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Abstract: Lipid metabolism is regulated by multiple signaling pathways, and generates  

a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling 

molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic 

acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, 

and cholesterol, are involved in the activation or regulation of different signaling pathways. 

Lipid metabolism participates in the regulation of many cellular processes such as cell 

growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, 

membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid 

molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial 

membrane permeability and activating different enzymes including caspases. In this 

review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and 

cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid 

metabolism and the function of different lipid molecules could provide the basis for cancer 

cell death rationale, discover novel and potential targets, and develop new anticancer drugs 

for cancer therapy. 
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1. Introduction 

Lipids are hydrophobic or amphipathic (hydrophilic and lipophilic) small molecules, and are not 

like proteins, nucleic acids, and polysaccharides which are large macromolecular polymers formed  

by the chemical linking of several small constituent molecules (these molecular building blocks  

are similar, or homologous, in structure) [1,2]. Thus far, there is still no widely accepted definition  

of lipids because lipids comprise an enormous number of chemically distinct molecules and are 

structurally quite diverse. Lipids are frequently defined as naturally occurring compounds that are 

insoluble in water but soluble in nonpolar solvents [1,2]. Amphipathic lipids form plasma membranes 

in which cells can maintain all biological events in an intracellular environment and respond to the 

changes of extracellular environment. 

In all living cells, lipids are required to maintain cellular structure, provide energy and are involved 

in cell signaling. Lipid metabolism (anabolism and catabolism) generates a variety of biological 

intermediators. Many of these intermediators are bioactive lipid molecules (also known as signaling 

molecules or second messengers) which are produced by the activation of multiple signaling pathways 

and can also regulate multiple signaling pathways [3]. Lipid metabolism connects to signaling networks 

in the regulation of cell growth, proliferation, differentiation, survival, apoptosis, inflammation, 

motility, and membrane homeostasis [4–6]. Meanwhile, lipid metabolism can alter membrane 

composition and permeability which cause the development and progression of many diseases including 

a variety of cancers [7]. 

2. Lipid Metabolism 

According to the International Lipid Classification and Nomenclature Committee, lipids are 

currently classified into eight categories: (1) fatty acids; (2) glycerolipids; (3) glycerophospholipids;  

(4) sphingolipids; (5) sterol lipids; (6) prenol lipids; (7) saccharolipids; and (8) polyketides [8].  

In the cells, the structure of lipids determines their function and metabolic fate [1,2]. Lipids that  

are currently understood as most relevant to cancer development and chemotherapy are fatty acids, 

glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. 

Fatty acids composed of a hydrocarbon chain with one terminal carboxyl group (COOH) are 

produced by fatty acid synthases from acetyl-CoA and malonyl-CoA precursors, by lipases in the 

degradation of glycerolipids or by phospholipase A1, A2 and B in the breakdown of glycerophospholipids.  

The degradation of fatty acids via β-oxidation leads to the release of energy (large quantities of ATP) 

and generates reactive oxygen species [9,10]. Glycerolipids, fatty acid esters of glycerol (mono-, di-,  

or tri-glyceride), are biosynthesized by the sn-glycerol-3-phosphate pathway which predominates  

in liver and adipose tissue and the monoacylglycerol pathway in the intestines [11]. 

Glycerophospholipids are the main component of biological membranes and contain at least  

one O-1-acyl, O-1-alkyl, or O-1-alkenyl residue attached to the glycerol moiety. The presence  

of an additional head group (such as choline, ethanolamine, serine, inositol, and glycerol) attached  

to the phosphate allows for many different glycerophospholipids. Both biosynthesis (CDP-DAG 

pathway and Kennedy pathway) and degradation (different phospholipases) of glycerophospholipids  

are regulated by different signaling pathways (Figure 1). Interestingly, many different bioactive lipid 
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molecules, such as inositol trisphosphate, diacylglycerol, arachidonic acid, phosphatidic acid,  

and lysophosphatidic acid, are generated during glycerophospholipid metabolism, and these bioactive 

lipid molecules in turn regulate different signaling pathways in the cells [12,13]. The metabolism  

of glycerophospholipids is very complex and it is not fully understood how and when their 

substitutions and modifications occur. 

 

Figure 1. Glycerophospholipid metabolism. Left, glycerophospholipid synthesis;  

Right, glycerophospholipid degradation. The enzymes are choline kinase (ChoK), 

ethanolamine kinase (EthK), cytidine 5'-triphosphate (CTP)-phosphocholine (or 

phosphethanolamine) cytidylyltransferase (CCT), cholinephosphotransferase (CPT), 

ethanolaminephosphotransferase (EPT), phosphatidylethanolamine N-methyltransferase 

(PEMT), CDP-diacylglycerol synthase (CDS), phosphatidylglycerol synthase (PGS), 

phosphatidylserine synthase (PSS), phosphatidylserine decarboxylase (PSD), 

phosphatidylinositol synthase (PIS), phosphatidylinositol kinase (PIK), phosphatidylinositol 

phosphate kinase (PIPK), phospholipase A1 (PLA1), phospholipase A2 (PLA2), 

phospholipase B (PLB), phospholipase C (PLC), and phospholipase D (PLD).  

P-Cho, phosphocholine; P-Eth, phosphoethanolamine; CDP-Cho, CDP-choline;  

CDP-Eth, CDP-ethanolamine; PA, phosphatidic acid; PC, phosphatidylcholine;  

PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PS, phosphatidylserine;  

PI, phosphatidylinositol; PIP, phosphatidylinositol phosphate; PIP2, phosphatidylinositol 

bisphosphate; R1 and R2, acyl group; and Head groups are choline, inositol, serine, 

ethanolamine or glycerol. 

Sphingolipids, including the sphingomyelins and glycosphingolipids, are de novo synthesized  

in the endoplasmic reticulum (ER) from nonsphingolipid precursors [14]. Sphingomyelins can  

be hydrolyzed by sphingomyelinases to produce ceramides and phosphocholine. The conversion  

of sphingosine to sphingosine-1-phosphate, sphingosine to ceramide, ceramide to ceramide-1-phosphate, 

and ceramide to glucosylceramide is catalyzed by different enzymes (Figure 2). Sphingolipids are also 

structural components of cell membrane, and the products of sphingolipid metabolism such  

as ceramide, ceramide-1-phosphate, sphingosine, sphingosine-1-phosphate, and glucosylceramide act 

as bioactive lipid molecules in apoptotic and drug-resistant signaling. 
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Figure 2. Sphingolipid metabolism. Ceramide is a key intermediator in sphingolipid 

metabolism. The enzymes involved in sphingolipid metabolism are ceramidase (Case), 

ceramide kinase (CK), ceramide-1-phophosphate phosphatase (CPP), ceramide synthase (CS), 

dihydroceramide desaturase (DD), galactosylceramide synthase (GalCS), galactocer (GalC), 

glucosylceramide synthase (GCS), glucosylceramidase (Gcase), sphingomyelinase (Smase), 

and sphingomyelin synthase (SMS). Many of these products play an important role in cell 

signaling which regulates a variety of cellular functions. SMS converts phosphatidylcholine 

(PC) and ceramide to sphingomyelin and diacylglycerol which brings two major classes  

of lipids in cell metabolism and signaling. 

Sterol lipids, such as cholesterol, are biosynthesized in a highly complex series of at least thirty 

different enzymatic reactions to form four linked hydrocarbon rings (hexagons and pentagon)  

and are not readily biodegradable. Cholesterol is an integral component of cellular membranes, 

determines membrane rigidity and fluidity, and plays a crucial role in membrane organization, 

dynamics, and function [15]. Some steroid lipids, such as vitamins, testosterone, estrogen, and cortisone are 

ligands and can regulate cell signaling to control a myriad of bodily functions. Recently, more and 

more data supports that the levels of cellular cholesterol are significantly increased in cancer cells and 

tissues, and cholesterol promotes cell proliferation, tumor progression, and drug resistance [16,17]. 

Prenol lipids, Saccharolipids and Polyketides are produced mainly in bacteria, fungi and plants [18–20]. 

Some of these lipids and their derivatives are vitamins or antimicrobial, antiparasitic, and anticancer 

agents. For instance, vitamins A, E, and K belong to prenol lipids, lipopolysaccharides are one of the 

most familiar saccharolipids [19], and erythromycins, tetracyclines, avermectins, and epothilones are 

polyketides or their derivatives [21]. 

Lipoproteins are not classified as lipids but are a group of biochemical assemblies that contains both 

proteins and lipids, covalently or non-covalently bound to the proteins, which allow fats to move 

through the water inside and outside of the cells. The proteins serve to emulsify lipid molecules. Most 

importantly, lipoproteins can be enzymes, transporters, structural proteins, antigens, adhesins, or toxins 

that can regulate cellular functions including apoptosis [22]. 
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3. Regulation of Lipid Metabolism 

Lipid metabolism, including lipid uptake, transport, synthesis, and degradation, is a complex 

process. Biosynthesis and degradation of different lipids are regulated by different signaling pathways,  

and the same lipid can be regulated by different signaling pathways in different tissues and cells  

as well as under physiological, pathophysiological or therapeutic conditions [1,2]. Either activation  

or inhibition of these signaling pathways is based on cell needs and responds to environmental changes 

(Figure 3). There are more than one hundred enzymes regulating lipid metabolism in the cells. Recent 

studies show that expression of many of these enzymes is regulated by microRNA (miRNA).  

It indicates that miRNA also plays an important role in lipid metabolism. Alteration of lipid 

metabolism leads to the changes of membrane compositions, protein distribution and function, gene 

expression, and cellular functions, and further causes the development and progression of many 

diseases such as inflammation, hypertension, diabetes, liver disease, heart disease, renal disease, 

neurological disorder, cystic fibrosis, and cancer [3,23]. On the other hand, manipulation of lipid 

metabolism can lead cancer cells to apoptosis. 

 

Figure 3. Signaling transduction in lipid metabolism. Extracellular signals induce different 

pathways that regulate lipid metabolism in the cells. Protein kinases include protein kinase 

A, B and C; mitogen-activated protein kinases (MAPK) includes extracellular  

signal-regulated kinases (ERK), p38 kinase and c-Jun N-terminal kinases (JNK); Enzymes 

that are involved in lipid uptake, transport, synthesis and degradation; Ions: Ca2+, K+, Na+, 

H+. Some bioactive lipid molecules are ligands, and in turn induce different signaling 

pathways. MS, mechanical stress. 

3.1. Signaling Pathways in Lipid Metabolism 

G protein-coupled receptors (GPCRs): GPCRs are a superfamily of receptors that are vital  

in a wide array of physiological processes and are the most important class of membrane proteins  
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in clinical medicine accounting for approximately 40% of all current therapeutics [24,25]. Allosteric 

ligands bind to GPCRs leading to the activation of G protein and downstream enzymes involved in 

lipid uptake, transport, synthesis, and degradation. Over the past three decades, research has been not 

only centered on the identification of GPCR-signaling that regulates lipid metabolism but has also 

demonstrated that some bioactive lipid molecules, such as lysophosphatidic acid, sphingosine-1 phosphate, 

free fatty acids, and platelet activating factors, are ligands for activating GPCR-signaling [26–28]. 

Tyrosine kinases: Cytokines and growth factors exert their biological effects by binding to specific 

cell surface receptors on target cells. Most of these receptors have a tyrosine kinase activity domain 

that is localized at the cytoplasmic region of the molecule [29,30]. The interaction of the cytokines  

and growth factors with the receptors induces the kinase activity of the receptor, and further activates 

downstream effectors such as protein phosphorylation and enzyme activation. Cytokine signaling 

pathways respond to innate immunity and inflammation which can induce phospholipases (A2, C, and D), 

sphingomyelinases, and the enzymes that regulate cholesterol metabolism [31,32]. Mitogenic signaling 

carried out by growth factors regulates cell growth and proliferation which is involved in the activation 

of many lipid-metabolism-related enzymes [29,32]. Recently, a large body of evidence has indicated 

that agonists of some GPCRs can activate growth factor receptor tyrosine kinases in the absence  

of growth factor [33,34]. The transactivation by GPCRs also links to cellular lipid synthesis  

and degradation. 

Integrin signaling: Integrin signaling governs cellular adhesion and transmits signals leading  

to the activation of intracellular signaling pathways aimed to prevent apoptosis. This regulation  

is associated with lipid metabolism. Integrin-associated Lyn kinase can promote cell survival  

by suppressing acid sphingomyelinase activity [35]. In bovine pulmonary artery endothelial cells 

integrin signaling causes arachidonic acid release by membrane translocation and phosphorylation  

of cytosolic phospholipase A2 as well as tyrosine phosphorylation of the mitogen-activated protein 

kinase (MAPK) [36]. Tyrosine kinase Btk regulates E-selectin-mediated integrin activation  

and neutrophil recruitment by controlling phospholipase C γ2 and phosphatidylinositol-3 Kinase γ 

pathways [37]. Integrin signaling also links large integrin-associated intracellular protein complexes, 

which act as anchors for the cytoskeleton and as signaling hotspots, and regulates trafficking  

of cholesterol-enriched membrane microdomains known as lipid rafts [38,39]. 

Ion-channel signaling: Cells commonly use membrane lipids to modulate the function of ion 

channels. The interaction of ion channels with membrane lipids can be highly specific and is often 

important for full functional and structural integrity of ion channels [40]. Recent studies indicate 

mechanistic insights into how lipid modification (for example palmitoylation) controls large 

conductance calcium- and voltage-activated potassium channel trafficking and cross-talk with 

phosphorylation-dependent signaling pathways [41]. In addition, a constantly growing body of literature 

reveals that some agonists, despite their direct effect on ion channels, may also influence functions  

of ion channels via cellular lipid metabolism. For instance, the conversion of sphingomyelin  

to ceramide or phosphatidylinositol bisphosphate to diacylglycerol not only contributes to the 

membrane surface potential, but also affects the functional properties of some channels (from the 

opened state to the closed state of the channels) [42,43]. 

Other signaling: Signaling pathways that respond to environmental changes such as pH changes, 

oxidative stress, and mechanical stress also play an important role in lipid metabolism. The  
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pH-dependent group II phospholipase A2 enhances membrane phospholipid degradation which 

contributes to chemical hypoxic and ischemic injury of rat hepatocytes [44], and pH also activates 

phospholipase C during intracellular infection [45]. Oxidative stress induces arachidonate release from 

human lung cells [46] and redox-active antioxidant modulation of lipid signaling in vascular 

endothelial cells by the regulation of phospholipase D, phospholipase A2, lipoxygenase,  

and cyclooxygenase [47]. Mechanical forces generated from blood pressure and blood flow are 

responsible for lipid metabolism through the activation of phospholipases A2, C, and D, 

phosphatidylinositol 3-kinase, sphingomyelinase, and phosphatidylcholine biosynthesis via a variety  

of signaling pathways [48]. Sterols, bile acids, and fatty acids are the endogenous ligands of many 

nuclear receptors such as orphan receptor, farnesoid X receptor, peroxisome proliferator-activated 

receptor, vitamin D receptor, constitutive androstane receptor, and pregnane X receptor [49]. These 

receptors coordinately regulate lipid, glucose, energy, and drug metabolism [50]. Many non-enzymatic 

proteins, such as p53, caveolin, and cell-death-inducing DNA fragmentation factor 45-like effector,  

are also involved in lipid metabolism [51,52]. The signaling network of lipid metabolism can activate 

different kinases and a variety of other enzymes that regulate different cell functions. 

3.2. Enzymes in Lipid Metabolism 

Fatty acid synthase, choline kinase, ceramide synthase, phosphatidylinositol-3 or -4 kinases,  

and the enzymes that catalyze the generation of fatty acids, phospholipids, and cholesterol all play 

integral roles in lipid biosynthesis which can alter lipid compositions in cellular membranes and cell 

fates by regulating cellular functions. Fatty acid synthase and choline kinase are overexpressed in 

many cancer cell lines and tumors [53,54]. Understanding the regulation of these enzymes in cancer 

cells not only to explore how they contribute to cancer cell growth, proliferation and tumor progression, 

but also to evaluate whether their specific inhibitors can be used for cancer chemotherapy [55]. The levels 

of cellular cholesterol are much higher in cancer cell lines and tissues than their normal  

compartments [56–59]. The data indicate that overexpression of enzymes in cholesterol synthesis  

or activation of these enzymes occurs in cancer cells. Cholesterol is capable of promoting cell 

proliferation, migration, tumor progression, and chemotherapy resistance [16,17]. Cholesterol-lowering 

agents could induce cancer cell apoptosis and exhibit important antitumor activity [60–65]. 

Phospholipases A2, C, and D, sphingomyelinases and ceramidase are key enzymes in the regulation 

of lipid degradation during cell response to stimuli. Phospholipase A2-mediated phospholipid 

degradation generates free fatty acids and accompanies with the generation of lysophospholipids which 

are emerging as a novel class of inflammatory lipids [1,2]. Phospholipase C hydrolyzes glycerophospholipids 

to generate diacylglycerol which uniquely functions as a basic component of membranes,  

an intermediate in lipid metabolism, and a key element in lipid-mediated signaling [66]. Inositol 

trisphosphate, one of the products of phospholipase C in the hydrolysis of polyphosphoinositides, 

binds to inositol-trisphosphate receptor and evokes intracellular Ca2+ signaling for normal cell survival 

and is also actively involved in apoptosis induction and progression [67]. Phospholipase D catalyzes 

the hydrolysis of the terminal diester bond of glycerophospholipids with the formation of phosphatidic 

acid plus head groups. Phosphatidic acid regulates the activity of small GTPases or directly binds some 

small GTPases to membranes [68]. Recent studies show that phosphatidic acid directly interacts with 
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mammalian target of rapamycin (mTOR) in a manner that is competitive with rapamycin  

and is required for the stability and kinase activity of both mTOR complexes (mTORC1  

and mTORC2) [69,70]. Phospholipase D-phosphatidic acid-mTOR signaling leads to podocyte 

hypertrophy and apoptosis [71]. Sphingomyelinases hydrolyze sphingomyelin to produce ceramide 

which can also be synthesized de novo by ceramide synthase. Ceramide was the first lipid molecule 

linked to cell death signaling about two decades ago and has received considerable attention as a key 

regulator of programmed cell death [72,73]. 

Many enzymes, such as cyclooxygenase, lipoxygenase, prostaglandins synthase, diacylglycerol kinase, 

phosphatidate phosphatase, and glucosylceramide synthase, are also very important in the cells because 

they can convert one lipid molecule to another in the cells (Figures 1 and 2) [1–5]. For instance, 

ceramide can be converted to sphingosine, ceramide-1-phosphate, and glucosylceramide by ceramidase, 

ceramide kinase, or glucosylceramide synthase [74,75]. These converted derivatives are also important 

signaling molecules but play different roles in the regulation of cellular functions [72–75]. 

3.3. MicroRNAs (MiRNAs) in Lipid Metabolism 

MiRNAs are small, evolutionarily conserved, and non-coding RNA molecules (containing about  

22 nucleotides) that can regulate gene expression at the posttranscriptional level. To date, more than  

30 miRNAs, including miRNA-122, miRNA-33, and miRNA-370, have been discovered to play 

important roles in the regulation of lipid metabolism such as fatty acid oxidation, cholesterol efflux,  

and the biosynthesis of fatty acids, cholesterol, and triacylglycerol [76–79]. 

MiRNA-122 was initially identified as a highly abundant miRNA (~70% of total miRNA) in the  

liver [80]. This conserved, liver-specific miRNA has been associated with the regulation of liver 

metabolism, including the biosynthesis of fatty acids, triacylglycerol, and cholesterol, which  

can stimulate the production of endoplasmic reticulum-associated lipid droplets and cholesterol-rich 

membrane domains (lipid rafts or caveolae) [81,82]. MiRNA-122 also promotes the propagation  

of hepatitis C virus by multiple mechanisms, has been shown to be down-regulated in hepatocellular 

carcinoma, and plays a role in fatty liver disease [81,83]. MiRNA-33 is highly conserved across 

species and can be found in numerous cell types, including macrophages, hepatocytes, and endothelial 

cells. It has two isoforms (a and b) and is an intronic miRNA located in a non-coding region  

of sterol-regulatory binding factor (SRBF) genes which are involved in cholesterol uptake and synthesis [84]. 

MiRNA-33, which targets ATP-binding cassette transporter subfamily A1 (ABCA) gene controlling  

the movement of cholesterol out of the cell, is also a key posttranscriptional regulator of cellular 

cholesterol homeostasis [85]. MiRNA-33a and miRNA-33b also contribute to the regulation of fatty 

acid metabolism (β-oxidation) by modulating the expression of carnitine palmitoyltransferase1A, 

carnitine O-octanyltransferase, and hydroxylacyl-CoA dehydrogenase-3-ketoacyl-CoA thiolase [86]. 

MiRNA-33 is responsive to alterations in cholesterol levels associated with diet or medication, making 

miRNA potential biomarkers of response to environmental stimuli and targets of therapeutic interventions. 

Recent studies showed that miRNA-370 has similar effects on lipid metabolism as miRNA-122. 

MiRNA-370 controls the expression of miRNA-122, targets and regulates lipid metabolism  

by up-regulating multiple genes coding for SRBF 1c, diacylglycerol O-acyltransferase 2, fatty acid 

synthase, and acyl-CoA carboxylase 1 [87]. MiRNA-370 also targets carnitine palmitoyl transferase 
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which mediates the transport of long-chain fatty acids across the membrane and fatty acid  

oxidation [76]. MiRNA-378, another intronic miRNA located within the genomic sequence  

of peroxisome proliferator-activated receptor γ coactivator-1α (a master regulator of energy 

metabolism), also plays important roles in regulating lipid metabolism by targeting estrogen-related 

receptors and GA-binding protein α in adipocyte differentiation and lipid synthesis [88]. MiRNA-106, 

-144 and -758 regulate ABCA1 expression involved in cholesterol metabolism. MiRNA-96, -125, -185, 

-223 and -455 have been recently described to regulate SRBF 1 expression and HDL (high-density 

lipoprotein) uptake [76,77]. MiRNA-1, -143, -206 and -371 can promote adipogenesis [78].  

In contrast, miRNA-27, -130, -206, and -369 negatively regulate adipocyte differentiation [76–79]. 

4. Lipid and Apoptotic Signaling 

Cell death that maintains organismal and cellular homeostasis has been defined as an irreversible 

loss of plasma membrane integrity which is associated with changes in membrane lipid metabolism.  

Three types of cell death can be distinguished in mammalian cells according to morphological criteria: 

autophagy, necrosis and apoptosis [89]. Cell death, either progressive or acute, is also a hallmark 

characteristic of cancer treatment and various diseases, including cardiac disease, brain injury, and 

renal failure [90]. 

4.1. Cell Death and Regulation 

Autophagy is an evolutionarily conserved catabolic pathway that allows cells to degrade and 

recycle cellular components. This process mainly maintains a balance between the manufacture  

of cellular components and the breakdown of damaged or unnecessary organelles and cellular 

constituents. Disruption of autophagy is involved in diverse human diseases including cancer. 

Autophagy is death receptor-independent, and target of rapamycin (TOR) acts as an efficient 

gatekeeper, on which it exerts an inhibitory effect [91]. Necrosis is an accidental and uncontrolled 

form of cell death lacking underlying signaling events. The factors that cause necrosis are external  

to the cells or tissues, such as physical damage (mechanical stress and detergent-induced cytolysis), 

infection, toxins, or trauma, which can lead to cell injury and result in the unregulated digestion of cell 

components and the premature death of cells. Necrosis is often associated with pathological conditions 

such as injury of organs. There are two main necrotic pathways: the death receptor pathway which  

is stimulated by tumor necrosis factor (TNF) α, Fas ligand, and TNF-related apoptosis-inducing ligand 

(TRAIL) and the mitochondrial pathway that leads to the generation of reactive oxygen species, ATP 

depletion, the accumulation of H+ and acidosis, and mitochondrial dysfunction [92]. A relatively new 

form of necrosis, termed necroptosis or programmed necrosis, has been identified. It exhibits  

the features of necrosis and apoptosis, and is caspase independent but receptor interaction protein 

kinase dependent [93]. 

Apoptosis, or so-called programmed cell death, is a type of cell death that is not involved  

in an inflammatory response and occurs in a tightly controlled manner. In contrast to autophagy  

and necrosis, apoptotic signaling is triggered either by death receptor (extrinsic pathway)  

or by mitochondria (intrinsic pathway) [94,95]. The extrinsic pathway is that death receptor activated  

by TNF-α, Fas ligand (CD95/APO1) or TRAIL leads to the assembly of a death-inducing signaling 
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complex formed by the death receptors, adapter proteins, and caspases (cysteinyl aspartate specific 

proteases) such as caspase-8 and caspase-10. Caspase-8 directly triggers caspase-3 activation or can 

interact with the intrinsic apoptotic pathway by cleaving Bid (a pro-apoptotic member of the Bcl-2  

(B-cell lymphoma 2) family) to form the truncated Bid (tBid) which translocates to the mitochondria 

and results in the release of cytochrome c. The intrinsic pathway can be induced by a variety  

of upstream receptor-independent stimuli, such as anticancer drugs, toxins, and radiation, and causes 

the alteration of mitochondrial membrane property and function. The permeabilization  

of mitochondrial outer membrane results in the release of cytochrome c. Cytochrome c interacts with 

apoptotic protease activating factor 1 (Apaf-1) and pro-caspase-9 to form a caspase activation complex, 

the apoptosome. The response to death receptor and the permeabilization of mitochondrial membrane 

are directly associated with lipid metabolism. 

4.2. Bioactive Lipid Molecules and Apoptosis 

As described above, many bioactive lipid molecules play an important role in the regulation of 

many different cell functions. Here we discuss the bioactive lipid molecules that are produced in lipid 

metabolism and are associated with apoptosis. 

4.2.1. Fatty Acids 

Fatty acids can induce apoptosis in different cell types [96–99]. Short chain fatty acids (C2–5) 

inhibit histone deacetylases, resulting in a hyperacetylation of core histone proteins [53]. Hyperacetylation  

of histones is associated with transcriptional regulation and growth inhibition in colonic epithelial  

cells [54]. Long-chain fatty acids induce ER stress which in turn activates c-jun N-terminal kinase (JNK)  

and CEBP (CCAAT/enhancer binding protein)-homologous protein (CHOP). JNK leads to the  

up-regulation of the pro-apoptotic BH3 (Bcl-2 homology domain 3) only proteins p53 (tumor protein 

p53)-upregulated modulator of apoptosis (PUMA). CHOP enhances the expression of the proapoptotic 

BH3-only protein Bim, contributes to PUMA up-regulation, and mediates the generation of reactive 

oxygen species (ROS). Bim, in cooperation with PUMA, induces the activation of the multi-domain 

executioner proapoptotic protein Bax. Bax activation results in mitochondrial membrane 

permeabilization, activation of the caspase cascade and leads to cell death [100]. 

Oxidation of fatty acids is the source of increased production of mitochondrial ROS [10]. At low 

levels ROS is a signaling molecule, while at high levels it can damage organelles, particularly  

the mitochondria. The toxicity of fatty acid oxidation is related to both the chain length and the degree  

of unsaturation. The longer the chain is and the more unsaturated the species, the more toxic it is [101].  

4-Hydroxy-2-nonenal (HNE), a major α,β-unsaturated aldehyde product of n-6 fatty acid oxidation,  

is a highly toxic and most abundant stable end product of lipid peroxidation, and has been considered  

as an oxidative stress marker [102]. ROS can cause unwanted stress that can activate stress-activated 

protein kinase or JNK [102]. Oxidative damage and the associated mitochondrial dysfunction result  

in energy depletion, accumulation of cytotoxic mediators, modulation ligand-independent signaling  

by Fas (CD95) receptor, and caspase activation which lead to apoptosis. Fatty acids also activate  

AMP (adenosine monophosphate)-activated protein kinase [103], extracellular signal-regulated kinase 

(ERK) [104], GPCR signaling [105], Toll-like receptor 4/NF-κB [106], Src-JNK [107], and protein 
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kinase C [108] signaling as well as sphingomyelinase-ceramide signaling [109] in the regulation  

of apoptosis. These data clearly demonstrate that oxidation of fatty acids has been implicated in the 

tissue damage, dysfunction, and injury associated with aging and other pathological states such  

as cancer, metabolic diseases, neurodegenerative diseases, cardiovascular and inflammatory 

complications [102,110]. 

4.2.2. Phosphatidic Acid 

Phosphatidic acid is a key intermediate in glycerophospholipid metabolism. Earlier studies  

showed that phosphatidic acid is a signaling molecule with growth factor-like properties, inducing 

DNA synthesis and cell proliferation [111] and stimulating phospholipase C activation and calcium  

release [112] in the cultured cells. Later, phosphatidic acid, as a second messenger, can activate 

NADPH (nicotinamide adenine dinucleotide phosphate) oxidase in human polymorph nuclear 

leukocytes [113], which could link to apoptotic signaling. Recent evidence supports the involvement  

of phosphatidic acid in apoptotic signaling. For instance, cerium activates phospholipase D and 

produces phosphatidic acid which induces the biphasic burst of superoxide anions and regulates 

MAPK (mitogen-activated protein kinases)-mediated apoptosis [114]. Increasing levels of production  

of phosphatidic acid on the mitochondrial surface results in mitochondrial aggregation and facilitates  

the fusion process [115]. Phosphatidic acid, one of the major acidic phospholipids found in lysosome 

membrane, is essential for tBid-induced lysosomal membrane permeabilization and links to the 

lysosomal-mitochondrial mediated apoptotic pathway [69]. Galectin-8, a potent pro-apoptotic agent, 

induces phospholipase D/phosphatidic acid signaling pathway that enhances ERK-mediated apoptosis 

in Jurkat T cells [116]. We recently found that phosphatidic acid, produced by shear stress-induced 

phospholipase D activation, stimulates mTOR signaling, and causes podocyte hypertrophy  

and apoptosis [71]. Taken together, phosphatidic acid plays an important role in the regulation  

of apoptotic signaling. 

4.2.3. Ceramide 

Ceramide is capable of triggering apoptosis in almost any cell, including tumor cells. Ceramide  

can be generated by a de novo pathway (ceramide synthase) or by sphingomyelinases in response  

to various stress stimuli, such as cytokines, heat shock, growth factors, vitamin D, TNF-α,  

CD95/Fas, chemotherapeutic agents, toxin, irradiation, UV-light, and infection by different signaling 

pathways [72]. Elevation of cellular ceramide levels directly or indirectly regulates the activities  

of a number of enzymes and signaling components, including MAP kinases, ceramide-activated 

kinase, ceramide-activating serine/threonine phosphatases such as protein phosphatase 1A and 2A, 

protein kinase C ζ, phospholipases such as phospholipase A2 or D, CPP32-like caspases, cathepsin D, 

transcription factors such as NF-κB, and kinase suppressor ras [117–122]. These enzymes and 

signaling components play an important role in the regulation of apoptotic signaling. On the other 

hand, an irreversible step in apoptotic processing is mitochondrial outer membrane permeabilization 

which releases critical proteins such as cytochrome c. The channels for protein release are controlled 

by Bcl-2 family proteins based on cell physiological function: anti-apoptotic proteins (Bcl-x, Bcl-w, 

and others) destabilize the channels whereas pro-apoptotic proteins (Bax, BAD, Bak, Bok, and others) 
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act synergistically with ceramide to increase membrane permeability [123]. Ceramide can  

self-assemble in the mitochondrial outer membrane to form large stable channels capable of releasing  

cytochrome c [124]. Cytochrome c further interacts with Apaf-1, activates several caspases and forces 

cell to undergo apoptosis. The role of ceramide in apoptosis indicates that ceramide could be  

a potential anticancer drug. 

4.2.4. Cholesterol 

Cholesterol modulates cell signaling through the cholesterol–protein interaction, cholesterol–phospholipid 

interaction, and membrane dynamics. Increasing cholesterol levels promotes cell proliferation, tumor 

progression, and chemotherapy resistance [16,17]. However, recent studies show that cholesterol  

is also involved in apoptotic signaling. A significant fraction of cholesterol that accumulates  

in atherosclerotic lesions is oxidized to yield a number of derivatives, called oxysterols. Cholesterol 

oxidation produces 7α-hydroxy-, 7β-hydroxy-, 7-keto-, 20-hydroxy-, and 25-hydroxycholesterol,  

and can also attack the Δ5 double bond of cholesterol, forming cholesterol-5,6-epoxide which could 

react spontaneously with nucleophiles and behave like alkylating agents with direct carcinogenic 

properties [125]. Oxysterols increase intracellular levels of ROS, induce modification of cellular 

proteins (pro- and anti-apoptotic molecules), and alter gene expression and mitochondrial membrane 

properties. It is clear that accumulation of oxysterols may strongly stimulate the mitochondrial 

pathway of apoptosis [126]. On the other hand, toxic amyloid beta peptides (Aβ) are overproduced and 

accumulate in mitochondrial matrix of experimental models of Alzheimer’s disease. Specific 

mitochondrial cholesterol pool sensitizes to Aβ-induced oxidant cell death and caspase-independent 

apoptosis by cholesterol-mediated perturbation of mitochondrial membrane dynamics [127]. Recent 

investigations have shown that dendrogenin A is a selective inhibitor of cholesterol epoxide hydrolase 

and it triggered tumor re-differentiation and growth control in mice and improved animal survival [128]; 

cholesterol-5,6-epoxide metabolites, moreover, contribute to the anticancer pharmacology  

of Tamoxifen [129]. Although cholesterol promotes cell proliferation, oxidized cholesterol can lead 

cells to apoptosis. 

4.2.5. Apolipoproteins 

Some apolipoprotein Ls (ApoL1 and ApoL6) share structural and functional similarities with  

Bcl-2 family proteins that play crucial roles in regulating apoptosis. ApoL1 is inducible by p53  

in p53-induced cell death [130], and overexpression of ApoL6 induces the release of cytochrome c  

and Smac/DIABLO from mitochondria and activation of caspase-9 via a mitochondria-mediated 

pathway [131]. The levels of apolipoprotein E (ApoE) mRNA and protein are up-regulated during 

staurosporine-induced apoptosis and are also correlated with increased caspase-3 activity and apoptotic 

morphological changes [132]. ApoE synthesis induced by neuronal damage or stress indicates  

its neurotoxic effect and is associated with apoptotic signaling [133]. The genesis of atherosclerosis  

is also associated with lipoprotein oxidation [126]. The oxidized low-density lipoprotein could enhance 

arterial apoptosis via mitochondrial and death receptor pathways [134]. The oxidative stress has also 

been implicated in the cardiovascular complications in chronic renal failure patients [133]. 
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4.2.6. Intracellular Calcium 

Ca2+ is not a lipid but has strong correlations with lipid metabolism and cell death. Intracellular 

calcium homeostasis is crucial for healthy cells, and the disruption of intracellular calcium homeostasis 

will cause cell damage, and even death [135,136]. In mammalian cells, the endoplasmic reticulum 

(ER) forms the main intracellular Ca2+ reservoir. Intracellular Ca2+ can be mobilized from ER  

by inositol trisphosphate (IP3). IP3 is produced by phospholipase C-hydrolyzed phosphatidylinositol 

bisphosphate and can bind to IP3 receptor on the ER [137]. Extracellular Ca2+ enters to the cells 

controlled by membrane transporter such as plasma membrane calcium ATPases and channels such  

as Trp. These transporters and channels are regulated by lipids [126]. Apoptotic cells rely on increased 

intracellular Ca2+ concentrations [135], mediated by the release from ER and by capacitive Ca2+ influx 

through transporters or channels [137–139]. Mitochondrial uptake of Ca2+ causes ATP production, 

mitochondria outer membrane permeabilization and release of cytochrome c [135]. Recently, 

intracellular organelles coordinate complex molecular mechanisms in the regulation of Ca2+ signaling 

and lipid metabolism. A number of experimental evidence support that cell apoptosis regulated  

by alteration of intracellular Ca2+ homeostasis is associated with the tight interplay between ER  

and mitochondria known as the mitochondria-associated membrane (MAM) [140–143]. In mammalian 

cells, the formation of these contact sites appear to be required for key cellular events including rapid 

transmission of calcium from the ER to mitochondria, the import of phosphatidylserine into 

mitochondria from the ER for decarboxylation to phosphatidylethanolamine, the formation  

of autophagosomes, and the regulation of the morphology, dynamics and functions of mitochondria,  

and cell survival [144]. In a mouse model of the human lysosomal storage disease, GM1-ganglioside  

is accumulated in the glycosphingolipid-enriched microdomain (GEM) fractions of MAMs [145]. 

Meanwhile, the MAM fractions from rat liver contain highly active sphingolipid-specific 

glycosyltransferases [146]. 

5. Lipid Metabolism, Cancer Treatment and Drug Resistance 

Cancer is characterized by uncontrolled cell growth with increased proliferation and decreased 

apoptosis and enhances migrating behavior of cells by promoting their ability to invade adjacent 

tissues and/or metastasize to non-adjacent organs and tissues. Cell proliferation requires duplication  

of all macromolecular components during each cell division. Aberrant lipid metabolism is now 

recognized as one of the key features of cancer cells because cell proliferation requires increased lipid 

biosynthesis, and lipid catabolism produces bioactive molecules which act as signal molecules  

to regulate cancer metastasis [1,2,7]. 

5.1. Lipid Metabolism in Cancer 

Three classical lipids, fatty acids, phospholipids and cholesterol, are dramatically increased  

and actively biosynthesized in cancer cells and tumors. At first, evidence shows that expression  

and activity of fatty acid synthase are extremely low in nearly all nonmalignant adult tissues, whereas  

it is significantly up-regulated in a number of solid and aggressive cancers [147]. Fatty acids are also 

building blocks for glycerolipids, glycerophospholipids, and other lipids. Secondly, expression  
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of choline kinase, a key enzyme in biosynthesis of phosphatidylcholine, is up-regulated in a variety  

of cancer cell lines and tumors, and choline kinase can be activated by different growth factors  

and oncogene-coding proteins such as ras [148]. Thirdly, active sterol biosynthesis remains  

an essential metabolic component of cell proliferation. Up-regulating cholesterol biosynthesis and 

cholesterol efflux are only discovered in proliferating normal tissues and tumors [15–17]. 

Transcriptional profiling by microarray has demonstrated that refractory cancers exhibit significant 

overexpression of a number of genes in cholesterol biosynthetic pathway [56]. Cholesterol 

biosynthesis happens much earlier than DNA synthesis, and inhibiting cholesterol biosynthesis slows 

cell growth, suggesting a linkage between the cholesterol and DNA synthetic pathways [149]. Lipid 

metabolism in cancer cells remains largely unknown. Recently, lipidomics (also called lipid profiling) 

has provided more details of lipid metabolism by comparing lipid profiles of normal and cancer cells 

or tissues [150,151], which could be useful for identifying clinical biomarkers for earlier diagnosis, 

and allow evaluation of determining the efficacy of cancer therapy. 

5.2. Anticancer Drugs, Lipid Metabolism and Apoptosis 

A number of anti-cancer drugs are lipid-based or effective in terms of their ability to regulate lipid 

metabolism. Many anticancer drugs, such as cytarabine, daunorubicin, doxorubicin, etoposide, 

fludarabine, irinotecan, paclitaxel, tamoxifen, taxol, vinblastine, and vincristine, can impact ceramide 

accumulation by inducing ceramide synthase to catalyze de novo ceramide synthesis or by activating 

sphingmyelinase to catalyze sphingomyelin degradation [117,152]. Based on the structure of ceramide, 

ceramide analogs such as ceramidoids, 4, 6-diene-ceramide, and C16-serinol are also used as anticancer 

drugs [117]. Some anticancer drugs target fatty acid synthesis by inhibiting fatty acid synthase [153], 

phospholipase A2 [154], and lipases [155]. Some anticancer drugs can significantly reduce the levels  

of cellular cholesterol by blocking different steps of cholesterol biosynthesis [16,17,156]. Some anticancer 

drugs are developed based on blocking the conversion of lipid products [75]. In each case, anticancer 

drugs cause the alternations of lipid metabolism in cancer cells and the result leads to cancer cells  

to growth arrest and/or apoptosis. 

Some lipids directly induce caspase activation leading to programmed cell death. For example, 

triglyceride [157], lysophosphatidylcholine [158], lipopolysaccharide [159], and cholesterol [160]  

can induce or trigger caspase-1 activation. Apoptosis induced by fatty acids and their derivatives  

is associated with significant activation of caspase-2, -3, -6, -7, -8 and -9 [161,162]. Cardiolipin  

is a mitochondria-specific phospholipid and provides an essential activating platform for caspase-8  

on mitochondria [163]. The 7-Ketocholesterol activates caspases-3, -7, -8, and -12 in human 

microvascular endothelial cells in vitro [164]. In rat small intestine platelet-activating factor promotes 

mucosal apoptosis via Fas ligand-mediating caspase-9 active pathway [165]. Vitamin D3 induces 

caspase-14 expression and enhances caspase-14 activation in processing organotypic skin cultures 

[166]. Ceramide stimulates caspase-3, -5, -7, -8, -9 and -14 activities leading to apoptosis in many cells  

and tissues [166–171]. These lipids can be used or developed as anticancer drugs (Figure 4). 
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5.3. Lipid Metabolism and Drug Resistance 

In spite of many significant progresses in cancer therapy, cancer is still a major disease that causes 

more than 8 million deaths, or about 15% of all human deaths around the world every year because 

most cancer patients eventually develop drug resistance [172]. Drug resistance of cancer cells 

represents a serious barrier to successful clinic treatment, and inherent drug resistance of cancer cells is 

caused by multiple mechanisms. The molecular mechanisms of drug resistance can be caused by gene 

mutations which can enzymatically deactivate the drug, alter the drug-specific binding site, decrease 

drug permeability and/or increase active efflux (pumping out) of the drugs across plasma membrane, 

and/or change of the metabolic pathway to yield different non-cytotoxic products. Many of these 

processes are associated with the alteration of lipid metabolism. Ceramide is a center of sphingolipid 

metabolism, and more than eleven different enzymes use ceramide as a substrate (ceramidase, ceramide 

kinase, glycosylceramide synthase, galactosylceramide synthase, and sphingomyelin synthase)  

or directly convert other molecules to ceramide (dihydroceramide desaturase, sphingomyelinase,  

ceramide-1-phosphate phosphatase, glucocerebrosidase, galactocerebrosidase, and ceramide  

synthase) [75,163]. One of the best examples of how changing metabolic pathways may lead cancer 

cell to drug resistance is that ceramide-generating cancer chemotherapeutic drugs impact the 

accumulation of ceramide [163] and the increased levels of cellular ceramide drives cancer cell death [73]. 

Accumulation of cellular ceramide also activates glucosylceramide synthase which converts ceramide to 

glucosylceramide, thereby reducing ceramide levels in the cells [75]. Glucosylceramide has been 

demonstrated to stimulate cell growth and DNA synthesis which drive cancer cell resistance to 

chemotherapy [173]. Other ceramide derivatives such as ceramide-1-phosphate and sphingosine-1-phosphate 

also regulate cell survival and proliferation pathways, and could lead to drug resistance, as well [161]. 

 

Figure 4. Lipids regulate apoptotic signaling in the cells. Phosphatidic acid (PA)  

and cholesterol can modulate mitochondrial membrane permeability and triggers apoptosis 

via the lysosomal-mitochondrial pathway; and the bioactive lipid molecules, such as  

platelet-activating factor (PAF), fatty acids (FA), lysophosphatidylcholine (LPC), 

lipopolysaccharide (LPS), 7-ketocholesterol, ceramide, vitamin D3, cardiolipin, and 

triacylglycerol, can induce apoptotic signaling pathways by activating different caspases. 

The released cytochrome c in mitochondrial pathway interacts with Apaf-1 and pro-caspase-9 

to form a caspase (Casp) activation complex, the apoptosome, or caspase activation can 

cleave Bid (a pro-apoptotic member of the Bcl-2 family) to form the truncated Bid (tBid) 

which translocates to the mitochondria and results in the release of cytochrome c. 
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6. Conclusions 

Lipid metabolism is very complex and is regulated by a complex signaling network in the cells.  

The same lipid molecule, via different signaling pathways or under different conditions, can generate 

different metabolites. Understanding and defining signaling pathways of lipid metabolism in cancer 

cells can provide rational targets for therapy, and determining the function of different lipid molecules 

could develop new anticancer drugs for clinical evaluation. Clearly, better understanding of lipid 

metabolism in cancer therapy and apoptosis requires further elucidation and investigation to develop 

new and better cancer treatments for future cancer patients. 
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