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Abstract: Three gedunin-type limonoids, gedunin (1), 6α-acetoxygedunin (2), and 7-deacetoxy-
7-oxogedunin (3), which were isolated from the seed and flower oils of andiroba (Carapa guianensis
Aublet, Meliaceae), exhibited hepatoprotective effects at doses of 25 mg/kg, p.o. against
D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced liver injury in mice. To characterize the
mechanisms of action of 1–3 and clarify the structural requirements for their hepatoprotective effects,
17 related limonoids (1–17) isolated from the seed and/or flower oils of C. guianensis were examined
in in vitro studies assessing their effects on (i) D-GalN-induced cytotoxicity in primary cultured mouse
hepatocytes, (ii) LPS-induced nitric oxide (NO) production in mouse peritoneal macrophages, and
(iii) tumor necrosis factor-α (TNF-α)-induced cytotoxicity in L929 cells. The mechanisms of action of
1–3 are likely to involve the inhibition of LPS-induced macrophage activation and reduced sensitivity
of hepatocytes to TNF-α; however, these compounds did not decrease the cytotoxicity caused by
D-GalN. In addition, the structural requirements of limonoids (1–17) for inhibition of LPS-induced
NO production in mouse peritoneal macrophages and TNF-α-induced cytotoxicity in L929 cells
were evaluated.

Keywords: hepatoprotective effect; limonoid; andiroba; Carapa guianensis; Meliaceae;
structural requirement

1. Introduction

The Meliaceae family is recognized as a rich source of limonoids, which have attracted attention
from biogenetic and synthetic perspectives [1–3]. Carapa guianensis Aublet (Meliaceae), known locally
as andiroba and Brazilian mahogany, is distributed in the tropical rainforests of countries such as
Brazil and Colombia, etc. The woody four-cornered andiroba nut has four cells, each of which
contains two to three seeds with oil-rich kernels. Extracts of the bark, flowers, and seeds have
been used for centuries by the Amazonian people and exhibit various effects: anti-bacterial [4],
anti-cancerous [5], anti-tumor [6], anti-fungal [6], insect repellent [7], analgesic [8], anti-malarial [9],
anti-inflammatory [10], antiallergic [11], and anti-plasmoidal effects [12], as well as acute and
subacute toxicity [13]. In the course of our studies on the chemical constituents from C. guianensis
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(Carapa guianensis) [14–23], we have isolated several limonoids, including andirolides A–Y from
the flower oil [14–17], carapanolides A–X [18–22], and guianolides A and B [23] from the seed oil.
We have also reported that several limonoids from C. guianensis showed cytotoxic [14,16,18,19,23],
antimalarial [15], anti-inflammatory [17,20,22], and triglyceride metabolism-promoting activities [21].
We further evaluated the principal gedunin-type limonoids from the flower oil of C. guianensis, gedunin
(1) [15], 6α-acetoxygedunin (2) [14], and 7-deacetoxy-7-oxogedunin (3) [14], which were found to have
protective effects against liver injury induced by D-galactosamine (D-GalN)/lipopolysaccharide (LPS)
in mice. To characterize the mechanisms of action of limonoids and the structural requirements for
their hepatoprotective effects, 17 related limonoids isolated from the flower oil of C. guianensis, such as
7-deacetoxy-7α-hydroxygedunin (4) [21], andirolide H (5) [15], 6α-hydroxygedunin (6) [15], and methyl
angolensate (7) [15], as well as limonoids isolated from the seed oil including epoxyazadiradione
(8), 17β-hydroxyazadiradione (9) [21], carapanolides C (10) [19], R (11) [21], S (12) [21], M (13) [21],
Q (14) [21], and O (15) [21], guianolide A (16) [23], and carapanolide A (17) [18] (Figure 1). This study
reports the hepatoprotective effects and possible mechanisms of action of 1–3, as well as the structural
requirements for their hepatoprotective effects.
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2. Results and Discussion

2.1. Isolation

In previous studies, compounds 1–7 were isolated from the flower oil of C. guianensis [14–17],
whereas compounds 8–17 were obtained from the seed oil [18–22]. In the present study, principal
limonoids (1–3) were identified from the seed oil using normal phase silica gel column chromatography
followed by HPLC or recrystallization.

2.2. Protective Effects of Principal Limonoids (1, 2, and 3) on Liver Injury Induced by D-GalN/LPS in Mice

D-GalN/LPS-induced liver injuries are known to develop through immunological responses [24]
that progress via two steps. First, expression of inhibitors of apoptosis proteins (IAPs) is inhibited
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by administration of D-GalN through depletion of uridine triphosphate and increased sensitivity
of hepatocytes to tumor necrosis factor-α (TNF-α. Second, release of pro-inflammatory mediators
[nitric oxide (NO) and TNF-α from LPS-activated macrophages (Kupffer’s cells) occurs. Apoptosis of
hepatocytes induced by TNF-α plays an important role in D-GalN/LPS-induced liver injury [25]. In our
previous investigation of compounds from natural medicines possessing hepatoprotective activity,
we reported that sesquiterpenes and diarylheptanoids from Curcuma zedoaria [26–29], saponins from
Panax notoginseng [30], coumarins from Angelica furcijuga [31], acid amides from Piper chaba [32–34],
acylated phenylethanoids from Cistanche tubulosa [35], and triterpenes from Potentilla anserina [36]
exhibited significant protective effects against liver injuries induced by D-GalN/LPS in mice.

First, the in vivo hepatoprotective effects of the principal limonoid constituents, gedunin (1),
6α-acetoxygedunin (2), and 7-deacetoxy-7-oxogedunin (3), were evaluated. As shown in Table 1, 1–3
at a dose of 25 mg/kg, p.o. clearly prevented mortalities and significantly inhibited the increase
in serum levels of aspartate aminotransaminase (sAST) and alanine transaminase (sALT), which
served as markers of acute liver injury [37–39]. Notably, 1–3 were more potent than positive
compounds curcumin [36,40–42] and silybin [43,44], which are well recognized as naturally-occurring
hepatoprotective products.

Table 1. Inhibitory effects of gedunin (1), 6α-acetoxygedunin (2), and 7-deacetoxy-7-oxogedunin (3) on
D-GalN/LPS-induced liver injury in mice.

Treatment
Dose
(mg/kg, p.o.) N

sAST sALT Mortality
(Karmen Unit) Inhibition (%) (Karmen Unit) Inhibition (%)

Normal (vehicle) – 8 107 ˘ 9 ** – 20 ˘ 2 ** – 0/8
Control – 12 5237 ˘ 1,000 – 8533 ˘ 1795 – 4/16
Gedunin (1) 25 7 2304 ˘ 651 * 56.2 2950 ˘ 710 * 65.7 0/7

50 7 1923 ˘ 576 * 63.5 2824 ˘ 754 * 67.2 0/7
6α-Acetoxygedunin (2) 25 7 2384 ˘ 579 * 54.7 3120 ˘ 830 * 63.7 0/7

50 7 1696 ˘ 580 ** 67.9 2397 ˘ 873 ** 72.2 0/7
7-Deacetoxy-7-oxo- 25 7 2093 ˘ 742 * 60.3 2899 ˘ 1024 * 66.3 0/7
gedunin (3) 50 6 1759 ˘ 579 * 66.7 2572 ˘ 903 ** 70.2 1/7
Control – 10 6033 ˘ 1647 – 6605 ˘ 1985 – 6/16
Curcumin [36] 12.5 10 4770 ˘ 1218 21.1 5024 ˘ 1189 24.0 0/10

25 10 3177 ˘ 979 47.8 3253 ˘ 981 50.9 0/10
50 9 2220 ˘ 563 * 63.8 1916 ˘ 483 * 71.2 1/10

Control – 10 4709 ˘ 461 – 7088 ˘ 917 – 4/14
Silybin 500 8 1361 ˘ 191 ** 71.1 1990 ˘ 439 ** 71.9 0/8

Each value represents the mean ˘ S.E.M.; asterisks denote significant differences from the control group,
* p < 0.05, ** p < 0.01.; commercial silybin was purchased from Funakoshi Co., Ltd. (Tokyo, Japan).

2.3. Effects on D-GalN-induced Cytotoxicity in Primary Cultured Mouse Hepatocytes

As a part of our studies to characterize the hepatoprotective compounds from natural
medicines, we have investigated several constituents showed inhibitory effect on D-GalN-induced
cytotoxicity in primary cultured hepatocytes [26,27,29,31–36,43–55]. Since the principal limonoid
constituents from the flower oil of C. guianensis (1–3) showed hepatoprotective effects against
D-GalN/LPS-induced liver injury in mice (vide ante), the inhibitory effect of limonoids (1–17) on
D-GalN-induced cytotoxicity in primary cultured mouse hepatocytes were examined using the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. As shown in Table 2,
these limonoids (1–17) and curcumin [26,27,29] did not reduce D-GalN-induced cytotoxicity in primary
mouse hepatocytes at concentrations of up to 100 µM, whereas silybin (IC50 = 38.8 µM) significantly
inhibited cytotoxicity [33,35,36]. Thus, these limonoids (1–17) did not affect cytotoxicity caused
by D-GalN.
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Table 2. Inhibitory effects of limonoids (1–17) on D-GalN-induced cytotoxicity in mouse primary hepatocytes.

Treatment
Inhibition (%)

0 µM 3 µM 10 µM 30 µM 100 µM

Gedunin (1) 0.0 ˘ 1.8 ´8.4 ˘ 1.9 ´3.9 ˘ 0.4 ´3.2 ˘ 0.9 ´5.2 ˘0.2
6α-Acetoxygedunin (2) 0.0 ˘ 2.4 ´2.6 ˘ 1.0 ´1.9 ˘ 0.3 ´2.5 ˘ 0.7 ´1.8 ˘ 0.6
7-Deacetoxy-7-oxogedunin (3) 0.0 ˘ 2.2 ´4.6 ˘ 0.5 ´8.2 ˘ 0.9 ´8.3 ˘ 1.1 ´8.9 ˘ 0.6
7-Deacetoxy-7α-hydroxygedunin (4) 0.0 ˘ 1.6 ´2.0 ˘ 1.4 ´6.3 ˘ 0.5 ´8.0 ˘ 0.4 ´4.1 ˘ 0.7
Andirolide H (5) 0.0 ˘ 2.5 ´6.2 ˘ 2.6 ´9.0 ˘ 0.5 ´9.2 ˘ 0.8 ´0.6 ˘ 0.8
6α-Hydroxygedunin (6) 0.0 ˘ 2.0 ´7.2 ˘ 2.4 ´9.4 ˘ 0.8 ´0.1 ˘ 0.7 ´2.8 ˘ 0.5
Methyl angolensate (7) 0.0 ˘ 2.2 ´2.1 ˘ 1.2 ´7.5 ˘ 0.9 ´6.3 ˘ 0.7 ´6.6 ˘ 1.0
Epoxyazadiradione (8) 0.0 ˘ 2.1 ´3.1 ˘ 8.9 ´2.2 ˘ 2.5 ´10.8 ˘ 0.6 ´11.9 ˘ 0.3
17β-Hydroxyazadiradione (9) 0.0 ˘ 2.0 15.3 ˘ 2.3 ´4.1 ˘ 1.2 ´7.5 ˘ 1.4 ´7.5 ˘ 4.0
Carapanolide C (10) 0.0 ˘ 1.4 8.0 ˘ 4.3 3.4 ˘ 4.2 6.7 ˘ 2.1 ´7.7 ˘ 4.4
Carapanolide R (11) 0.0 ˘ 2.1 21.5 ˘ 2.8 ** 27.8 ˘ 5.0 ** 46.0 ˘ 4.7 ** 36.0 ˘ 3.2 **
Carapanolide S (12) 0.0 ˘ 2.1 ´7.8 ˘ 3.2 ´3.8 ˘ 4.1 ´3.7 ˘ 3.1 ´7.1 ˘ 3.2
Carapanolide M (13) 0.0 ˘ 1.6 ´7.0 ˘ 0.5 ´7.3 ˘ 0.7 1.0 ˘ 0.4 ´9.9 ˘ 1.0
Carapanolide Q (14) 0.0 ˘ 1.6 2.7 ˘ 1.9 ´3.5 ˘ 2.9 ´2.5 ˘ 2.1 ´6.2 ˘ 1.7
Carapanolide O (15) 0.0 ˘ 1.9 7.5 ˘ 3.9 ´5.3 ˘ 5.6 ´5.2 ˘ 3.9 ´2.1 ˘ 1.7
Guianolide A (16) 0.0 ˘ 3.7 9.2 ˘ 4.2 11.0 ˘ 5.3 9.8 ˘ 2.8 23.5 ˘ 3.5 **
Carapanolide A (17) 0.0 ˘ 2.0 ´6.8 ˘ 1.2 ´8.3 ˘ 0.7 ´4.5 ˘ 0.6 ´7.0 ˘ 0.6
Curcumin [26,27,29] 0.0 ˘ 3.7 0.1 ˘ 3.8 1.1 ˘ 2.2 ´17.7 ˘ 1.3 ´44.3 ˘ 0.3
Silybin [33,35,36] 0.0 ˘ 0.3 4.8 ˘ 1.1 7.7 ˘ 0.7 45.2 ˘ 8.8 ** 77.0 ˘ 5.5 **

Each value represents the mean ˘ S.E.M. (n = 4); asterisks denote significant differences from the control group,
** p < 0.01.; commercial silybin was purchased from Funakoshi Co., Ltd. (Tokyo, Japan).

2.4. Effects on LPS-induced NO Production in Mouse Peritoneal Macrophages

The effects of limonoids (1–17) on NO production were examined to provide an estimation of
macrophage activation levels in LPS-treated mouse peritoneal macrophages. As shown in Table 3,
gedunin-type, gedunin (1, IC50 = 4.6 µM) [17], 6α-acetoxygedunin (2, 7.9 µM) [17], 7-deacetoxy-
7-oxogedunin (3, 12.8 µM) [17], 7-deacetoxy-7α-hydroxygedunin (4, 8.7 µM) [17], andirolide H (5, 9.4 µM),
6α-hydroxygedunin (6, 19.1µM) [17], epoxyazadiradione (8, 8.2µM), 17β-hydroxyazadiradione (9, 20.3 µM),
mexicanolide-type, carapanolides R (11, 68.3 µM) and S (12, 15.5 µM), phragmalin-type limonoids,
carapanolides M (13, 41.6 µM), Q (14, 38.0 µM), and O (15, 46.0 µM), and guianolide A (16, 77.9 µM)
significantly inhibited NO production without notable cytotoxic effects at the effective concentration.
The NO production inhibitory activities of gedunin-type limonoids (1–6, 8, and 9, IC50 = 4.6–20.3 µM)
were higher than those of other skeletal-type limonoids such as andirobin-type (7, > 100 µM),
mexicanolide or 9,10-seco-mexicanolide-type (10–12 and 17, 15.5 – >100 µM), and phragmalin-type
limonoids (13–16, 38.0–77.9 µM). The potencies of 1–6, 8, and 12 were higher than that of the NO
synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA, IC50 = 36.0 µM) and equivalent to that of
caffeic acid phenethyl ester (CAPE, 11.0 µM), an inhibitor of nuclear factor-κB activation.

The structural requirements of gedunin-type limonoids were assessed: (i) 6α-acetoxy and
6α-hydroxy moieties reduced the activity [gedunin (1) > 6α-acetoxygedunin (2), 6α-hydroxygedunin
(6)]; (ii) compounds with 7α-acetoxy group exhibited higher activity than those with 7α-hydroxy
or 7-keto groups [1 > 7-deacetoxy-7-oxogedunin (3), 7-deacetoxygedunin (4)]; (iii) compounds with
an α,β-epoxy-δ-lactone moiety in the D-ring exhibited higher activity than those with an α,β-epoxy or
α,β-unsaturated cyclopropane moieties [1 > epoxyanadiradione (8), 17β-hydroxyazadiradione (9)].
For mexicanolide- and phragmalin-type limonoids, the following relationships were suggested: the
30-O-acyl moieties were essential for the activity [carapanolide C (10) ! carapanolides R (11), S (12),
M (13), Q (14), and O (15)], whereas a 6-acetoxy moiety did not affect the activity [13 » 15], while
an 11α-hydroxy moiety reduced the activity [14 > 15].
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Table 3. Inhibitory effects of limonoids (1–17) on LPS-activated NO production in mouse
peritoneal macrophages.

Treatment
Inhibition (%) IC50

0 µM 3 µM 10 µM 30 µM 100 µM (µM)

Gedunin (1) [17] 0.0 ˘ 5.6
(100.0 ˘ 4.1)

25.1 ˘ 2.5 **
(102.2 ˘ 5.3)

84.5 ˘ 2.3 **
(119.5 ˘ 5.3)

101.8 ˘ 0.6 **
(94.8 ˘ 1.4)

100.9 ˘ 0.4 **
(3.0 ˘ 0.4 #) 4.6

6α-Acetoxygedunin (2) [17] 0.0 ˘ 1.5
(100.0 ˘ 1.6)

16.9 ˘ 1.7 **
(96.8 ˘ 1.2)

67.6 ˘ 4.6 **
(102.3 ˘ 2.2)

88.4 ˘ 3.5 **
(92.5 ˘ 1.7)

99.6 ˘ 0.2 **
(53.6 ˘ 5.1 #) 7.9

7-Deacetoxy-7-oxogedunin (3) [17] 0.0 ˘ 6.5
(100.0 ˘ 5.1)

7.4 ˘ 5.2
(100.3 ˘ 3.9)

40.9 ˘ 4.7 **
(98.9 ˘ 3.2)

94.0 ˘ 0.8 **
(98.8 ˘ 7.4)

88.1 ˘ 2.1 **
(83.7 ˘ 1.2) 12.8

7-Deacetoxy-7α-hydroxy-gedunin
(4) [17]

0.0 ˘ 2.4
(100.0 ˘ 4.4)

15.7 ˘ 4.6 **
(110.3 ˘ 5.9)

55.7 ˘ 4.0 **
(106.6 ˘ 3.1)

98.8 ˘ 0.4 **
(96.3 ˘ 4.6)

100.2 ˘ 0.2 **
(2.6 ˘ 0.5 #) 8.7

Andirolide H (5) 0.0 ˘ 5.6
(100.0 ˘ 1.8)

5.8 ˘ 6.1
(99.8 ˘ 4.5)

63.9 ˘ 3.0 **
(103.9 ˘ 6.9)

97.2 ˘ 0.9 **
(108.9 ˘ 2.4)

99.7 ˘ 0.5 **
(4.9 ˘ 0.5 #) 9.4

6α-Hydroxygedunin (6) [17] 0.0 ˘ 6.2
(100.0 ˘ 4.5)

7.7 ˘ 7.1
(88.4 ˘ 3.0)

20.7 ˘ 4.3 **
(87.6 ˘ 4.0)

64.0 ˘ 3.1 **
(90.4 ˘ 2.6)

97.3 ˘ 0.3 **
(82.2 ˘ 4.2) 19.1

Methyl angolensate (7) [17] 0.0 ˘ 5.9
(100.0 ˘ 2.4)

10.1 ˘ 4.2
(108.8 ˘ 11.0)

20.0 ˘ 8.1
(108.8 ˘ 5.5)

42.2 ˘ 3.5 **
(111.0 ˘ 4.5)

24.0 ˘ 4.2 *
(78.1 ˘ 5.3 #) > 100

Epoxyazadiradione (8) 0.0 ˘ 0.8
(100.0 ˘ 4.1)

10.5 ˘ 0.9 *
(99.6 ˘ 2.9)

56.0 ˘ 4.0 **
(94.8 ˘ 2.3)

102.6 ˘4.0 **
(81.9 ˘ 2.7)

112.3 ˘ 0.7 **
(10.0 ˘ 0.5 #) 8.2

17β-Hydroxyazadiradione (9) 0.0 ˘ 4.9
(100.0 ˘ 1.8)

´10.4 ˘ 6.8
(95.4 ˘ 5.2)

9.4 ˘ 7.1
(94.4 ˘ 1.4)

65.1 ˘ 4.5 **
(94.8 ˘ 4.9)

97.4 ˘ 0.7 **
(84.8 ˘ 3.6) 20.3

Carapanolide C (10) 0.0 ˘ 2.6
(100.0 ˘ 3.4)

4.2 ˘ 8.8
(96.0 ˘ 4.1)

20.8 ˘ 5.0 **
(98.9 ˘ 3.4)

20.2 ˘ 4.9
(91.8 ˘ 2.8)

13.2 ˘ 1.9
(80.0 ˘ 4.4) >100

Carapanolide R (11) 0.0 ˘ 1.3
(100.0 ˘ 1.0)

4.0 ˘ 2.2
(95.1 ˘ 1.8)

8.9 ˘ 2.3
(98.0 ˘ 1.7)

17.4 ˘ 1.3
(106.0 ˘ 1.9)

75.6 ˘ 1.2 **
(118.4 ˘ 1.0) 68.3

Carapanolide S (12) 0.0 ˘ 2.8
(100.0 ˘ 0.7)

2.5 ˘ 1.2
(97.9 ˘ 2.7)

15.9 ˘ 1.3 **
(93.8 ˘ 2.0)

72.2 ˘ 3.6 **
(96.8 ˘ 4.4)

99.8 ˘ 0.4 **
(73.7 ˘ 3.8 #) 15.5

Carapanolide M (13) 0.0 ˘ 2.2
(100.0 ˘ 2.3)

´1.1 ˘ 2.7
(99.2 ˘ 0.6)

3.2 ˘ 2.8
(95.1 ˘ 1.3)

30.3 ˘ 3.1 **
(94.2 ˘ 2.9)

85.1 ˘ 1.5 **
(111.9 ˘ 1.6) 41.6

Carapanolide Q (14) 0.0 ˘ 2.4
(100.0 ˘ 2.8)

1.9 ˘ 0.7
(99.8 ˘ 1.6)

14.4 ˘ 2.2
(96.3 ˘ 1.6)

44.3 ˘ 1.1 **
(95.5 ˘ 4.1)

75.3 ˘ 3.5 **
(115.5 ˘ 2.2) 38.0

Carapanolide O (15) 0.0 ˘ 2.5
(100.0 ˘ 4.6)

´2.5 ˘ 5.4
(104.1 ˘ 2.5)

14.7 ˘ 8.2
(107.9 ˘ 2.7)

6.9 ˘ 5.0
(106.7 ˘ 2.5)

102.5 ˘ 3.2 **
(108.7 ˘ 5.2) 46.0

Guianolide A (16) 0.0 ˘ 1.8
(100.9 ˘ 0.9)

1.9 ˘ 3.2
(96.9 ˘ 1.8)

3.2 ˘ 1.4
(101.5 ˘ 1.9)

12.7 ˘ 1.6
(98.7 ˘ 1.8)

71.3 ˘ 3.2 **
(106.2 ˘ 1.6) 77.9

Carapanolide A (17) 0.0 ˘ 1.5
(100.0 ˘ 1.8)

´0.6 ˘ 2.1
(103.0 ˘ 2.6)

1.2 ˘ 2.0
(103.9 ˘ 4.3)

41.1 ˘ 1.0 **
(109.5 ˘ 4.3)

4.9 ˘ 1.8
(91.3 ˘ 1.6) > 100

L-NMMA [33,36] 0.0 ˘ 3.1
(100.0 ˘ 0.9)

1.4 ˘ 2.8
(101.1 ˘ 5.7)

19.9 ˘ 2.8 **
(100.7 ˘ 6.2)

43.0 ˘ 2.1 **
(102.6 ˘ 4.2)

70.9 ˘ 1.6 **
(106.4 ˘ 4.6) 36.0

CAPE [33,36] 0.0 ˘ 2.1
(100.0 ˘ 1.5)

5.9 ˘ 5.2
(95.4 ˘ 0.7)

44.4 ˘ 3.2 **
(70.0 ˘ 4.0 #)

86.2 ˘ 1.1 **
(71.4 ˘ 6.0 #)

99.6 ˘ 0.1 **
(53.0 ˘ 1.4 #) 11.0

Each value represents the mean ˘ S.E.M. (n = 4); asterisks denote significant differences from the control group,
* p < 0.05, ** p < 0.01; # cytotoxic effects were observed, and values in parentheses indicate cell viability (%) in
MTT assay; commercial silybin was purchased from Funakoshi Co., Ltd. (Tokyo, Japan), whereas L-NMMA
and CAPE were from Sigma-Aldrich Chemical Co., LLC. (St. Louis, MO, USA).

2.5. Effects on TNF-α-induced Cytotoxicity in L929 Cells

The effects of the limonoids (1–17) on the sensitivity of hepatocytes to TNF-α were assessed by
measuring TNF-α-induced decreases in the viability of L929 cells, a TNF-α-sensitive cell line [56], by
using the MTT assay. In the absence of a test sample, the cells incubated with 1 ng/mL TNF-α for 44 h
were compared with those not incubated with TNF-α. As shown in Table 4, 7-deacetoxy-7-oxogedunin
(3, IC50 = 7.3 µM), epoxyazadiradione (8, 10.2 µM), 17β-hydroxyazadiradione (9, 6.9 µM), and
carapanolides C (10, 27.0 µM) and A (17, 25.3 µM) inhibited the decrease in cell viability with
greater efficacy than silybin (IC50 = 37.2 µM) [36]. The structural requirements of gedunin-type
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limonoids for the activity were as follows; (i) compounds with a 7-keto group exhibited higher activity
than those with 7α-acetoxy or 7α-hydroxy groups [7-deacetoxy-7-oxogedunin (3) > gedunin (1),
7-deacetoxygedunin (4)]; compounds with an α,β-epoxy or α,β-unsaturated cyclopropane moiety in
the D-ring exhibited higher activity than those with an α,β-epoxy-δ-lactone moiety [epoxyazadiradione
(8), 17β-hydroxyazadiradione (9) > 1]. These structural requirements showed opposite tendencies to
those related to NO production inhibitory activity, which is mentioned above.

Table 4. Inhibitory effects of limonoids (1–17) on TNF-α-induced cytotoxicity in L929 cells.

Treatment
Inhibition (%)

0 µM 1 µM 3 µM 10 µM 30 µM

Gedunin (1) 0.0 ˘ 2.1 4.5 ˘ 1.9 21.8 ˘ 3.7 ** 38.1 ˘ 3.8 ** 36.5 ˘ 4.1 **
6α-Acetoxygedunin (2) 0.0 ˘ 1.6 10.9 ˘ 1.0 ** 23.2 ˘ 1.8 ** 36.3 ˘ 2.1 ** 37.3 ˘ 1.4 **
7-Deacetoxy-7-oxogedunin (3) 0.0 ˘ 1.1 5.8 ˘ 1.5 26.7 ˘ 4.5 ** 58.6 ˘ 7.2 ** 68.7 ˘ 4.8 **
7-Deacetoxy-7α-hydroxygedunin (4) 0.0 ˘ 0.3 ´6.5 ˘ 2.4 2.7 ˘ 2.3 36.5 ˘ 1.8 **
Andirolide H (5) 0.0 ˘ 0.8 ´6.6 ˘ 3.6 ´0.7 ˘ 1.2 7.6 ˘ 1.1 39.2 ˘ 1.7 **
6α-Hydroxygedunin (6) 0.0 ˘ 1.3 8.1 ˘ 1.9 6.7 ˘ 1.5 12.1 ˘ 3.0 28.3 ˘ 1.7 **
Methyl angolensate (7) 0.0 ˘ 1.4 ´0.5 ˘ 3.5 0.6 ˘ 2.9 13.3 ˘ 2.6 * 24.6 ˘ 2.9 **
Epoxyazadiradione (8) 0.0 ˘ 5.3 13.7 ˘ 3.9 39.1 ˘ 6.5 ** 91.5 ˘ 11.4 **
17β-Hydroxyazadiradione (9) 0.0 ˘ 1.5 14.1 ˘ 3.4 23.9 ˘ 3.9 ** 64.0 ˘ 3.3 ** 91.3 ˘ 8.2 **
Carapanolide C (10) 0.0 ˘ 3.7 4.9 ˘ 2.1 14.2 ˘ 3.2 27.7 ˘ 4.3 ** 54.5 ˘ 5.5 **
Carapanolide R (11) 0.0 ˘ 4.1 ´6.3 ˘ 4.7 ´1.3 ˘ 3.8 31.7 ˘ 3.8 **
Carapanolide S (12) 0.0 ˘ 1.5 ´5.5 ˘ 2.2 ´1.4 ˘ 1.5 ´2.5 ˘ 1.2
Carapanolide M (13) 0.0 ˘ 6.5 ´1.5 ˘ 7.1 7.0 ˘ 4.4 ´5.1 ˘ 6.2
Carapanolide Q (14) 0.0 ˘ 5.5 8.6 ˘ 4.4 1.3 ˘ 4.2 9.2 ˘ 2.5
Carapanolide O (15) 0.0 ˘ 6.5 6.3 ˘ 4.3 1.0 ˘ 6.4 1.5 ˘ 4.1
Guianolide A (16) 0.0 ˘ 2.9 ´6.2 ˘ 5.2 ´4.5 ˘ 1.9 ´7.3 ˘ 3.0
Carapanolide A (17) 0.0 ˘ 3.7 8.8 ˘ 6.5 21.5 ˘ 5.5 ** 58.2 ˘ 4.7 **

Treatment
Inhibition (%)

0 µM 3 µM 10 µM 30 µM 100 µM

Silybin [36] 0.0 ˘ 2.6 5.3 ˘ 2.8 22.0 ˘ 3.8 ** 48.0 ˘ 4.1 ** 50.8 ˘ 3.9 **

Each value represents the mean ˘ S.E.M. (n = 4); asterisks denote significant differences from the control group,
* p < 0.05, ** p < 0.01.; commercial silybin was purchased from Funakoshi Co., Ltd. (Tokyo, Japan).

3. Materials and Methods

3.1. General Experimental Procedures

The following instructions were used to obtain spectroscopic data: melting points, Yanagimoto
micromelting point apparatus (Yanaco New Science Inc., Kyoto, Japan); optical rotations, JASCO
DIP-1000 digital polarimeter (JASCO Co., Tokyo, Japan); IR spectra, PerkineElmer 1720X FTIR
spectrophotometer (PerkineElmer Inc., Waltham, MA, USA); UV spectra, HITACHI U-2000
spectrometer (Hitachi High-Technologies Co., Tokyo, Japan) (acetonitrile as a solvent); 1H and 13C
NMR spectra, Agilent VNMRS 600 spectrometer (Agilent Technologies Inc., Santa Clara, CA, USA)
(CDCl3 was used as the solvent and TMS as the internal standard); FABMS, JEOL JMS-7000 mass
spectrometer (JEOL Ltd., Tokyo, Japan); CD spectra, JASCO J-820 spectrometer (JASCO Co.); and
HPLC, JASCO PU-1586 (RI 1531) (JASCO Co.). The following experimental conditions were used for
column chromatography: (silica gel, 70–230 mesh; Merck, Darmstadt, Germany); medium-pressure
liquid chromatography (MPLC; silica gel, 230–400 mesh; Merck); and TLC (silica gel 60 F254; Merck).

3.2. Material

The flower and seed oils of C. guianensis Aublet (Meliaceae), were collected in Amazon, Brazil in
March of 2006, 2011, and 2013. Voucher specimens (CG-01-1, CGS-01-1, and CGS-01-2) were deposited
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at the Herbarium of the Laboratory of Medicinal Chemistry at Osaka University of Pharmaceutical
Sciences as described previously [14–23].

3.3. Isolation of Compounds 1–3 from the Seed Oil of C. Guianensis

Preliminary silica gel column chromatography was performed to separate the seed oil (2.03 kg,
CGS-01-2) of C. guianensis into eight fractions (Fractions A–H) [22]. Fraction C (29.3 g) was
rechromatographed on a silica gel (70–230 mesh, 1.0 kg) column using n-hexane–EtOAc (5:1) to
yield residues C3 (1.66 g) and C4 (1.02 g). Residue C3 (1.66 g) was rechromatographed on a silica
gel (230–400 mesh, 100 g) column using n-hexane–EtOAc (3:1) to give a crystalline solid (590 mg),
which was purified by HPLC [ODS, MeOH–H2O (70:30)] to afford compounds 1 (325 mg) and 2
(178 mg). Residue C4 (1.02 g) was rechromatographed on a silica gel (230–400 mesh, 50 g) column
using n-hexane–EtOAc (3:1) to give a crystalline solid, which was recrystallized from MeOH to give
compound 3 (510 mg). These isolates (1–3) were unambiguously identified by comparison of their
physical and spectral data with those of authentic samples [14,15].

3.4. Reagents

LPS from Salmonella enteritidis, minimum essential medium (MEM), and William’s E medium
were purchased from Sigma-Aldrich Chemical (St. Louis, MO, USA); fetal bovine serum (FBS) was
from Life Technologies (Rockville, MD, USA); and other chemicals were from Wako Pure Chemical
Industries, Co., Ltd. (Osaka, Japan). Microplates (96-well) were purchased from Sumitomo Bakelite
Co., Ltd. (Tokyo, Japan).

3.5. Animals

Male ddY mice (Kiwa Laboratory Animal Co., Ltd., Wakayama, Japan) were housed at a constant
temperature of 23 ˘ 2˝C and were fed a standard laboratory chow (MF, Oriental Yeast Co., Ltd., Tokyo,
Japan). The animals were fasted for 24 h prior to the beginning of the experiment but were allowed
free access to tap water. All experiments were performed with conscious mice unless otherwise noted.
The experimental protocol was approved by the Experimental Animal Research Committee of Kindai
University (KAPR-26-001, 1 April 2014).

3.6. Effects on D-GalN/LPS-induced Liver Injury in Mice

The method described by Tiegs et al. [57] was modified and used for this study [33,35,36].
Curcumin [36] and silybin were used as reference compounds.

3.7. Effects on Cytotoxicity Induced by D-GalN in Primary Cultured Mouse Hepatocytes

Assay for the D-GalN-induced cytotoxicity in primary cultured mouse hepatocytes was
performed as described previously [33,35,36]. Curcumin [26,27,29] and silybin [33,35,36] were used as
reference compounds.

3.8. Effects on Production of NO in LPS-induced Mouse Peritoneal Macrophages

Assay for NO production in TGC-induced mouse peritoneal macrophages was performed as
described previously [33,35,36]. NG-Monomethyl-L-arginine (L-NMMA) and caffeic acid phenethyl
ester (CAPE) were used as reference compounds [33,36].

3.9. Effects on Cytotoxicity Induced by TNF-α in L929 Cells

Assay for the TNF-α-induced cytotoxicity in L929 cells was performed as described
previously [33,35,36]. Silybin was used as a reference compound [36].
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3.10. Statistics

All data are expressed as means ˘ S.E.M. The data analysis was performed with an one-way
analysis of variance (ANOVA), followed by Dunnett’s test. Probability (p) values less than 0.05 were
considered significant.

4. Conclusions

Three gedunin-type limonoids obtained from the flower oil of C. guianensis, gedunin (1),
6α-acetoxygedunin (2), and 7-deacetoxy-7-oxogedunin (3), showed protective effects against liver
injury induced by D-GalN/LPS in mice at a dose of 25 mg/kg, p.o. The mechanisms of action are likely
dependent on inhibition of LPS-induced macrophage activation and reduced sensitivity of hepatocytes
to TNF-α; however, these compounds did not decrease the cytotoxicity caused by D-GalN. LPS-induced
NO production is accompanied with production of several cytokines, such as TNF-α, IL-1, and IL-6,
from macrophages through the toll-like receptor 4 (TLR4)-mediated pathways [58,59]. Recently, it was
reported that 1 suppressed the activation of macrophages through binding to myeloid differentiation
protein 2 (MD-2), and not by affecting TLR4-mediated signaling. Their data supports our results of
inhibitory effects of 1 on NO production in LPS-activated macrophages [60]. In addition, the structural
requirements of limonoids (1–17) with regard to inhibition of LPS-induced NO production in mouse
peritoneal macrophages and TNF-α-induced cytotoxicity in L929 cells were found to show different
tendencies as mentioned above. The detailed mechanisms of action for the hepatoprotective effects of
limonoids need to be studied further.
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