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Introduction
Non-small-cell lung cancer (NSCLC) affects over 200 000 
Americans per year and it constitutes 85% of lung cancer.1 
Physicians consider the best medical treatment options to 
improve quality of life and prolong survival in patients with 
NSCLC. The best treatment option for early-stage NSCLC is 
currently curative surgery. However, it has been proven that 
30% to 55% of stage I-IINSCLC patients who underwent 
complete surgical resection eventually relapse2-4; thus, such 
patients with poor prognosis would benefit of adjuvant cispl-
atin-based chemotherapy (ACT).5,6

Recently, clinical investigations have revealed a survival 
benefit of 4% to 15% for individuals with resected stages IB to 
IIIA when ACT is used.7 Furthermore, current practice is to 
treat all Stage II patients with ACT, but it is unclear whether 
all of these individuals will benefit from the chemotherapy due 
to the inherent toxicity of chemotherapy. Doctors must assign 

patients with ACT carefully such that chances of success are 
high enough to justify the risk of relapse and metastatic 
potential.

Advancements in biotechnology in recent years have 
increased the availability of high-dimensional genomic data for 
biomedical decision making. For such data to be informative 
for patient care, it must be transformed from simply a mass of 
raw data on each patient to a higher level of relevant knowl-
edge. Statistical machine learning algorithms have been used to 
develop computational algorithms that can process such high-
dimensional data to predict survival of patients through model 
validation methods.8-10 The primary goal of these algorithms is 
to assign viable chemotherapies to the right patients, consider-
ing both maximizing efficacy for the intended beneficial effect 
and minimizing the risk of adverse effects.

Machine learning has been extensively utilized in various 
biomedical studies to improve prediction accuracy and uncover 
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novel insights. For instance, Le et al11 illustrated the applica-
tion of machine learning algorithms in predicting patient out-
comes in oncology, while Le and Ou12 highlighted the use of 
machine learning techniques for the classification of complex 
disease phenotypes. Additionally, Solheim et al13 explored the 
use of deep learning for medical image analysis, and Moura 
et al14 discussed the integration of machine learning models in 
electronic health record data for disease prediction, further 
underscore the widespread adoption and impact of these meth-
odologies in biomedical research.

Various machine learning survival models have been pro-
posed to provide treatment recommendations for NSCLC 
patients.15,16 The Cox proportional hazards model17 is a fun-
damental approach for statistical modeling of survivorship 
data. Regularized Cox regression models, the lasso Cox 
model18 and the elastic net,19 are popular regularization 
models for feature selection. Moon et al20 implemented the 
lasso Cox regression model to determine prognostic genes 
that are highly correlated with treatment-related patient sur-
vival and to identify patients whose survival rates improve 
from ACT treatment.

As a parametric Accelerated Failure-Time (AFT) model21 
can design survival times directly, AFT models perhaps pro-
vide an alternative measure of treatment effect on survival 
compared to the hazard ratio. Moon et al22 devised a statistical 
decision-making algorithm using penalized AFT models via 
elastic net in order to enhance treatment efficacy for patients 
who could benefit from ACT.

Recently, Moon et al23 applied a modified-covariate regular-
ized Cox regression model with lasso penalty to investigate 
treatment effects by implementing explicit treatment interac-
tion factors for identifying genes that were closely related to 
the treatment effect. Risk scores estimated from the model 
were used to stratify patients into a high risk or low risk group 
respective to ACT treatment.

In this project, robust ensemble-based algorithms are 
employed to improve efficacy of therapies to individualized 
patients in the treatment of NSCLC and to identify profiles of 
disease and risk sub-categories. We consider the bagging 
approach to the regularized Cox model and Random Survival 
Forest (RSF) based on survival trees to uncover treatment-
associated genomic markers.

Ensemble Machine Learning Algorithms for 
Predicting Treatment Recommendations
Data description

This paper utilized the following 2 datasets available at 
National Center for Biotechnology Information (NCBI) Gene 
Expression Omnibus (GEO) repository. The GEO database 
provides gene expression and other functional genomic data-
sets.24 The following 2 datasets, GSE14814 and GSE68465, 
were downloaded from the NCBI GEO repository, which is 
available at https://www.ncbi.nlm.nih.gov/.

The first dataset (GSE14814) was obtained from the 
JBR.10 clinical trial for demonstration of benefit from ACT 
compared to the observation (OBS) group after surgical resec-
tion in early-stage NSCLC.5 In the original study that began 
in July 1994, a total of 482 patients were randomly assigned to 
receive either surgery alone with no chemotherapy (n = 242) or 
a regimen of ACT treatment following surgery (n = 240). Out 
of these 482 patients, 445 consented to sample banking. Among 
the 445 patients, only 169 frozen tissue samples were collected. 
This actual collection was limited by several factors, including 
the availability of high-quality samples, logistical constraints, 
and specific study requirements, which dictated that only 169 
samples were suitable for freezing and subsequent gene expres-
sion profiling. Out of 169 tumor samples, only 166 contained 
>20% tumor cellularity. Using the Affymetrix U133A oligo-
nucleotide microarray platform, 133 randomly selected frozen 
JBR 10 tumor samples out of 169 were subject to gene expres-
sion profiling by Zhu et  al5 Among these 133 patients, 71 
underwent ACT, while 62 were in the OBS group.

The second dataset (GSE68465) was obtained from Director’s 
Challenge Consortium for the Molecular Classification of Lung 
Adenocarcinoma based on multi-site clinical trials conducted in 
several continents.25 This challenge was conducted to character-
ize the performance of several prognostic models based on gene 
expression for 442 lung adenocarcinomas. However, 56 patients 
were removed due to missing values. Thus, in this project, we used 
386 patients (65 OBS and 321 ACT). Overall design of this 
dataset was based on Affymetrix U133A platform as well. This 
data set was considered to be the largest publicly available micro-
array data with lung adenocarcinoma characteristics.

The data set utilized TNM staging, which was inconsistent 
with the number staging system used in the other data set con-
sidered in this project. To make it consistent, the TNM stages 
were converted to number stages using the American Joint 
Committee on Cancer’s Lung Cancer Staging.26 We note that 
the GSE68465 dataset did not include information on the M 
(Metastasis) stage, which indicates whether the cancer has 
spread to other parts of the body. Thus, pN0pT1 and pN0pT2 
were converted to stage I; pN0pT3, pN1pT1, and pN1pT2 
were converted to stage II; pN0pT4, pN1pT3, pN1pT4, 
pN2pT1, pN2pT2, pN2pT3, and pN2pT4 were converted to 
stage III. Consequently, 244 were stage I patients, 77 were 
stage II patients, and 65 were stage III patients. A different 
transformation from the one we used may affect the interpreta-
tion of results.

We employed a rigorous validation approach to ensure the 
robustness and reliability of the ensemble machine learning 
algorithms. Specifically, we utilized a random sampling tech-
nique to divide our patient samples into training and test sets. 
In order to develop predictive models for treatment recom-
mendation for NSCLC patients, we combined the above 2 
datasets. In this meta-database, we randomly select about 70% 
of patient samples (n = 364) into a training set model 
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development. The remaining 30% (n = 155) of the samples were 
allocated to the test set to assess the performance of the models 
after finalizing the models. The demographics of the learning 
set and the test set are listed in Table 1.

This approach allows us to evaluate the models’ predictive 
capabilities on the independent dataset, which helps to miti-
gate the risk of overfitting and provides a more accurate esti-
mation of the models’ generalizability to new, unseen data. By 
using a separate test set, we ensure that the models are not only 
specifically adjusted or optimized to the training data but also 
perform well on external data, reflecting their potential appli-
cability in real-world clinical settings.

Furthermore, we employed cross-validation techniques dur-
ing the training phase to fine-tune the models’ hyperparame-
ters and optimize their performance. Cross-validation involves 
partitioning the training set into multiple subsets, training the 
models on some subsets while validating them on the remain-
ing subsets. This iterative process helps in identifying the best 
model parameters and reduce the likelihood of overfitting.

Data preprocessing

Affymetrix microarrays have played a significant role in advanc-
ing our understanding of diverse biological processes and 
became an essential tool for modern genomics research. These 
microarrays are based on high-density oligonucleotide probe 
arrays and offer a comprehensive view of gene expression. It 
enables researchers to simultaneously analyze thousands of 
genes in a single experiment.

In Affymetrix microarray technology, the platforms are 
made up of microscopic dots imprinted on microscopic slides, 
and each gene is typically composed of 11 to 20 pairs of probes. 
Each probe pair is made up of a perfect match (PM) probe 
with a mismatch (MM) probe, referring to 2 types of probe 
sequences used to measure gene expression levels. The PM 
probe is designed to be complementary to a specific target 
mRNA sequence of a gene of interest. On the other hand, the 
MM probe is very similar to the PM probe, but it contains a 
single nucleotide mismatch in the 13th position.

Before being analyzed, raw microarray data must be pre-
processed. We employed Robust Multichip Analysis (RMA) 
method27,28 for preprocessing. We chose the RMA method 
over other available methods due to several key advantages. 
RMA effectively normalizes data and performs background 
correction, reducing technical variability and enhancing the 
reliability of measured gene expression levels. It includes a log2 
transformation step, which stabilizes the variance across expres-
sion values, making the data more suitable for downstream sta-
tistical analysis. Additionally, RMA uses a robust linear model 
that is less sensitive to outliers compared to other methods, 
ensuring accurate and reliable expression estimates. 
Comparative studies27,28 have shown that RMA often outper-
forms other normalization methods such as MASS and dChip 
in terms of accuracy, precision, and reproducibility, particularly 

with large datasets and varying conditions. Furthermore, RMA 
is computationally efficient, allowing for the processing of large 
datasets in a reasonable timeframe. Its wide adoption and 
extensive validation in the genomics community provide confi-
dence in its reliability and accuracy, making it a trusted and 
accepted choice in this research.

The RMA involves 3 steps: probe intensity background cor-
rection, quantile normalization, and robust probe summariza-
tion. This method plays a pivotal role in ensuring the robustness 
and compatibility of microarray data, facilitating meaningful 
biological discoveries.

Background correction in the RMA method is a crucial step 
for reducing the impact of local artifacts and other noise from 
the raw intensity values for each probe on the microarray chip. 
It uses only the PM probe intensities. This procedure aids in 
the removal of spatial heterogeneity and the background noise, 
which can arise from non-specific binding, imperfection in the 
chip, or other technical factors.

Background correction is done by a normal-exponential 
background correction model.29 This model operates at the 
probe level. For each probe on the microarray, it aims to esti-
mate and correct the background noise. This model assumes 
that the background-subtracted observed PM intensity value 
X  for each probe results from a mixture of 2 distributions: an 
exponential distribution with mean λ  representing the true 
signal S  (gene expression) and a normal distribution with mean 
µ  and variance � �  representing the background noise e. Thus, 
for the i  th sample, j  th probe pair, and k  th gene, the model 
can be expressed as

X S eijk ijk ijk� �

The parameters µ , � �  and λ  are assumed different for each 
channel on each array. By assuming the signal and the noise are 
independent, the maximum likelihood estimation (MLE) 

Table 1.  Demographics of combined datasets (GSE14814 and 
GSE68465).

Learning set
(n = 364)

Testing set
(n = 155)

Treatment received  

 ACT 96 40

 OBS 268 115

Age  

 Less than 65 173 90

 Older than or equal to 65 191 65

Stage of disease  

 I 219 98

 II 101 36

 III 44 21
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problem is set up based on the joint density of the signal and 
the noise. By minimizing the least mean squared error, the esti-
mate of the signal given the observed intensities is the condi-
tional expectation such that

E S X PMijk ijk X S

X S

X S
� �� � � �

�

�
��

�

�
��

�
�

�
��

�

�
��

� �

�
�

�
�

�

,

,

,
,�

�

�
� �

where � �X S ijkPM, � � ��� � , φ(.)  and Φ(.)  are the normal 
density and distribution functions, respectively.

After applying the Normal-Exponential background cor-
rection model, we have a set of corrected intensity values for 
each probe, where the background noise has been effectively 
removed. These corrected values can then be further processed 
through quantile normalization and summarization steps as 
part of the RNA method to obtain a single expression value for 
each gene.

Quantile normalization ensures that the expression profiles of 
genes are consistent across different microarray chips, allowing 
for meaningful comparisons and reducing the impact of techni-
cal variations. To perform quantile normalization, the algorithm 
aligns the distribution of intensities from different chips. It can 
be achieved by matching the empirical distribution of intensities, 
making sure that each chip’s distribution looks similar.

The algorithm sorts the probe intensity values for each chip 
and ranks them in ascending order, creating a ranked list of 
values of each chip. A reference distribution is created by taking 
the median of the ranked values from all the chips. This refer-
ence distribution represents a common distribution that all 
chips will be adjusted to match. Each chip’s ranked values are 
then “normalized” to match the reference distribution. This 
adjustment involves replacing each value with the correspond-
ing value from the reference distribution at the same rank. 
After quantile normalization, we have a set of normalized 
intensity values for each chip, making them directly compara-
ble. Finally, these normalized values are used for gene-level 
summarization.

The gene-level summarization step involves combining 
probe-level data for a specific gene into a single summarized 
value. This is typically achieved by taking the median intensity 
of the probe sets, targeting a particular gene. The aim is to 
reduce noise and variability, providing a representative expres-
sion value for each gene across multiple probes on the 
microarray.

In this step, the probe sets are summarized using the median 
polish method.30 It is based on the additive linear model such that

Yijk ik jk ik� � �� �  ,

where µik  is a log scale expression level for microarray i  for 
gene k , α jk  is a probe affinity effect for probe pair j  and gene 
k , and ik  are independent identically distributed error terms. 

The estimate of µik  gives the final RMA expression measure 
for microarray i  and gene k . For each gene k , summarization 
parameters are estimated by

Yij i j ij� � � �� � � 

where δi  are row effects and α j  are column effects; this 
involves extracting row and column medians to estimate the 
row and column effects that correspond to the microarray and 
probe pair effects. This method accounts for the inherent noise 
and variability in the probe intensities and provides a more 
robust estimate of the gene expression levels. The RMA 
method is implemented in R via Bioconductor’s “Oligo” pack-
age. The R code for downloading and preprocessing the data-
sets is available upon request.

Survival prediction models

In the learning set referred in Table 1, there were 50 ACT 
patients and 43 OBS patients in GSE14814, while there were 
46 ACT patients and 225 OBS patients in GSE68465. For 
each observation, there were 22 283 probe sets, therefore it was 
necessary to conduct a variable screening to determine which 
probe sets might contain useful information to predict survival 
in the patients, rather than noise. The ultimate goal of imple-
menting survival prediction models is to identify the most rel-
evant potential markers, unraveling critical insights into lung 
cancer treatment responses to a chemotherapy.

Feature screening.  Feature screening is a pivotal step in predic-
tive modeling. The screening involves choosing a subset of 
treatment-related features, such as probe sets, clinical variables, 
and demographic factors. This process not only aids in reduc-
ing dimensionality but also enhances interpretability and 
model performance. For the screening, a modified univariate 
Cox proportional hazard model31 is implemented for each fea-
ture such that

� � �t Z T t Z T� , exp ,� � � � � �� �� * .

where β  indicates an association between a feature ( )Z  and 
a treatment T� � . The strength of association is measured by 
p-value.

Leave-one-out cross-validation (LOOCV) is used to meas-
ure a variable importance score for probe sets. The score is 
based on the number of times a feature is significant at the 5% 
significance level during LOOCV. For GSE14814 there are 
1874 probe sets that are significant at least once. Likewise, for 
GSE68465 there are 1946 probe sets that are significant at 
least once. However, the screened features are still larger than 
the learning sample size of 364 patients. Thus, further reduc-
tion on features is necessary to implement our bagging algo-
rithm that is an ensemble-based penalized cox regression.

The elastic net penalized Cox regression model, employed 
as a vital tool for additional probe set screening, combines the 
properties of both L1  (lasso) and L2  (ridge) regularization 
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penalties, allowing for variable selection and handling multi-
collinearity. The model formula is as follows:
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where l �� �  is the log-partial likelihood of the Cox model, ββ  
is the coefficient vector of the model, λ  is the regularization 
parameter that controls the overall strength of the penalty, and 
α  is the weighting parameter that determines the balance 
between lasso and ridge penalties, with � � �� ��� �, .

The elastic net regularization aims to minimize the negative 
log partial likelihood, incorporating a tuning parameter that 
balances the lasso and ridge penalties. We set the alpha param-
eter, which controls the balance between L1  (lasso) and L2  
penalties, to 0.5. This balanced approach can yield better pre-
dictive performance and stability, especially when dealing with 
high-dimensional data that may have correlated features. The 
optimal lambda value, which controls the strength of the pen-
alty, was determined using LOOCV. We used a sequence of 
lambda values, and the model was fit across this sequence to 
select the value that minimized the cross-validated partial like-
lihood deviance. The maximum number of iterations for con-
vergence was set to 1000 to ensure thorough convergence. 
After applying variable importance measures, we have screened 
to 138 probe sets and 6 clinical and demographic variables. 
This entire procedure is implemented in R.

In summary, feature screening for all types of features began 
with a modified Cox proportional hazard model. Leave-one-
out cross-validation (LOOCV) was used to measure a variable 
importance score for probe sets. The score was based on the 
number of times a feature was significant at the 5% significance 
level during LOOCV. This initial feature screening selected a 
total of 3820 features. Given that the learning sample size of 
364 patients is substantially smaller than the number of 
screened features, we applied the elastic net penalized Cox 
regression model for an additional probe set screening. 
Consequently, we screened down to 138 probe sets and 6 clini-
cal and demographic variables.

Ensemble learning with bagging for Cox regression.  In this 
research, we propose an approach for predictive modeling in 
the context of lung cancer treatment survival outcomes using 
an ensemble algorithm with bagging based on Cox regression. 
We draw inspiration from bagging, a powerful technique that 
involves generating multiple bootstrap samples from a dataset 
and training separate models on each sample. Likewise, in sur-
vival analysis, the Cox proportional hazards model is a widely 
used tool to predict the survival times of patients. By extending 
the bagging concept to Cox regression, we aim to construct an 
ensemble model that aggregates predictions from multiple Cox 
models, each trained on a different bootstrap sample. This 
ensemble approach endeavors to enhance the robustness and 

predictive power of survival predictions related to treatment 
options for lung cancer patients, contributing to a more accu-
rate understanding of treatment-related genomic markers and 
their implications for personalized therapeutic strategies.

Our empirical preliminary experiments demonstrated that 
using 200 models provided a good balance between model 
performance and computational efficiency. Increasing the 
number of models beyond 200 resulted in marginal improve-
ments in performance while significantly increasing the com-
putational burden. Friedman et  al32 also support the notion 
that ensembles of around 100 to 200 models are often suffi-
cient to achieve robust performance improvements.

In this paper, we construct a formidable ensemble by gener-
ating 200 Cox regression models through bootstrap sampling. 
Each model is trained on a distinct bootstrap sample to capture 
the variability in the dataset and provide diverse perspectives 
on survival predictions. After training, we aggregate the risks 
predicted by each Cox model for the respective treatment 
groups. The aggregation process enables a comprehensive 
assessment of hazard to death for each treatment group. 
Leveraging this aggregated risk information, we assign pre-
dicted treatment recommendations by comparing the hazard to 
death between the ACT group and the OBS group. ACT is 
recommended if the hazard from ACT is lower than the haz-
ard from OBS, and vice versa. This approach harnesses the col-
lective wisdom of the ensemble to enhance treatment 
decision-making and ultimately improve patient outcomes, 
aiming to guide personalized treatment strategies for lung can-
cer patients.

As an outcome measure, the concordance index (C-index)33 
is utilized to evaluate the performance of predictive survival 
models. It quantifies the concordance or agreement between 
predicted survival times and observed (actual) outcomes for 
individual patients. The C-index ranges from 0 to 1, where a 
higher value signifies better predictive accuracy. In our bagging 
ensemble algorithm, the C-index is measured among each bag, 
and the final CI is calculated by taking an average of the 
C-indices from 200 bags.

The C-index is widely used in survival analysis due to its 
ability to assess the discriminatory power of a predictive 
model by measuring the proportion of correctly ordered 
pairs of patients based on predicted survival times. This 
metric is non-parametric, making it suitable for various 
types of survival models. Furthermore, the C-index provides 
an intuitive interpretation, ranging from 0.5 (no better than 
random chance) to 1.0 (perfect prediction), similar to an 
accuracy measure.

However, we acknowledge the limitations of the C-index. It 
does not provide specific information about the magnitude of 
prediction errors or the accuracy of survival time estimates, 
only evaluating the rank ordering of predictions, which might 
be insufficient for certain clinical application where precise 
survival time estimates are required.
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The C-index is popular in survival analysis because it effec-
tively handles censored data, which is common in this field, 
and focuses on ranking predicted survival times rather than 
exact predictions. Unlike traditional metrics like accuracy and 
area under the curve (AUC), the C-index reflects the time-to-
event nature of the data. It is also versatile and standardized, 
applicable across various survival models. These characteristics 
make the C-index more suitable for survival analysis than 
accuracy or AUC, which do not naturally account for censoring 
or the temporal aspects of survival data.

In addition to these metrics, we employed robust validation 
techniques such as leave-one-out cross-validation (LOOCV) 
and bootstrap resampling. LOOCV helps mitigate the risk of 
overfitting by assessing the model’s performance on different 
subsets of the data, while bootstrap resampling provides a 
robust estimate of performance metrics by generating multiple 
samples from the original data.

Random survival forests algorithm.  Random survival forests 
(RSF)34 algorithm has emerged as a powerful and versatile 
algorithm for survival analysis, offering a non-parametric, 
data-driven approach to model survival outcomes. The RSF 
extends the concepts of Random Forests35 algorithm to the 
realm of survival analysis by utilizing an ensemble of decision 
survival trees to predict survival probabilities and estimate haz-
ard functions. Unlike traditional survival models, RSFs do not 
require strong assumptions about the underlying distribution 
of the survival data, making them particularly well-suited for 
complex and heterogeneous datasets. By aggregating predic-
tions from multiple trees and leveraging random feature selec-
tion, RSF provides a robust and accurate framework for survival 
prediction, yielding valuable insights into genomic markers. In 
this study, we incorporate RSF as a key component of our 
ensemble survival model, aiming to harness their predictive 
prowess and contribute to the advancement of survival analysis 
methodologies.

The algorithm begins by constructing multiple decision 
survival trees through bootstrapping the dataset and selecting a 
subset of features at each split. For each tree, survival times and 
event indicators are used to determine the split points and 
build the tree structure. During node splitting, RSF calculates 
the log-rank statistic to evaluate the potential splits based on 
survival differences. The procedure ensures that the tree 
branches are optimized for survival prediction. After the 
ensemble is created, predictions are made by aggregating the 
survival estimates form all trees, providing a robust model for 
survival outcomes. Additionally, RSF employs a random fea-
ture selection process to enhance the diversity of trees, contrib-
uting to improve predictive performance.

The feature selection process in RSF involves several key 
steps to identify the most important features influencing 
survival outcomes. Initially, a large number of survival trees 
are built using bootstrap samples of the training data, with 
each tree constructed using a random subset of features at 

each node to split the data. During this process, each fea-
ture’s contribution to predictive performance is assessed. The 
variable importance measure, calculated as the average 
decrease in prediction error measured by Harrell’s C-index 
when a feature is permuted, is used to quantify the signifi-
cance of each feature. Features that consistently result in 
larger decreases in prediction error are considered more 
important. This method allows for the identification of fea-
tures that have a strong association with survival prediction. 
As a result, the RSF algorithm can efficiently select a subset 
of critical features that improve the model’s accuracy and 
interpretability, facilitating better understanding and predic-
tion of survival outcomes.

Let ℎ be a terminal node of a tree in an ensemble for a given 
covariate X. The RSF estimates cumulative hazard function 
(CHF) at a terminal node via Nelson-Aalen estimator.36,37 
Likewise, the survival function at a terminal node is estimated 
by Kaplan-Meier estimator.38 The CHF, H th � � ,  and survival 
functions, S th � � ,  are estimated by
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where d j h,  and Y j h,  correspond to the number of deaths and 
individuals at risk at time t j h, .

Let H tb
IB ( )| X  and S tb

IB ( )| X  be the CHF and survival 
estimator for the bth bootstrapped survival tree, where IB 
stands for “in-bag.” The IB ensemble estimators are deter-
mined by averaging across bootstrapped survival trees as 
follows:

H t
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H t S t X
ntree

S
IB IB

b

ntree

b
b

ntree

b( ) ( ), ( )� � �X X� �
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where ntree  represents the number of bootstrapped survival 
trees. Let Oi  be the trees where case i is “out-of-bag” (OOB). 
The OOB ensemble estimators for individual i are

H t
O

H t S t
O

S t
OOB OOB

i i
i b O

b
IB

i
i b O

b
IB

i� � � �
� �
� �� �

� �
�

� �
�( ), ( ) ( ),X X

where | |Oi  represents the number of trees that OOB case i 
belongs to.

Our preliminary experiments indicated that using 1000 
trees in the RSF model resulted in stable and robust out-of-bag 
(OOB) error rates. Increasing the number of trees beyond this 
point showed diminishing returns in terms of model perfor-
mance improvement, while significantly increasing computa-
tional costs.

According to Breiman,35 using a large number of trees (e.g. 
1000) is generally sufficient to achieve stable predictions and 
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low OOB error rates. A study by Ishwaran et al34 also suggests 
that while the number of trees can be increased, 1000 trees are 
often adequate to ensure the convergence of the error rate and 
robust model performance. Further increasing the number of 
trees could be explored in future work to evaluate any potential 
incremental improvements in model performance.

In this paper, we used 1000 survival trees to ensure robust 
and stable estimates of variable importance and survival pre-
dictions. The minimum number of unique events required in a 
terminal node was set to 15, balancing the depth of the trees 
with model interpretability. The log-rank splitting rule was 
applied to maximize the difference in survival between the 
child nodes. Each tree was built using bootstrap samples of the 
training data, with the out-of-bag (OOB) samples used for 
internal validation and estimation of variable importance. At 
each split, a random subset of variables, sized p  (where p  is 
the total number of variables), was considered to introduce ran-
domness and reduce overfitting.

The RSF uses the C-index to assess the predictive accuracy 
of the model for survival outcomes. The C-index is computed 
by examining each pair of samples and evaluating if the pre-
dicted risk of death aligns with the observed survival times. 
The risk is calculated in each tree of the RSF. Then, the CHF 
is summarized by a notion of mortality as a survival outcome. 
Let t tn� ���  denote the set of event times for the learning 
data. The ensemble mortality is defined as

M X H t
IB IB

j

n

j� � �
�
�

�

( ),� X

which refers to the process of combining multiple individual 
survival tree models into an ensemble by aggregating cumula-
tive risk of mortality occurring up to a given time. This aggre-
gation process results in an improved estimate of the CHF, 
enhancing the prediction of mortality over time. The predicted 
risk for each patient is represented by the mortality value. If a 
patient has a higher ensemble mortality value with ACT, our 
model suggests opting for OBS due to the higher estimated 
risk of mortality compared to taking OBS. Conversely, if the 
mortality value with ACT is lower, our model indicates opting 
for ACT due to the lower risk of mortality with ACT.

To estimate prediction accuracy, the OOB estimators are 
typically used to calculate C-index if there is no separate test 
set. However, when using a totally separate test set for model 
evaluation, the typical approach is to use in-bag ensemble esti-
mators with the test set. In-bag estimators are more appropri-
ate as they use the predictions from the individual trees on the 
test set to compute the C-index, allowing for model evaluation 
on unseen data without introducing a bias.

Results
In summary, Figure 1 presents an overview flowchart that illus-
trates the steps of our procedure. Two datasets from NCBI 
GEO repository were downloaded in R via BioConductor 

repository of R packages. Each raw microarray dataset was pre-
processed via RMA method. Two preprocessed data were com-
bined and split into training and test data using probability 
sampling. About 70% of patients ( n���� ) were selected as a 
training set and the rest 30% ( n ���� ) were set aside for a test 
set. Using training data, we prescreened treatment-related 
probes by implementing elastic net penalized Cox regression 
model via LOOCV. In this process, the probe sets were 
screened down to 138 probe sets from 22 283 probe sets. Thus, 
the final learning dataset consisted with 144 variables (138 
probe sets and 6 clinical/demographic variables) with 364 
observations.

Using the learning dataset, 2 survival ensemble algorithms 
were implemented to predict the risk scores associated with the 
ACT treatment compared to OBS. One was a bagging survival 
ensemble algorithm consisting of 200 Cox regression models. 
The other was RSF algorithm consisting of 1000 survival trees. 
Next, the predicted treatment recommendation was provided 
according to the treatment risk. If the risk for taking ACT was 
higher, the model predicted to OBS recommendation. 
Otherwise, the model predicted ACT treatment recommenda-
tion for each patient. For a conclusion, patients were then 
divided into 2 groups: those who followed the treatment rec-
ommendation by the model and those who did not, and the 
differences in survival were compared using a log-rank test.

In the learning phase, both the RSF model and the bagging 
survival ensemble model showed similar performance. In both 
models, the log rank tests showed significantly higher survival 
times for patients who followed the predicted treatment rec-
ommendation that was either ACT or OBS ( p � .��� , See 
Figure 2).

The median C-index for the bagging ensemble Cox regres-
sion model was 0.754, and the mean C-index was 0.753 with a 
standard deviation of 0.011. The C-index for the RSF was 
0.925 that was calculated at the median survival time of 
6.5 years (See Figure 3). The number of trees in the RSF was 
determined by examining the number of trees from 100 to 
1000 trees in the learning phase. We chose 1000 trees because 
it had the smallest OOB error from the learning dataset. 
Similarly, the node size specifying the minimum number of 
observations in a terminal node was also determined in the 
learning phase by considering it from 1 to 10. In general, low-
ering the node size results in deeper trees, which indicates that 
more splits are carried out up until the terminal nodes.39 Lastly, 
the number of splits considered for each candidate variable was 
also determined in the learning phase. By examining it from 1 
to 10, ten splits were chosen.

For the separate test dataset, the overall survival for patients 
who followed the predicted treatment recommendation by the 
bagging survival ensemble Cox model was higher than the sur-
vival for patients who did not follow (See Figure 4a). However, 
the survival between 2 groups was marginally able to distinguish 
( p � .��� ). Actual survival separation between the 2 groups 
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started after approximately 1.9 years. The 5-year survival for 
patients who followed the predicted treatment recommenda-
tion was about 62.5%, while one for patients who did not was 

about 47.5%. The median survival time for patients who fol-
lowed the predicted recommendation was about 9.4 years. On 
the other hand, the median survival time for patients who did 
not follow the recommendation was about 4.5 years.

On the other hand, the patients in the test dataset who fol-
lowed the predicted treatment recommendation from the RSF 
showed significantly higher survival ( p � .���� ) compared to 
patients who did not (See Figure 4b). Actual survival separation 
between the 2 groups started after approximately 1.2 years. The 
5-year survival for patients who followed the predicted treat-
ment recommendation was about 55.0%, while one for patients 
who did not was about 37.5%. The median survival time for 
patients who followed the predicted recommendation was about 
6.3 years, while one for patients who did not was about 2.6 years.

Figure 1.  An overview flowchart illustrating the steps of our procedure.

Figure 2.  Survival difference of patients who followed our predicted 

treatment recommendation versus who did not for the learning dataset: 

(a) bagging survival ensemble model (top), (b) random survival forest 

model (bottom).

Figure 3.  The C-index for the random survival forest.
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When the RSF builds an ensemble of decision trees, variable 
importance can be obtained based on bootstrapped samples of 
the original data. At each split in each tree, a random subset of 
variables is considered for splitting. The RSF uses log-rank sta-
tistics to assess the difference in survival times between sub-
groups created by the split. Variable importance in RSF is 
calculated by comparing the OOB error rates of the ensemble 
with and without the inclusion of each variable. Variables that 
lead to substantial increases in OOB error when removed are 
considered more important. The importance scores are often 
transformed into Z-scores. Variables with higher importance 
scores are more influential and have a stronger impact in predict-
ing survival times. It is essential to consider the direction of the 
relationship between the variable and survival time. A positive 
importance score indicates that an increase in the variable value 
is associated with longer survival times. Comparing variable 
importance scores can help identify which genomic markers 
have a greater impact on survival. This gives guidance to prior-
itize which markers to focus on assigning patients treatment.

In our study, the top 20 features selected from the RSF 
model using the variable importance measure are presented in 
Table 2. These features include both clinical variables such as 
cancer stage and patient age, and specific genes that may play 
crucial roles in lung cancer prognosis.

For example, Eukaryotic translation initiation factor 4A3 
(EIF4A3) is involved in the initiation of translation, a critical 
process for protein synthesis. Its role in cancer could be linked 
to its involvement in cellular growth and proliferation. 
Kynureninase (KYNU) is an enzyme in the tryptophan 

catabolism pathway, which has been implicated in immune 
response and cancer biology. Methyltransferase like 9 
(METTL9) is involved in the methylation of proteins, which 
is a key post-translational modification that can affect gene 
expression and protein function. Ras homolog gene family 
member F (RHOF) is associated with the formation of filopo-
dia, which are actin-rich structures involved in cell migration 
and invasion, processes that are critical in cancer metastasis. 
Tumor necrosis factor alpha-induced protein 8 (TNFAIP8) 
has been linked to apoptosis and immune regulation, processes 
that are often dysregulated in cancer. Adenylate cyclase 3 
(ADCY3) is involved in cyclic AMP (cAMP) signaling, which 
can influence cell proliferation and survival. Transforming 
growth factor beta 2 (TGFB2) is a cytokine that plays a signifi-
cant role in cell growth, differentiation, and immune regula-
tion, and is known to be involved in cancer progression.

In future studies, gene enrichment analyses, including Gene 
Ontology (GO) enrichment analysis, pathway analysis, or pro-
tein-protein interaction network analysis, could be considered 
to further understand the biological significance of these genes. 
These procedures can help identify whether the selected genes 
are overrepresented in certain biological pathways or functional 
categories, providing insights into the underlying biological 
processes associated with lung cancer prognosis.

Discussion
The utilization of ensemble machine learning algorithms, spe-
cifically the ensemble bagging algorithm with penalized Cox 
regression and Radom Survival Forests (RSF), has proven to be 
a powerful approach in predicting treatment recommendations 
for lung cancer patients in the realm of personalized medicine. 
The primary goal of this research is to predict treatment rec-
ommendations for lung cancer patients after surgical resection 
by integrating various ensemble machine learning algorithms. 
These algorithms can help to optimally assign individualized 
patient treatment to maximize efficacy for chemotherapy after 
surgical resection.

The significance of this project lies in its contribution toward 
personalized medicine by developing more effective therapies 
that can replace one-size-fits-all drugs with individualized treat-
ments accounting for specific patient needs for chemotherapy. 
For this project, we compiled 2 genomic datasets (GSE14814 
and GSE68465) from the NCBI. The analysis of these datasets 
provided a robust foundation for our models, supporting com-
plex clinical decision-making for cancer treatment after surgery 
by addressing population heterogeneity.

This research contributes substantially to the advancement 
of cancer treatments by aiming to improve treatment efficacy 
and reduce toxicity risks in a targeted group of patients, thereby 
providing better support for the complexity of clinical deci-
sion-making. By implementing a bagging ensemble algorithm 
with regularized Cox regression and the RSF, risk scores were 
estimated to subgroup patients into adjuvant chemotherapy 

Figure 4.  Survival difference of patients who followed our predicted 

treatment recommendation versus who did not for the test dataset: (a) 

bagging survival ensemble model (top), (b) random survival forest model 

(bottom).
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(ACT) or observation only (OBS) treatment groups. Patients 
who followed their predicted treatment recommendation sur-
vived significantly longer than those who did not follow the 
recommendation in the RSF model (p = .0089). The RSF 
model performed significantly better and resulted in a higher 
concordance index (0.93).

Our results reveal a significant survival benefit for patients 
who adhered to the treatment recommendations derived from 
our models. This underscores the potential of incorporating 
predictive analytics into clinical decision-making processes. 
Both models utilized in this research not only demonstrated 
efficacy in forecasting patient outcomes but also unveiled valu-
able insights into treatment-related markers, particularly iden-
tified through the RSF model.

Our models are crucial for identifying key prognostic factors 
and predicting patient outcomes, which can significantly enhance 
clinical decision-making processes. By accurately predicting sur-
vival times and identifying high-risk patients for ACT, these 
models enable personalized treatment plans designed for indi-
vidual patient profiles. This personalized approach can improve 
patient outcomes by optimizing treatment efficacy and resource 
allocation. Additionally, the models can aid in early detection of 

adverse outcomes, allowing for timely interventions that could 
potentially save lives. The integration of these predictive models 
into clinical practice provides a robust tool for clinicians, facili-
tating data driven decisions that enhance the quality of patient 
care. These models’ ability to handle high-dimensional data and 
accommodate complex interactions among variables further 
underscores their practical utility in a clinical setting, making 
them valuable assets in advancing personalized medicine and 
improving overall healthcare outcomes.

While our study demonstrates the potential of ensemble 
machine learning algorithms in predicting treatment recom-
mendations for NSCLC patients, several limitations should be 
considered to provide a comprehensive understanding of our 
research implications.

One limitation is the potential for data biases. Our models 
were developed using specific datasets (GSE14814 and 
GSe68465) that may not fully represent the broader popula-
tion of NSCLC patients. The demographic and clinical char-
acteristics of the patients in these datasets could introduce 
biases that affect the generalizability of our findings.

Another limitation is related to the assumption inherent in 
the ensemble machine learning algorithm used in this study. 

Table 2.  Top 20 features selected from RSF using variable importance measure.

Variable Gene symbol Gene title/description

Stage Cancer Stage

 201303_at EIF4A3 eukaryotic translation initiation factor 4A340

 210662_at KYNU Kynureninase41

 217868_s_at METTL9 Methyltransferase like 942

Age Patient’s age

 219329_s_at C2orf28 Chromosome 2 open reading frame 2843

 219045_at RHOF Ras homolog gene family, member F (in filopodia)44

 215207_x_at NUS1 nuclear undecaprenyl pyrophosphate synthase 1 homolog (S. cerevisiae)45

 210260_s_at TNFAIP8 Tumor necrosis factor, alpha-induced protein 846

 212311_at SEL1L3 sel-1 suppressor of lin-12-like 3 (C. elegans)47

 209321_s_at ADCY3 Adenylate cyclase 348

 221838_at KLHL22 Kelch-like 22 (Drosophila)49

 202515_at DlG1 Disk, large homolog 1 (Drosophila)50

 219959_at MOCOS Molybdenum cofactor sulfurase51

 214589_at FGF12 Fibroblast growth factor 1252

 203205_at KDM4A Lysine demethylase 4A53

 203967_at CDC6 Cell division cycle 654

 218278_at WDR74 WD repeat domain 7455

 212737_at GM2A Ganglioside GM2 activator56

 220406_at TGFB2 Transforming growth factor, beta 243,51
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Cox regression assumes proportional hazards, which might not 
hold true for all patients. To relax such an assumption, we 
introduced the RSF that is a non-parametric approach and 
does not require such an assumption.

Potential confounders also present a limitation. Although 
our models incorporate various clinical and demographic fac-
tors, there may be unmeasured variables that influence treat-
ment outcomes, such as environmental exposures, lifestyle 
factors, and adherence to treatment protocols. These unmeas-
ured confounders could bias the model’s predictions.

To address these limitations, future research should focus on 
several key areas. First, efforts should be made to validate our 
predictive models using larger and more diverse datasets that 
better represent the heterogeneity of NSCLC patients. This 
will help mitigate data biases and improve the generalizability 
of the models. Second, more advanced modeling approaches, 
such as deep learning models, might capture complex interac-
tions more effectively in order to enhance predictive accuracy.

Lastly, incorporating additional data sources, such as envi-
ronmental and lifestyle factors, into the models could help 
account for potential confounders. This more comprehensive 
approach to data integration will provide a broad aspect of the 
factors influencing treatment outcomes.

In a future study, we will conduct a comparative analysis of 
the RSF model with several advanced models in this field. Two 
candidate models for the comparative analysis will be DeepSurv 
and Gradient Boosting Machine (GBM). DeepSurv is a sur-
vival neural network that uses a deep learning-based Cox pro-
portional hazards model to capture complex interactions 
among covariates. GBM is an ensemble technique that builds 
models sequentially to minimize prediction errors.

Conclusion
Our study highlights the promising role of ensemble machine 
learning algorithms in enhancing personalized treatment strat-
egies for non-small cell lung cancer (NSCLC) patients. The 
observed survival advantages emphasize the clinical relevance 
of our predictive models. Moreover, the identification of treat-
ment-related genomic markers adds a layer of precision to the 
personalized medicine landscape.

Integrating these findings into clinical practice has the 
potential to significantly improve patient outcomes and con-
tribute to the ongoing paradigm shift toward more tailored and 
effective treatments in lung cancer intervention. This research 
benefits individual patients by optimizing their treatment plans 
and has broader public health implications. By improving the 
precision and effectiveness of cancer treatments, we can reduce 
the overall healthcare burden associated with ineffective treat-
ments and recurrent disease. Additionally, the application of 
these advanced predictive models can lead to more efficient use 
of medical resources, ensuring that patients receive the most 
appropriate therapies based on their unique genetic profiles 
and clinical characteristics.

As we delve deeper into the era of personalized medicine, 
the amalgamation of genomic data and advanced predictive 
analysis stands as a beacon for more informed and optimized 
clinical decisions. This shift toward personalized treatment 
regimens can enhance the quality of life for patients, increase 
survival rates, and pave the way for a more sustainable health-
care system. Moreover, the success of such predictive models in 
NSCLC can serve as a model for other cancers and complex 
diseases, promoting a wider adoption of personalized medicine 
approaches across the medical field.

Our study demonstrates significant survival benefits for 
patients adhering to treatment recommendations derived from 
our predictive models, which utilize genomic microarray data 
combined with clinical and demographic information. The 
integrative approach emphasizes the importance of precision 
medicine in improving patient outcomes by customizing treat-
ments based on individual genetic profiles and other relevant 
factors.

Despite these promising results, several limitations should 
be considered when interpreting our findings. One concern is 
the representativeness of our sample. The genomic and demo-
graphic characteristics of the patients in our study may not 
fully capture the diversity of the broader NSCLC patient pop-
ulation. This potential lack of representativeness could limit 
the external validity of our models.

Additionally, the use of genomic microarray data, while pro-
viding valuable insights into the genetic underpinnings of dis-
ease and treatment response, may introduce biases related to 
the specific array platform and the selected genomic markers. 
Variations in these factors across different populations could 
affect the applicability of our models in other settings.

To address these limitations, future research should aim to 
validate our predictive models in larger and more diverse target 
populations. This will help ensure that the models are robust 
and generalizable across different populations and clinical con-
texts. Another important consideration is the potential impact 
of environmental and lifestyle factors that were not accounted 
for in our study. These factors can significantly influence treat-
ment outcomes and should be integrated into future models to 
provide a more holistic approach to personalized medicine.

In our study, we chose to focus on the C-index as it is a 
widely accepted and robust metric for evaluating the perfor-
mance of survival models. It is particularly suitable for assess-
ing the predictive accuracy of survival model and has been 
extensively validated in various studies as a standard perfor-
mance metric for survival models, providing a reliable bench-
mark for comparing model performance (Harrell et al,57 Uno 
et  al58). While the C-index provides valuable insights into 
model performance, additional metrics such as the integrated 
Brier score and area under the time-dependent AUC can offer 
complementary information. The integrated Brier score evalu-
ates the accuracy of probabilistic predictions over time, while 
the time-dependent AUC measures the model’s discriminative 
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ability at different time points. We defer the use of these addi-
tional metrics to future studies to provide a more comprehen-
sive evaluation of our models.

In order to effectively integrate our findings in this study 
into clinical practice, it is essential to develop user-friendly 
interfaces and decision support systems that can be seamlessly 
incorporated into routine clinical workflow. Training clinicians 
on the use of these predictive models and ensuring continuous 
updates with new data will maintain their accuracy and rele-
vance. Furthermore, validating our models in larger and more 
diverse populations will enhance their robustness and generaliz-
ability. By incorporating environmental and lifestyle factors, we 
can provide a more comprehensive approach to personalized 
medicine. Ultimately, the integration of these advanced predic-
tive models into clinical practice has the potential to improve 
patient outcomes, optimize treatment efficacy, and contribute to 
the broader adoption of precision medicine, thereby enhancing 
the quality of care for NSCLC patients and potentially serving 
as a model for other cancers and complex diseases.
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