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a b s t r a c t

Mitochondrial permeability transition (MPT) is thought to determine cell death under oxidative stress.
However, MPT inhibitors only partially suppress oxidative stress-induced cell death. Here, we demon-
strate that cells in which MPT is inhibited undergo cell death under oxidative stress. When C6 cells were
exposed to 250 μM t-butyl hydroperoxide (t-BuOOH), the loss of a membrane potential-sensitive dye
(tetramethylrhodamine ethyl ester, TMRE) from mitochondria was observed, indicating mitochondrial
depolarization leading to cell death. The fluorescence of calcein entrapped in mitochondria prior to
addition of t-BuOOH was significantly decreased to 70% after mitochondrial depolarization. Cyclosporin A
suppressed the decrease in mitochondrial calcein fluorescence, but not mitochondrial depolarization.
These results show that t-BuOOH induced cell death even when it did not induce MPT. Prior to MPT,
lactate production and respiration were hampered. Taken together, these data indicate that the de-
creased turnover rate of glycolysis and mitochondrial respiration may be as vital as MPT for cell death
induced under moderate oxidative stress.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mitochondria utilize the pH gradients and membrane poten-
tials that exist across their inner membranes to transport charged
molecules and ions. To maintain the pH gradients and membrane
potentials, it is necessary for the permeability of the inner mi-
tochondrial membrane to be kept low. However, when mi-
tochondria undergo Ca2þ overloading or oxidative stress, the inner
membranes become permeable to solutes with molecular masses
that are below approximately 1.5 kDa; this is known as mi-
tochondrial permeability transition, MPT) [1]. Therefore, upon
MPT, mitochondrial function changes drastically, and the in-
tracellular environment is altered. As such, MPT is thought to be
involved in cellular damage [2,3] or intracellular signal transduc-
tion [4,5]. MPT can be blocked when the mitochondrial
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peptidylprolyl cis-trans isomerase (PPIase) cyclophilin D is in-
hibited [6] or its gene is ablated [7,8], thus indicating that MPT is a
protein-dependent process.

Cellular dysfunction due to reactive oxygen species (ROS) has
been observed in diseases including ischemia reperfusion injury
and neurodegenerative disorders [9]. ROS suppress energy pro-
duction by hampering glycolysis [10,11] and mitochondrial func-
tion [12–16]. In particular, intensive studies on ROS-induced MPT
have demonstrated that MPT inhibition by cyclosporin A (CsA)
increases cells viability under oxidative stress. However, CsA only
partially suppresses ROS-induced cell death [17,18]. In these cases,
it is unclear whether cell death is accompanied by MPT or not.

To detect MPT in cells, we can monitor the translocation of
small molecules across the inner membrane by using hydrophilic
fluorescent dye calcein [13,14] or radiolabeled 2-deoxyglucose
[15,16]; these are smaller than the MPT cutoff size of 1.5 kDa. Al-
though calcein is suitable for simultaneous measurements of mi-
tochondrial membrane potential and the occurrence of MPT, we
must consider the effects of ROS on the mitochondrial uptake of
calcein AM and the quenching of calcein fluorescence in mi-
tochondria. In this study, we successfully excluded these effects of
ROS and demonstrated that mitochondria became depolarized by
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ROS even when MPT was inhibited by CsA. This result implies that
ROS significantly decreases ATP production even when MPT does
not occur and further promotes necrotic cell death.
2. Experimental procedures

2.1. Reagents

Calcein AM was purchased from Dojindo Laboratories (Kuma-
moto, Japan). Tetramethylrhodamine ethyl ester (TMRE) was pur-
chased from Invitrogen Corporation (Carlsbad, CA). CsA and digi-
tonin were obtained from Sigma-Aldrich Co. (St. Louis, MO). All
other high purity chemicals were commercially available.

2.2. Cell Cultures

C6 glioma cell lines overexpressing wild-type or PPIase-defi-
cient mutants (R97A) of cyclophilin D and control cells transfected
with the corresponding empty vector were obtained, as described
previously [19]. The cells were cultured in Dulbecco's modified
Eagle's medium (DMEM) supplemented with 10% fetal bovine
serum (FBS) and 100 μg/mL of geneticin in a humidified incubator
at 37 °C and 5% CO2. After enzymatic dissociation with trypsin,
cells were plated in culture dishes (diameter, 35 mm) at a con-
centration of 2.8�104 cells/cm2. The cells were cultured under the
above conditions for 2 days prior to measurements.

2.3. Fluorescence staining and the addition of t-BuOOH

In order to observe the changes in the plasma membrane in-
tegrity and ΔΨm by exposing cells to t-BuOOH, C6 glioma cells
were loaded with 1 μM calcein AM [20] and 100 nM TMRE [21,22],
respectively, for 30 min in DMEM without serum at 37 °C. Cells
were then washed with DMEM and incubated with 250 μΜ t-
BuOOH [13,23] in DMEM with 100 nM TMRE and 10% FBS. Im-
mediately before microscopic observation, the medium was re-
placed with HEPES-buffered saline (HBS) (10 mM HEPES, 120 mM
NaCl, 4 mM KCl, 0.5 mM MgSO4, 1 mM NaH2PO4, 4 mM NaHCO3,
25 mM glucose, 0.1% bovine serum albumin, pH 7.4) with 1.2 mM
CaCl2 and 100 nM TMRE.

In order to observe MPT in t-BuOOH treated cells, the calcein-
digitonin technique [24] was used with slight modification. First,
to trap calcein in the mitochondria, C6 glioma cells in culture
dishes were incubated with 1 μM calcein AM and 100 nM TMRE
for 30 min at 37 °C in DMEM with 0.005% cremophor. The calcein
AM and cremophor were removed by washing cells with DMEM.
The cells were then incubated with 250 μM t-BuOOH in DMEM
with 100 nM TMRE and 10% FBS. In order to examine the effects of
CsA, CsA was added to a final concentration of 5 μM after washing
cells and before the addition of t-BuOOH, and this remained in the
media throughout the remaining procedures. After the appropriate
incubation time, the cells were detached from the culture dishes
with 0.05% trypsin in phosphate-buffered saline (8.1 mM Na2HPO4,
1.5 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, 0.44 mM ethylene-
diaminetetraacetic acid, pH 7.4) with 250 μM t-BuOOH. After re-
moving trypsin by centrifugation at 126� g for 10 min, the cell
pellet was suspended in HBS at a density of 3�106 cells/mL. The
suspension was divided into 3 aliquots. The first was maintained in
HBS with 250 μM t-BuOOH (HBS(tB)). The second was incubated
with 20 μM digitonin in HBS(tB) to remove the cytosolic calcein by
permeabilizing the plasma membranes. The third was incubated
with 100 nM TMRE in HBS(tB) to observe ΔΨm. Immediately
before microscopic observations, the cells were transferred to a
hemocytometer with a 0.17-mm thick coverslip. Calcein fluores-
cence in the cells of the second aliquot was observed for 15–
25 min after the addition of digitonin, as mitochondrial calcein
fluorescence was stable during this period. After measuring the
second aliquot, we measured the first and third aliquots to confirm
plasma membrane integrity and the maintenance or loss of the
ΔΨm. t-BuOOH was added to control cells 15 min before their
detachment from the dishes to compensate for the possible
bleaching of calcein fluorescence. After detachment, all procedures
were performed at 25 °C and completed within 30 min.

2.4. Imaging and Analysis of Calcein and TMRE Fluorescence

In order to obtain the fluorescence images, we used an inverted
epifluorescence microscope (IX-70; Olympus Corporation, Tokyo,
Japan). The magnification of the objective lens was 20 times (Ua-
po20X/340, NA¼0.75; Olympus Corporation). Calcein fluorescence
was monitored using a 75-W xenon lamp through a 20-nm
bandpass filter centered at 480 nm. The illumination intensity was
reduced to 6% with a neutral density filter. Light emitted between
515 and 550 nm was collected with a cooled CCD camera (Sensi-
cam QE, PCO AG; Kelheim, Germany). For the TMRE fluorescence,
excitation was achieved with a 15-nm bandpass filter centered at
535 nm. Fluorescence 4580 nm was collected [25,26]. The illu-
mination intensity was reduced to 25% with a neutral density fil-
ter. All images were obtained with 2�2 binning pixels and an
exposure time of 1 s. The fluorescence readouts were digitized to
12 bits and analyzed with image-processing software (Meta-
Morph; Molecular Devices, Inc., Sunnyvale, CA). In order to analyze
the fluorescence intensity of intracellular calcein, we identified the
outline of each cell in the transmitted image and obtained the
average intensity of the fluorescence within the region surrounded
by the outline. The background intensity of the fluorescence was
obtained as the average intensity within a region where the in-
tensity of the fluorescence was not affected by the cells stained
with calcein. This was subtracted from the intensity of the calcein
fluorescence in each cell.

2.5. Measurements of cell respiration

Prior to the measurements of cell respiration, cells grown in
culture dishes were incubated with 250 μM t-BuOOH in DMEM
with 10% FBS for 15 min at 37 °C. The cells were then detached
from the culture dishes and collected, as described in the section
on the calcein-digitonin technique. Cells not incubated with t-
BuOOH were used as a control. During cell respiration measure-
ments, the cells were suspended in HBS(tB) with 1.2 mM CaCl2 at a
concentration of 1.5�107 cells/mL. To evaluate cell respiration,
oxygen concentrations were measured with a Clark-type oxygen
electrode (Iijima-Denshi, Aichi, Japan) for 10 min at 37 °C. These
measurements were completed within 40 min after the addition
of t-BuOOH to cells grown in culture dishes.

2.6. Measurements of ATP and lactate production

Prior to determination of lactate levels, cells were incubated in
DMEM without FBS for 20 min. When rotenone and/or t-BuOOH
were added, these reagents were present during this incubation.
Cells were then washed twice with DMEM without FBS and were
incubated in the medium for 30 min in the presence or absence of
600 nM rotenone and/or 250 mM t-BuOOH. After this incubation,
lactate in the medium was determined enzymatically by a test kit
(L-lactic acid, Boehringer Mannheim, Germany). The amount of
cells in a dish was determined as protein amount using a protein
assay with BSA as a standard.

For determination of ATP, cells were plated in 96-well micro-
plates at a concentration of 2500 cells/well and cultured in DMEM
with 10% FBS for 48 h at 37 °C in a CO2 incubator. When t-BuOOH
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was added, cells were incubated with 250 mM t-BuOOH in DMEM
with 10% FBS for 30 min. ATP content was determined with a
commercial kit (CellTiter-Glos Luminescent Cell Viability Assay,
Promega, WI, USA). The amount of cells per well was determined
as protein amount using a protein assay with BSA as a standard.

2.7. Statistical analysis

We averaged the data from at least three independent experi-
ments. The results were expressed as mean7SEM, and they were
analyzed by ANOVA followed by the Student-Newman-Keuls test.
Differences were considered statistically significant with P values
less than 0.05.
3. Results and discussion

3.1. Microscopic observation of the cellular responses following t-
BuOOH treatment

To examine the responses of C6 glioma cells to t-BuOOH, we
observed the changes in cellular morphology, plasma membrane
integrity, and ΔΨm after addition of t-BuOOH. The results are
shown in Fig. 1.

Initially, we observed the C6 glioma cells transfected with the
empty vector (vector control cells). After incubation for 60 min
with 250 μM t-BuOOH, the cells showed shrinkage and blebbing.
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Fig. 1. Effects of t-BuOOH on cell morphology, plasma membrane integrity, and ΔΨm
membranes and with TMRE in order to observe the ΔΨm. Bar, 10 mm. At t ¼0 min, 25
expressing wild-type of cyclophilin D. C) C6 glioma cells overexpressing PPIase-deficient
The plasma membrane integrity and ΔΨm appeared to be un-
changed. After incubation for 150 min, the ΔΨm had significantly
dissipated as indicated by the decrease in the intensity of the
TMRE fluorescence in the cells. The incubation time of the cells
with t-BuOOH until the ΔΨm dissipated significantly depended
on the preparations and ranged from 150 to 180 min. In the early
stages after the depolarization of mitochondria (Fig. 1(A), 150 min),
the plasma membranes of the cells did not rupture as the calcein
fluorescence in the cells was unchanged. The plasma membranes
ruptured 30–40 min following mitochondrial depolarization, as
indicated by the release of cytosolic calcein and drastic changes in
cellular morphology (Fig. 1(A), 210 min). The dissipation of ΔΨm
before the rupture of the plasma membranes was consistent with
that reported in previous studies [13,27]. In the present study, we
defined cell death as plasma membrane rupture.

The cellular response to 250 μM t-BuOOH was accelerated
when wild-type of cyclophilin D was overexpressed (Fig. 1(B)). On
the contrary, when the PPIase activity of cyclophilin D was in-
hibited (Fig. 1(C) and (D)), the progression of the responses was
not significantly changed. In spite of the PPIase activity of cyclo-
philin D, almost all cells examined initially exhibited shrinkage
and blebbing, then the disruption of ΔΨm, and finally plasma
membrane rupture when t-BuOOH was added at 250 μM. In
contrast, when the t-BuOOH concentration was decreased to
50 μM, inhibition of cyclophilin D suppressed all features observed
in the presence of 250 μM t-BuOOH (data not shown). These re-
sults suggest that 250 μM t-BuOOH induces cell death by
90 1400 40

 150 180 0 60

t - BuOOH treatment (min)

. Cells were stained with calcein in order to examine the integrity of the plasma
0 μM t-BuOOH was added to the cells. A) Vector control. B) C6 glioma cells over-
mutants (R97A) of cyclophilin D. D) Vector control cells in the presence of 5 μM CsA.



Fig. 2. Analysis of calcein and TMRE fluorescence before plasma membrane rupture. Vector control cells were exposed to t-BuOOH for 150 min (A–D) or 90 min (E, F).
(A) Time course of changes in calcein fluorescence in cells after addition of digitonin. At t¼0, digitonin was added to cells. The cells were then transferred to a microscope
stage. (B) TMRE fluorescence in cells. (C) Mitochondrial calcein fluorescence in cells. (D) Calcein fluorescence in intact cells without digitonin treatment. (E) TMRE fluor-
escence before dissipation of the ΔΨm. (F) Mitochondrial calcein fluorescence in cells before ΔΨm dissipation. (B–F) The average intensity of the fluorescence of control cells
without t-BuOOH and CsA treatment was adjusted to 100, and results expressed as a represent means 7SE (n¼4). n, Po0.05 vs. control.
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mechanisms additional to those by which 50 μM t-BuOOH induces
cell death.

3.2. Detection of MPT with the calcein-digitonin technique

MPT occurs in cells during oxidative stress, leading to cell death
[13]. Although CsA is a MPT inhibitor, our results show that
250 μM t-BuOOH induces cell death in the presence of CsA.
Therefore, we examined whether 250 μM t-BuOOH induced MPT
in cells in the presence of CsA. For this purpose, C6 glioma cells
(vector control) were analyzed using the calcein-digitonin tech-
nique prior to plasma membrane rupture. In all cells examined
after the digitonin mediated plasma membrane permeabilization,
intracellular calcein fluorescence was largely decreased to 5–10%
due to the release of calcein from the cytosol to the medium. This
indicates that calcein was mainly distributed in the cytosol prior to
the addition of digitonin, and that it was therefore impossible to
identify mitochondrial calcein fluorescence for the first minutes
after digitonin treatment (Fig. 2(A)). After the release of cytosolic
calcein, calcein fluorescence in the cells became stable, regardless
of the incubation with t-BuOOH. During the stable phase, most of
the residual calcein fluorescence was localized to the mitochondria
as reported previously [24]. Therefore, we measured cellular cal-
cein fluorescence during the stable phase as representative of
mitochondrial calcein fluorescence.

We measured the mitochondrial calcein fluorescence after
ΔΨm dissipation induced by t-BuOOH, since MPT should accom-
pany the collapse of the ΔΨm. After ΔΨm dissipation, the calcein
fluorescence in the mitochondria of digitonin-permeabilized cells
decreased to approximately 70% of control levels (Fig. 2(B) and
(C)); however, the calcein fluorescence in a whole cell remained
unchanged after ΔΨm dissipation (Fig. 2(D)). After observing
mitochondrial calcein with the calcein-digitonin technique, we
confirmed that the plasma membranes did not rupture when di-
gitonin was absent. However, when ΔΨm was maintained, t-
BuOOH did not decrease mitochondrial calcein (Fig. 2(E) and (F)).
These results suggest that t-BuOOH induced MPT in the intact cells
before plasma membrane rupture, and that the effects of t-BuOOH



Fig. 3. Effects of t-BuOOH on energy metabolism of vector control cells. t-BuOOH
was added to culture medium to a final concentration of 250 μM. (A) Intracellular
ATP level and (B) lactate production of vector control cells. (C) Changes in oxygen
concentration in the cell suspension. At t¼0, cells were added to the buffer. The
arrow marks the addition of 5 μM oligomycin to the cell suspension. (D) Respiration
rates in the absence of oligomycin (V1) and in the presence of oligomycin (V2).
(E) Effects of t-BuOOH on the ratio of respiration rate (V2/V1). Results represent
means7SE (n¼3 for A and n¼5 for (B, D, and E)). n, Po0.05 vs. control.
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on mitochondrial uptake of calcein AM and the quenching of cal-
cein fluorescence in mitochondria were negligible under the pre-
sent condition.

Next, we examined the effects of CsA on mitochondrial calcein
fluorescence after the dissipation of ΔΨm. For this, we added CsA
to the cells that had been washed with HBS following incubation
with calcein AM. This removal of calcein AM from the medium
helped to suppress the CsA-induced increase in calcein fluores-
cence in a whole cell (Fig. 2(D)), as CsA inhibits the multidrug
resistance P-glycoprotein that carries calcein AM out of the cells
[28,29]. In the presence of t-BuOOH, CsA inhibited the decrease in
mitochondrial calcein fluorescence after dissipation of ΔΨm,
while CsA alone did not affect the mitochondrial calcein fluores-
cence (Fig. 2(C)). These findings indicate that CsA inhibited MPT
induced by t-BuOOH at 250 μM in intact cells.

In the above experiments, we exclusively measured vector
control cells and induced MPT with 250 mM t-BuOOH. To detect
the occurrence of MPT with the calcein-digitonin technique, it is
necessary to obtain the cell population in which the majority of
cells possess depolarized mitochondria and intact plasma mem-
branes. To achieve this, we used 250 mM t-BuOOH. In contrast, in
the presence of 50 μM t-BuOOH, the cell population contained
cells at various stages of the t-BuOOH response, since the rate of
progression of the response depended significantly on individual
cells. The concentration of t-BuOOH used here (250 μM) is ade-
quate to examine the molecular mechanisms in response to oxi-
dative stress, because the concentration of t-BuOOH is similar to
those used in the previous studies [30,31]. In addition, calcein
distribution in cells were affected by expression of cyclophilin D
(Shinohe, unpublished results). Therefore, we exclusively mea-
sured the mitochondrial calcein in vector control cells and did not
compare the residual calcein in mitochondria among C6 glioma
cell lines overexpressing wild-type, PPIase-deficient mutants
(R97A) of cyclophilin D, and the vector control.

3.3. Effects of t-BuOOH on cells before dissipation of ΔΨm

In spite of MPT suppression by CsA, t-BuOOH induced cell death
at 250 mM, as shown by plasma membrane rupture. These results
indicate that there are mechanisms other than MPT by which t-
BuOOH induces cell death. This interpretation is consistent with
previous studies showing that CsA only partially suppresses ROS-
induced cell death [17,18]. Since the decrease in intracellular ATP
concentration occurs during oxidative stress [10,32], and ATP de-
pletion in cells can lead to the collapse of cell homeostasis, re-
sulting in cell death [11,33], we measured the effect of t-BuOOH on
cellular ATP concentration before the occurrence of MPT. As shown
in Fig. 3(A), t-BuOOH significantly decreased ATP concentration in
the cells at 250 mM.

In order to examine the mechanism by which t-BuOOH de-
creases ATP concentration in cells without MPT, we measured the
effects of t-BuOOH on two major ATP-generating systems, glyco-
lysis and oxidative phosphorylation. t-BuOOH significantly de-
creased lactate production at 250 μM (Fig. 3(B)). The decrease in
lactate production was also observed in the presence of rotenone.
These results indicate that the glycolytic flux rate was depressed
by t-BuOOH. The observed depression of the glycolytic flux rate is
consistent with the previous observation that GAPDH involved in
glycolysis was specifically inactivated during oxidative stress
[10,32]. Next, in order to examine the effects of t-BuOOH on oxi-
dative phosphorylation, we measured the respiration rate (Fig. 3
(C)). t-BuOOH significantly increased the cell respiration rate in the
presence of 5 μM oligomycin (V2), although it had no effects on the
respiration rate in the absence of oligomycin (V1) (Fig. 3(D)). To
confirm the stimulation of V2 by t-BuOOH, we calculated the ratio
(V2/V1) in order to compensate for the slight differences in the
number of cells among the preparations, as the respiration rate
depends on the cell number. The presence of t-BuOOH sig-
nificantly increased the ratio from 0.21 to 0.30 (Fig. 3(E)), sug-
gesting that uncoupling of oxidative phosphorylation was stimu-
lated by the presence of t-BuOOH. t-BuOOH did not decrease basal
respiration, probably because the increase in respiration caused by
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uncoupling of oxidative phosphorylation compensated for the
decrease in respiration by the reduction in the supply of pyruvate.

Although it is unclear whether 250 μM t-BuOOH dissipated the
ΔΨm by MPT in the absence of CsA, we think that MPT induced
the ΔΨm dissipation, as MPT is more sensitive to t-BuOOH than
the inhibition of glycolysis and the induction of uncoupling of
oxidative phosphorylation. This idea is supported by the fact that
the inhibition of MPT by CsA suppresses cell death when t-BuOOH
is added at a lower concentration, and by the fact that the sig-
nificant decrease in calcein fluorescence in mitochondria is ob-
served only after dissipation of ΔΨm. However, the difference in
the time between ΔΨm dissipation by MPT and that by the non-
MPT mechanism is likely to be small under these conditions.
4. Conclusions

When the concentration of t-BuOOH was low (50 μM), the
main factor inducing the cell death was MPT. When the con-
centration of t-BuOOH increased to 250 μM, t-BuOOH induced cell
death by both MPT dependent and independent mechanisms.
Mechanisms other than MPT included uncoupling of oxidative
phosphorylation and inhibition of glycolysis, both of which lead to
a decrease in intracellular ATP concentration that can induce ne-
crosis [11,33]. These results indicate that MPT is not the sole rea-
son for the t-BuOOH-induced cell death and that MPT only par-
tially contributes to cell death induced by 250μM t-BuOOH.
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