

69. Ban SS, Graham NAJ, Connolly SR. Evidence for multiple stressor interactions and effects on coral
reefs. Global Change Biology. 2014; 20(3):681–97. doi: 10.1111/gcb.12453

70. Jennings S, Polunin NV. Impacts of fishing on tropical reef ecosystems. Ambio. 1996; 25(1):44–9.

71. Friedlander AM, DeMartini EE. Contrasts in density, size, and biomass of reef fishes between the north-
western and the main Hawaiian islands: the effects of fishing down apex predators. Marine Ecology-
Progress Series. 2002; 230:253–64. ISI:000175588600022.

72. Mumby PJ, Harborne AR, Williams J, Kappel CV, Brumbaugh DR, Micheli F, et al. Trophic cascade
facilitates coral recruitment in a marine reserve. Proceedings of the National Academy of Sciences.
2007; 104(20):8362–7.

73. Jackson J, Donovan M, Cramer K, Lam V. Status and trends of Caribbean coral reefs: 1970–2012.
Gland, Switzerland: Global Coral Reef Monitoring Network, IUCN, 2014.

74. Williams ID, Baum JK, Heenan A, Hanson KM, NadonMO, Brainard RE. Human, oceanographic and
habitat drivers of central and western Pacific coral reef fish assemblages. PLoS ONE. 2015; 10(4):
e0120516. doi: 10.1371/journal.pone.0120516 PMID: 25831196

75. Kirby R, Beaugrand G, Lindley J. Synergistic Effects of Climate and Fishing in a Marine Ecosystem.
Ecosystems. 2009; 12(4):548–61. doi: 10.1007/s10021-009-9241-9

76. Ainsworth CH, Samhouri JF, Busch DS, CheungWWL, Dunne J, Okey TA. Potential impacts of climate
change on Northeast Pacific marine foodwebs and fisheries. Ices Journal of Marine Science. 2011; 68
(6):1217–29. doi: 10.1093/icesjms/fsr043 WOS:000293097200024.

77. Mumby PJ, Harborne AR. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS
ONE. 2010; 5(1):e8657. doi: 10.1371/journal.pone.0008657 PMID: 20066158

78. Thompson A, Dolman A. Coral bleaching: one disturbance too many for near-shore reefs of the Great
Barrier Reef. Coral Reefs. 2010; 29(3):637–48. doi: 10.1007/s00338-009-0562-0

79. Selig ER, Casey KS, Bruno JF. Temperature-driven coral decline: the role of marine protected areas.
Global Change Biology. 2012; 18(5):1561–70. doi: 10.1111/j.1365-2486.2012.02658.x

80. Logan CA, Dunne JP, Eakin CM, Donner SD. Incorporating adaptive responses into future projections
of coral bleaching. Global Change Biology. 2014; 20(1):125–39. doi: 10.1111/gcb.12390 PMID:
24038982

81. Rowan R. Coral bleaching: Thermal adaptation in reef coral symbionts. Nature. 2004; 430(7001):742-.
http://www.nature.com/nature/journal/v430/n7001/suppinfo/430742a_S1.html. PMID: 15306800

82. Ortiz JC, Bozec Y-M, Wolff NH, Doropoulos C, Mumby PJ. Global disparity in the ecological benefits of
reducing carbon emissions for coral reefs. Nature Clim Change. 2014; 4(12):1090–4. doi: 10.1038/
nclimate2439 http://www.nature.com/nclimate/journal/v4/n12/abs/nclimate2439.html#supplementary-
information.

83. Graham NA, Wilson SK, Jennings S, Polunin NV, Robinson J, Bijoux JP, et al. Lag effects in the
impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conservation Biology.
2007; 21(5):1291–300. PMID: 17883494

84. Paddack MJ, Reynolds JD, Aguilar C, Appeldoorn RS, Beets J, Burkett EW, et al. Recent Region-wide
Declines in Caribbean Reef Fish Abundance. Current biology: CB. 2009; 19(7):590–5. doi: 10.1016/j.
cub.2009.02.041 PMID: 19303296

85. Loh T-L, McMurray SE, Henkel TP, Vicente J, Pawlik JR. Indirect effects of overfishing on Caribbean
reefs: Sponges overgrow reef-building corals. PeerJ PrePrints, 2015 2167–9843.

86. Coker DJ, Wilson SK, Pratchett MS. Importance of live coral habitat for reef fishes. Reviews in Fish Biol-
ogy and Fisheries. 2014; 24(1):89–126. doi: 10.1007/s11160-013-9319-5WOS:000331654600004.

87. Wilson SK, Graham NA, Pratchett MS, Jones GP, Polunin NV. Multiple disturbances and the global
degradation of coral reefs: are reef fishes at risk or resilient? Global Change Biology. 2006; 12
(11):2220–34.

EcosystemModeling to Support Coral Reef Management

PLOS ONE | DOI:10.1371/journal.pone.0144165 December 16, 2015 23 / 23

http://dx.doi.org/10.1111/j.1467-2979.2012.00484.x
http://dx.doi.org/10.1007/s100219900049
http://dx.doi.org/10.1111/gcb.12453
http://dx.doi.org/10.1371/journal.pone.0120516
http://www.ncbi.nlm.nih.gov/pubmed/25831196
http://dx.doi.org/10.1007/s10021-009-9241-9
http://dx.doi.org/10.1093/icesjms/fsr043
http://dx.doi.org/10.1371/journal.pone.0008657
http://www.ncbi.nlm.nih.gov/pubmed/20066158
http://dx.doi.org/10.1007/s00338-009-0562-0
http://dx.doi.org/10.1111/j.1365-2486.2012.02658.x
http://dx.doi.org/10.1111/gcb.12390
http://www.ncbi.nlm.nih.gov/pubmed/24038982
http://www.nature.com/nature/journal/v430/n7001/suppinfo/430742a_S1.html
http://www.ncbi.nlm.nih.gov/pubmed/15306800
http://dx.doi.org/10.1038/nclimate2439
http://dx.doi.org/10.1038/nclimate2439
http://www.nature.com/nclimate/journal/v4/n12/abs/nclimate2439.html#supplementary-information
http://www.nature.com/nclimate/journal/v4/n12/abs/nclimate2439.html#supplementary-information
http://www.ncbi.nlm.nih.gov/pubmed/17883494
http://dx.doi.org/10.1016/j.cub.2009.02.041
http://dx.doi.org/10.1016/j.cub.2009.02.041
http://www.ncbi.nlm.nih.gov/pubmed/19303296
http://dx.doi.org/10.1007/s11160-013-9319-5

