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Abstract: Ceramic samples based on β-calcium pyrophosphate β-Ca2P2O7 were prepared from pow-
ders of γ-calcium pyrophosphate γ-Ca2P2O7 with preset molar ratios Ca/P = 1, 0.975 and 0.95 using
firing at 900, 1000, and 1100 ◦C. Calcium lactate pentahydrate Ca(C3H5O3)2·5H2O and monocalcium
phosphate monohydrate Ca(H2PO4)2·H2O were treated in an aqua medium in mechanical activation
conditions to prepare powder mixtures with preset molar ratios Ca/P containing calcium hydrophos-
phates with Ca/P = 1 (precursors of calcium pyrophosphate Ca2P2O7). These powder mixtures
containing calcium hydrophosphates with Ca/P = 1 and non-reacted starting salts were heat-treated
at 600 ◦C after drying and disaggregation in acetone. Phase composition of all powder mixtures after
heat treatment at 600 ◦C was presented by γ-calcium pyrophosphate γ-Ca2P2O7 according to the
XRD data. The addition of more excess of monocalcium phosphate monohydrate Ca(H2PO4)2·H2O
(with appropriate molar ratio of Ca/P = 1) to the mixture of starting components resulted in lower
dimensions of γ-calcium pyrophosphate (γ-Ca2P2O7) individual particles. The grain size of ceramics
increased both with the growth in firing temperature and with decreasing molar ratio Ca/P of
powder mixtures. Calcium polyphosphate (t melt = 984 ◦C), formed from monocalcium phosphate
monohydrate Ca(H2PO4)2·H2O, acted similar to a liquid phase sintering additive. It was confirmed
by tests in vitro that prepared ceramic materials with preset molar ratios Ca/P = 1, 0.975, and 0.95
and phase composition presented by β-calcium pyrophosphate β-Ca2P2O7 were biocompatible and
could maintain bone cells proliferation.

Keywords: calcium lactate pentahydrate; monocalcium phosphate monohydrate; mechanical activa-
tion; powder; brushite; monetite; calcium pyrophosphate; ceramics; biocompatibility

1. Introduction

Ceramics based on calcium phosphates are widely used for bone defect treatment [1,2].
Resorbable calcium phosphate ceramic materials are necessary for the implementation of
bone defect treating methods of regenerative medicine [3]. It is known from the scientific
literature that the ability of inorganic materials to resorb is connected with the ability to
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solve in an aqua medium [4]; this ability to a great extent depends on the crystal structure
of an inorganic substance [5]. Calcium phosphate’s ability to solve in an aqua medium
can be enhanced by decreasing Ca/P molar ratio [6]. At the same time pH generated
during the dissolution of calcium phosphate has to be close to neutral as a necessary feature
of biocompatibility [7]. So, the ceramics based on calcium pyrophosphate Ca2P2O7 can
be an interesting object of investigation both due to molar ratio Ca/P = 1 (it is less than
molar ratio Ca/P = 1.67 for insoluble hydroxyapatite Ca10(PO4)6(OH)2 and Ca/P = 1.5 for
tricalcium phosphate Ca3(PO4)2) and due to pH close to neutral (pH~7) during immersion
to the water [8].

According to the information from scientific literature ceramics based on β-calcium
pyrophosphate or ceramics containing phase of β-calcium pyrophosphate have repeat-
edly been the subject of investigation dealing with creation of materials for bone defect
treatment [9–13]. In all these technics different powder precursors were used.

Different powders and powder mixtures with molar ratio Ca/P = 1 can be used as
precursors of high-temperature β-modification of calcium pyrophosphate Ca2P2O7 as
the ceramic phase. Powders of brushite CaHPO4·2H2O [9], monetite CaHPO4 [10], hy-
drated amorphous calcium pyrophosphate Ca2P2O7·xH2O [11,12], calcium pyrophosphate
Ca2P2O7 in forms of γ or β modifications [13,14], can be used as starting direct powder
precursors for β-calcium pyrophosphate β-Ca2P2O7 ceramics preparation.

Solid-state sintering of calcium phosphate ceramics has some difficulties due to the
complexity of mass-transfer because of the lower diffusion of the large, multiply charged
phosphate or pyrophosphate ions [15]. It is impossible to help sintering of calcium py-
rophosphate ceramics with elevating of firing temperature because of β-α phase transition
at 1150 ◦C [16]. Using fine powders, special atmospheres of firing, and sintering additives
can enhance the sintering ability of any ceramic material. Chemical synthesis of calcium
phosphate powders for ceramic preparation is used for enhancement of powder sintering
activity [17]. CO2 or H2O atmosphere can intensify the sintering of hydroxyapatite [18].
Sintering additives with the ability to introduce defects in the crystal structure can help
solid-state sintering [19,20]. Quite an ordinary decision to overcome the difficulties in
sintering of calcium phosphate ceramics consists in using liquid phase sintering [21]. Liq-
uid phase sintering can be realized when the sintering additive is presented in a quantity
of a wide interval from 1% to 40%. Sodium phosphates [22,23], sodium carbonate [24],
sodium/potassium nitrates [25], and calcium polyphosphate [9,26,27] were used as sinter-
ing additives for calcium pyrophosphate ceramic preparation. Potassium carbonate [28,29],
potassium chloride [30], and calcium chloride [31] used as sintering additives for ceramic
based on hydroxyapatite can also be used as sintering additives for calcium pyrophosphate
ceramics. It should be noted, that in investigations [26,27], calcium polyphosphate was
introduced in preceramic samples prepared as cement stone via excess of monocalcium
phosphate monohydrate. Application of low temperature melting salts with biocompatible
cations such as potassium or sodium has a slight disadvantage, which consists in the possi-
bility of the drift of phase composition of bioceramics to the oxide systems Na2O-CaO-P2O5
or K2O-CaO-P2O5 and the formation of phases of double phosphates due to heterophase
reactions. The possibility of these reactions can lead to the diminution of the quantity
of sintering additive when processing ceramics, and then formation in ceramics of those
phases of double phosphates, which, in case of notable amount, can generate basic pH
harmful for a patient organism if implanted. Ceramic materials in the CaO-P2O5 system
with low content of Ca(PO3)2 as expected will be more friendly to the living organism
if implanted.

As precursors of the calcium polyphosphate phase in ceramics, the different com-
pounds can be used [32]. The following compounds with molar ratio Ca/P = 0.5 also
can be used as precursors of calcium polyphosphate: amorphous hydrated calcium polyphosphate
Ca(PO3)2·xH2O [33], CaH2(HPO3)2 [34], CaH2P2O7 [35], CaH2P2O7·H2O [36], CaNH4HP2O7 [37,38],
Ca(NH4)2P2O7·H2O [39,40], CaNH4HP2O7, Ca2NH4H3(P2O7)2 H2O, Ca2NH4H3(P2O7)2·3H2O [41],
Ca(H2PO4)2, and Ca(H2PO4)2·H2O [42,43].
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Earlier, it was shown that the synthesis of fine grain powder of monetite CaHPO4 can be
carried out in conditions of mechanical activation from powder mixture including hydroxyapatite
Ca10(PO4)6(OH)2 and monocalcium phosphate monohydrate Ca(H2PO4)2·H2O [10]. It also was
shown that treatment in a water solution of lactic acid allowed preparing powder of mono-
calcium phosphate monohydrate Ca(H2PO4)2·H2O with lower dimensions of particles as
far lactic acid can act as a surface-active substance [44]. It is well known that the smaller the
particle dimensions of starting components the more homogeneous powder mixture can be
prepared. So, in the present work, powder mixtures for ceramics production were prepared
in the first time in conditions of mechanical activation from calcium lactate pentahydrate
Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate Ca(H2PO4)2·H2O when
the last was taken in excess and used also as a precursor of calcium polyphosphate Ca(PO3)2
which played the role of a liquid phase sintering additive.

The aim of the present work consisted in the preparation of β-calcium pyrophosphate
ceramics with the assistance of calcium polyphosphate as a liquid phase sintering additive
based on fine synthetic powders of γ-calcium pyrophosphate with Ca/P molar ratios preset
as 1, 0.975, 0.95 and investigation of biocompatibility of prepared ceramics in vitro.

2. Materials and Methods
2.1. Materials

Powders of calcium lactate pentahydrate Ca(C3H5O3)2·5H2O (CAS no. 814-80-2, food-
grade E327 of FCC, Henan Jindan Lactic Acid Technology Co., Ltd., Zhengzhou, Henan,
China) and monocalcium phosphate monohydrate Ca(H2PO4)2·H2O (CAS no. 10031-30-8,
puriss. 99%, Product of Spain, Sigma-Aldrich Chemie GmbH, Steinheim, Germany) were
used for powder mixtures preparation.

The target phase compositions of ceramics are shown in Table 1. Calcium polyphos-
phate was introduced as a sintering additive with a low melting point (984 ◦C [16]).

Table 1. Description of target phase composition of ceramics.

Sample Ca/P Molar Ratio
The Phase Composition, mol.% The Phase Composition, mas.%

β-Ca2P2O7 β-Ca(PO3)2 β-Ca2P2O7 β-Ca(PO3)2

Pyro 1 100 0 100 0
Pyro_05Poly 0.975 95 5 96 4
Pyro_10Poly 0.95 90 10 92 8

Compositions of powder mixtures before treatment in mechanical activation condi-
tions are presented in Table 2.

Table 2. Composition of powder mixtures before treatment in mechanical activation conditions.

Sample Ca/P Molar Ratio
Starting Components, mol.% Starting Components, mas.%

Ca(C3H5O3)2·5H2O Ca(H2PO4)2·H2O Ca(C3H5O3)2·5H2O Ca(H2PO4)2·H2O

Pyro 1 50.0 50.0 55.0 45.0
Pyro_05Poly 0.975 48.7 51.3 53.7 46.3
Pyro_10Poly 0.95 47.4 52.6 52.4 47.6

Reaction (1) corresponding to powder mixture “Pyro” was used to calculate quantities
of starting components.

Ca(C3H5O3)2·5H2O + Ca(H2PO4)2·H2O→ 2CaHPO4·2H2O + 2C3H5O3H + 2H2O (1)

2.2. Powder Mixtures Preparation

A total 10 g of starting components in ratios are presented in Table 2; 50 g of grinding
media made from zirconia and 40 mL of distilled water were placed in containers made
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from zirconia. Containers with starting components were fixed in the planetary mill (Fritch
Pulverisette, Idar-Oberstein, Germany). Mechanical activation of suspension initially con-
taining distilled water, calcium lactate pentahydrate Ca(C3H5O3)2·5H2O, and monocalcium
phosphate monohydrate Ca(H2PO4)2·H2O was conducted for 15 min at a rotation speed of
600 rpm. Then, powder mixtures after drying for a week were disaggregated in a planetary
mill in acetone medium for 15 min at a rotation speed of 600 rpm. After drying powder
mixtures were passed through the sieve with 200 mm mesh. Then, powder mixtures were
heat-treated at 600 ◦C for 30 min.

2.3. Ceramic Samples Preparation

Powder mixtures prepared as described above were used for ceramics preparation.
Powder compacts were pressed at 100 MPa in the form of disks with a diameter of 12 mm
and height of 1 mm in steel mold using the manual press (Carver Laboratory Press
model C, Fred S. Carver, Inc., Wabash, IN, USA). Then, powder compacts were fired
in the air at 900, 1000, and 1100 ◦C with a heating rate of 5 ◦C/min and 2 h holding at a
specified temperature.

2.4. Characterization Methods

The phase composition of the prepared powder mixtures, powders after heat treatment
at 600 ◦C, and ceramic samples after firing was determined by X-ray powder diffraction
(XRD) analysis using Rigaku D/Max-2500 diffractometer (Rigaku Corporation, Tokyo,

Japan) with a rotating anode (Cu-Ka radiation), angle interval 2
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Thermal analysis (TA) was performed to determine the total mass loss of the powder

mixtures at heating up to 1000 ◦C in the air using NETZSCH STA 449 F3 Jupiter thermal
analyzer (NETZSCH, Selb, Germany). The gas-phase composition was monitored by the
quadrupole mass spectrometer QMS 403 Quadro (NETZSCH, Selb, Germany) combined
with a thermal analyzer NETZSCH STA 449 F3 Jupiter. The mass spectra (MS) were
registered for the following m/z values: 18 (H2O); 44 (CO2); the heating rate was 10 ◦C/min.

Powders after heat treatment at 600 ◦C and ceramics after firing were examined by
scanning electron microscopy (SEM) on a LEO SUPRA 50VP electron microscope (Carl
Zeiss, Jena, Germany; auto-emission source). This investigation was carried out at an
accelerating voltage of 3–20 kV using SE2 detectors. The surface of the ceramic samples
and powders was coated with a layer of chromium (up to 10 nm).

2.5. Biocompatibility Estimation

Ceramic samples fired at 1100 ◦C were used for the investigation of biocompatibility
in vitro.

Primary dental pulp stem cells (cell culture) were used to study the biocompatibility
of the prepared ceramics. The dental pulp stem cells culture was obtained from freshly
extracted third molar teeth (donor age, 16 years) with a root at least two-thirds formed,
which were extracted for orthodontics reasons [46]. The cell cultures were maintained
in DMEM/F12 medium supplemented with 10% FBS, 100 units mL−1 penicillin, and
100 mg mL−1 streptomycin under an 80% humidity with 5% CO2 atmosphere at 37 ◦C.

For assessing cytotoxicity of ceramics direct contact method was used. The samples
were placed onto 24-well culture plates. The cells were seeded on the surfaces of ceramic
samples at 40,000 cell cm−2 and cultured in DMEM/F12 (1:1) medium supplemented with
10% FBS, 100 units mL−1 penicillin, and 100 mg mL−1 streptomycin at 80% humidity in a
5% CO2 atmosphere at 37 ◦C. The cytotoxicity of the ceramic samples was estimated by
evaluating the cell viability through a double-staining fluorescence assay in a direct contact
procedure 2 and 7 days after the beginning of experiments. In this study, the ability of the
prepared ceramics to support the adhesion of the primary dental pulp stem cells and to stim-
ulate their proliferation was also examined. We used a double-staining assay with SYTO9
(green fluorescent nucleic acid stain), which stains all cells, and propidium iodide (red
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fluorescent nucleic acid stain), which stains the nuclei of dead cells (L-7007 LIVE/DEAD
Bac Light Bacterial Viability Kit, Invitrogen, Thermo Fisher Scientific, Eugene, USA). The
cells were visualized using fluorescence microscopy (Axiovert 200, Zeiss, Germany).

The cell-containing surfaces of prepared ceramic specimens after primary dental pulp
stem cells cultivation were studied using a Tescan Vega II scanning electron microscope
(SEM, Tescan Vega II, Brno, Czech Republic); the imaging was performed in a low vacuum
mode at an accelerating voltage of 20 kV (SE detector). To prepare samples of the cell-
containing surfaces of ceramics after 2 days of cells cultivation for SEM analysis, the
cells were fixed and dehydrated. Briefly, the samples were washed three times with PBS
and fixed with glutaraldehyde (2.5% in PBS, pH 7.4) for 2 h. After fixation, the samples
were rinsed with PBS once before being dehydrated using a series of solutions. Samples
were coated with a thin layer of gold to prevent surface charging (Q150R ES, Quorum
Technologies, East Sussex, UK).

The cytotoxicity of the ceramics was evaluated using the MTT test according to ISO
10993-5. The samples were incubated in polypropylene tubes containing DMEM/F12
supplemented with 100 U mL−1 penicillin/streptomycin for 3 days at 37 ◦C under aseptic
conditions. In the liquid extracts of materials, the ratio of the mass of the samples (g) to
the volume of the culture medium (mL) was 0.1–0.2. DMEM/F12 medium was used as
a control. The NCTC L929 cells were used at 40,000 cells cm−2 for 24 h before adding
the liquid extracts of the material. The extracts were transferred onto a layer of cells and
incubated. The viability of the cells was evaluated 1 day after the beginning of experiments
by measuring the reduction of the colorless salt tetrazolium(3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide) (MTT) by mitochondrial and cytoplasmic dehydrogenases
of living metabolically active cells through the formation of intracellular water-insoluble
purple-blue crystals of formazan. The cells were treated with MTT (0.5 mg mL−1) at 37 ◦C
for 3 h in air with 5% CO2 and 90% humidity. The medium was removed and the formazan
was solubilized with 100 µL dimethylsulfoxide (DMSO). The absorption at 540 nm was
measured using a microplate spectrophotometer (model 680 BioRad, Bio-Rad Laboratories,
Inc., Hercules, CA, USA). The value was an average of three separate experiments. The
results for the optical densities were expressed as mean standard deviation. The statistically
significant difference between the groups was estimated using the Mann–Whitney U test.
Differences at p < 0.05 were considered statistically significant.

3. Results and Discussion

According to XRD analysis (Figure 1), after homogenization of starting salts in me-
chanical activation conditions in a planetary mill in aqua medium powder mixture “Pyro”
(Ca/P = 1) included brushite CaHPO4·2H2O; monetite CaHPO4 in small quantity; and start-
ing components, i.e., calcium lactate pentahydrate Ca(C3H5O3)2·5H2O and monocalcium
phosphate monohydrate Ca(H2PO4)2·H2O. Powder mixtures “Pyro_05Poly” (Ca/P = 0.975)
and “Pyro_10Poly” (Ca/P = 0.95) included monetite CaHPO4 and starting components,
i.e., calcium lactate pentahydrate Ca(C3H5O3)2·5H2O and monocalcium phosphate mono-
hydrate Ca(H2PO4)2·H2O. The presence of starting salts in all powder mixtures under
investigation can be explained by the incompleteness of the reactions (1). Moreover,
monocalcium phosphate monohydrate Ca(H2PO4)2·H2O was intentionally introduced
in powder mixtures “Pyro_05Poly” (Ca/P = 0.975) and “Pyro_10Poly” (Ca/P = 0.95) in
excess to provide formation of calcium polyphosphate Ca(PO3)2 at the firing stage. An
intentionally introduced excess of monocalcium phosphate monohydrate Ca(H2PO4)2·H2O
provided more acidic pH of water solution formed during treatment of powder mixtures
“Pyro_05Poly” (Ca/P = 0.975) and “Pyro_10Poly” (Ca/P = 0.95) in a planetary mill. More
acidic pH of water solution, as shown before in other investigations [47,48], can explain
the preferable formation of monetite CaHPO4 (calcium hydrophosphate anhydrate) in
powder mixtures “Pyro_05Poly” (Ca/P = 0.975) and “Pyro_10Poly” (Ca/P = 0.95) instead
of brushite CaHPO4·2H2O (calcium hydrophosphate dihydrate) as it was for powder
mixture “Pyro”.
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Figure 1. XRD data for powder mixtures prepared in mechanical activation conditions from calcium 
lactate pentahydrate Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate
Ca(H2PO4)2·H2O: *—Ca(C3H5O3)2·5H2O (according to scientific literature data [49–51]); o—
Ca(H2PO4)2·H2O (PDF card 9-347); +—CaHPO4 (PDF card 9-80); b—CaHPO4·2H2O (PDF card 9-77). 

After drying, the prepared powder mixtures were aggregated to a great extent and 
the stage of disaggregation was highly necessary. So, after drying powder mixtures were
disaggregated in acetone medium in a planetary mill. According to XRD data (Figure 2), 
after disaggregation in acetone medium in planetary mill, phase composition of all pow-
der mixtures included monetite CaHPO4 and starting components, i.e., calcium lactate 
pentahydrate Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate 
Ca(H2PO4)2·H2O. One can see that the greater the content of monocalcium phosphate mon-
ohydrate Ca(H2PO4)2·H2O in powder mixture, the more noticeable its main reflex at nor-
malized graphs. Chemical reaction (2) of brushite dehydration taking place during dis-
aggregation in acetone medium in powder mixture “Pyro” is presented below. 

CaHPO4⋅2H2O → CaHPO4 + 2H2O (2)

TA data of powder mixtures “Pyro” (Ca/P = 1) and “Pyro_10Poly” (Ca/P = 0.95) pre-
pared in mechanical activation conditions in aqua medium from calcium lactate pentahy-
drate Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate Ca(H2PO4)2·H2O), 
disaggregated in acetone medium, and TA of starting components (calcium lactate pen-
tahydrate Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate 
Ca(H2PO4)2·H2O) are presented in Figure 3. Total mass loss for powder mixtures “Pyro”
(Ca/P = 1) was 40%. Total mass loss for powder mixtures “Pyro_10Poly” (Ca/P = 0.95) was 
39%. All processes provided mass loss of the powder mixtures under investigation during 
heating finished up to 500 °C. As we can assume according to data of XRD analysis of 
powder mixtures after treatment in acetone medium and the accordant reaction (1), com-

Figure 1. XRD data for powder mixtures prepared in mechanical activation conditions from
calcium lactate pentahydrate Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate
Ca(H2PO4)2·H2O: *—Ca(C3H5O3)2·5H2O (according to scientific literature data [49–51]); o—
Ca(H2PO4)2·H2O (PDF card 9-347); +—CaHPO4 (PDF card 9-80); b—CaHPO4·2H2O (PDF card 9-77).

After drying, the prepared powder mixtures were aggregated to a great extent and the
stage of disaggregation was highly necessary. So, after drying powder mixtures were disag-
gregated in acetone medium in a planetary mill. According to XRD data (Figure 2), after dis-
aggregation in acetone medium in planetary mill, phase composition of all powder mixtures
included monetite CaHPO4 and starting components, i.e., calcium lactate pentahydrate
Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate Ca(H2PO4)2·H2O. One can
see that the greater the content of monocalcium phosphate monohydrate Ca(H2PO4)2·H2O
in powder mixture, the more noticeable its main reflex at normalized graphs. Chemical
reaction (2) of brushite dehydration taking place during disaggregation in acetone medium
in powder mixture “Pyro” is presented below.

CaHPO4·2H2O→ CaHPO4 + 2H2O (2)

TA data of powder mixtures “Pyro” (Ca/P = 1) and “Pyro_10Poly” (Ca/P = 0.95)
prepared in mechanical activation conditions in aqua medium from calcium lactate pentahy-
drate Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate Ca(H2PO4)2·H2O),
disaggregated in acetone medium, and TA of starting components (calcium lactate pentahy-
drate Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate Ca(H2PO4)2·H2O)
are presented in Figure 3. Total mass loss for powder mixtures “Pyro” (Ca/P = 1) was 40%.
Total mass loss for powder mixtures “Pyro_10Poly” (Ca/P = 0.95) was 39%. All processes
provided mass loss of the powder mixtures under investigation during heating finished up
to 500 ◦C. As we can assume according to data of XRD analysis of powder mixtures after
treatment in acetone medium and the accordant reaction (1), composition of powder mix-
tures included monetite, lactic acid, and starting components (calcium lactate pentahydrate
Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate Ca(H2PO4)2·H2O).
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aggregated in acetone medium; TA of starting components (calcium lactate pentahydrate 
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So, we can suggest the following reactions that can take place during heating: dehy-
dration of hydrated salts (reactions (3) and (4) [10,52]), decomposition of lactic acid (reac-
tion (5) [53]), formation of calcium pyrophosphate via condensation (6) [10], synthesis of 
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Figure 2. XRD data for powder mixtures prepared in mechanical activation conditions from
calcium lactate pentahydrate Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate
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So, we can suggest the following reactions that can take place during heating: dehy-
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Figure 3. TA of powder mixtures “Pyro” (Ca/P = 1) and “Pyro_10Poly” (Ca/P = 0.95) pre-
pared in mechanical activation conditions from calcium lactate pentahydrate Ca(C3H5O3)2·5H2O
and disaggregated in acetone medium; TA of starting components (calcium lactate pentahydrate
Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate Ca(H2PO4)2·H2O).

So, we can suggest the following reactions that can take place during heating: de-
hydration of hydrated salts (reactions (3) and (4) [10,52]), decomposition of lactic acid
(reaction (5) [53]), formation of calcium pyrophosphate via condensation (6) [10], synthesis
of calcium pyrophosphate due to interaction of monocalcium phosphate with calcium
lactate (reaction (7)) or due to interaction of monocalcium phosphate monohydrate with
calcium lactate pentahydrate (reaction (8)), and formation of calcium polyphosphate due to
condensation (reaction (9) [10]).

Ca(H2PO4)2·H2O = Ca(H2PO4)2 + H2O (~200 ◦C) (3)
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Ca(C3H5O3)2·5H2O = Ca(C3H5O3)2+5H2O (~200 ◦C) (4)

C3H5O3H+6O2 = 3CO2 + 3H2O (melting ~120 ◦C) (5)

2CaHPO4 = Ca2P2O7 + H2O (~300–475 ◦C) (6)

Ca(H2PO4)2 + Ca(C3H5O3)2 + 6O2 = Ca2P2O7 + 6CO2 + 7H2O (~110–500 ◦C) (7)

Ca(H2PO4)2·H2O + Ca(C3H5O3)2·5H2O + 6O2 = Ca2P2O7 + 6CO2 + 13H2O (~110–500 ◦C) (8)

Ca(H2PO4)2 = Ca(PO3)2 + 2H2O (~300–500 ◦C) (9)

The form of curves m/m0 = f(t) in Figure 3 of powder mixtures under investigation
are very smooth and differ from curves of starting salts. The smoothness of the lines
indicates the possibility of overlapping temperature intervals for listed reactions and their
simultaneous occurrence. This difference confirms the possibility both of reactions of con-
densation (reactions (6) and (9)) and the possibility of formation of calcium pyrophosphate
from starting components preserved during treatments in mechanical activation conditions.
Differentiation of curves m/m0 = f(t) for powder mixtures under investigation allows
finding several temperatures with maximum mass loss rate. There are 130 ◦C, 180 ◦C (the
biggest), 240 ◦C, 320 ◦C, and 400 ◦C for powder mixture “Pyro” and 100 ◦C, 180 ◦C (the
biggest), 230 ◦C, and 360 ◦C for powder mixture “Pyro_10Poly”. Mass loss due to CO2
(m/Z = 44) evolving took place in interval 110–500 ◦C with a maximum of 190 ◦C. Mass
loss due to H2O (m/Z = 18) evolving took place in three intervals: 80–130 ◦C (with the
maximum at 105 ◦C), 130–260 ◦C (with the maximum at 190 ◦C), 290–500 ◦C (with wide
maximum 330–400 ◦C).

XRD data for powder mixtures prepared in mechanical activation conditions from
calcium lactate pentahydrate Ca(C3H5O3)2·5H2O and monocalcium phosphate mono-
hydrate Ca(H2PO4)2·H2O, disaggregated in acetone medium, after heat treatment at
600 ◦C is presented in Figure 4. The phase composition of prepared powders “Pyro”,
“Pyro_05Poly”, “Pyro_10Poly” after heat treatment at 600 ◦C was presented by γ-calcium
pyrophosphate γ-Ca2P2O7.
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2 µm. The dimensions of particles of powder “Pyro_05Poly” are in interval 0.1–1 µm. The 
dimensions of particles of powder “Pyro_10Poly” are in the interval 0.1–0.5 µm. One of 
the reasons for fine particle formation consisted in using synthesis in the mechanical acti-
vation conditions. The advantages of using mechanical activation conditions were shown 
for monetite CaHPO4 synthesis before [10]. Presence of the lactic acid that acted as a sur-
factant [44] in suspensions during synthesis in mechanical activation conditions and dur-
ing drying can be accepted as additional reason of fine particles formation. According to 
XRD analysis, brushite, the metastable dicalcium phosphate dihydrate CaHPO4·2H2O was 
detected only in the phase composition of the powder “Pyro”. Powders “Pyro_05Poly” 
and “Pyro_10Poly” contained monetite CaHPO4. All prepared powders after mechanical 
activation of starting components in water contained monocalcium phosphate monohy-
drate Ca(H2PO4)2·H2O. As all these calcium phosphates are slightly soluble in water to 
varying degrees, the following processes (reaction (10)–(13)) could take place during a 
week of drying of aqueous suspensions providing mass transfer between the particles of 
calcium phosphate phases. 

CaHPO4⋅2H2O ⇄ Ca2+ + HPO42− + 2H2O (10) 
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Figure 4. XRD data for powder mixtures prepared in mechanical activation conditions from
calcium lactate pentahydrate Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate
Ca(H2PO4)2·H2O, disaggregated in acetone medium, after heat treatment at 600 ◦C: γ—γ-Ca2P2O7

(PDF card 17-499).
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SEM images of powders “Pyro”, “Pyro_05Poly”, “Pyro_10Poly” after heat treatment
at 600 ◦C are presented in Figure 5. One can see that particles of powders are fine and
the dimension of particles is dependent on the preset molar ratio of powders. Particles
have a platelike morphology. Particles after heat treatment indeed inherit the shape of
the particles after synthesis and drying. The lower the molar ratio Ca/P, the smaller the
dimensions of particles are. The dimensions of particles of powder “Pyro” are in the interval
0.2–2 µm. The dimensions of particles of powder “Pyro_05Poly” are in interval 0.1–1 µm.
The dimensions of particles of powder “Pyro_10Poly” are in the interval 0.1–0.5 µm. One
of the reasons for fine particle formation consisted in using synthesis in the mechanical
activation conditions. The advantages of using mechanical activation conditions were
shown for monetite CaHPO4 synthesis before [10]. Presence of the lactic acid that acted as
a surfactant [44] in suspensions during synthesis in mechanical activation conditions and
during drying can be accepted as additional reason of fine particles formation. According
to XRD analysis, brushite, the metastable dicalcium phosphate dihydrate CaHPO4·2H2O
was detected only in the phase composition of the powder “Pyro”. Powders “Pyro_05Poly”
and “Pyro_10Poly” contained monetite CaHPO4. All prepared powders after mechanical
activation of starting components in water contained monocalcium phosphate monohydrate
Ca(H2PO4)2·H2O. As all these calcium phosphates are slightly soluble in water to varying
degrees, the following processes (reaction (10)–(13)) could take place during a week of
drying of aqueous suspensions providing mass transfer between the particles of calcium
phosphate phases.

CaHPO4·2H2O � Ca2+ + HPO4
2− + 2H2O (10)

CaHPO4 � Ca2+ + HPO4
2− (11)

Ca(H2PO4)2·H2O � Ca2+ + 2H2PO4
− + H2O (12)

2H2PO4
−� 2HPO4

2− + 2H+ (13)
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Figure 5. Micro photos of powders after heat treatment at 600 ◦C: “Pyro” (a); “Pyro_05Poly” (b);
“Pyro_10Poly” (c).

Brushite CaHPO4·2H2O (pKsp = 6.59) is a more soluble salt than monetite CaHPO4
(pKsp = 6.90), and monocalcium phosphate monohydrate Ca(H2PO4)2·H2O (pKsp = 1.14)
is significantly more soluble than brushite CaHPO4·2H2O and monetite CaHPO4 [2]. So,
processes of dissolution/crystallization in suspension “Pyro” led to an increase in the
particle size of brushite CaHPO4·2H2O during transformation of suspension to the powder.
The lower the molar ratio of Ca/P in the powders from “Pyro” to “Pyro_10Poly”, the
bigger the quantity of monocalcium phosphate monohydrate Ca(H2PO4)2·H2O in the
water suspensions was. Therefore, the lower the preset molar ratio of Ca/P in samples
under investigation, the greater the concentration of HPO4

2− and 2H+ ions in an aqueous
solution surrounding calcium phosphate particles of suspensions were.
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The bigger quantity of HPO4
2− and 2H+ ions in suspensions “Pyro_05Poly” and

“Pyro_10Poly” could shift the equilibrium in reactions (10) and (11) to the left. This shift
thereby reduced the recrystallization rate of solid phase particles of monetite CaHPO4. So,
the possibility of dissolution/crystallization in suspension “Pyro” was more likely than in
suspensions “Pyro_05Poly” and “Pyro_10Poly”. For this reason, the composition of pre-
pared suspensions and the phenomenon of inheritance of synthesized particle morphology
can explain the decrease in particle size in heat treated at 600 ◦C powders with a decrease
in preset Ca/P molar ratio from 1 to 0.95. Reactions with fast, big volumes evolving of
gaseous phase during heat treatment of powders could be the additional reason for fine
powder formation. It should be noted that small particles of all powders are collected in
aggregates. Particle size distribution of powder prepared in mechanical activation condi-
tions from calcium lactate pentahydrate Ca(C3H5O3)2·5H2O and monocalcium phosphate
monohydrate Ca(H2PO4)2·H2O, disaggregated in acetone medium, after heat treatment
at 600 ◦C is presented in Figure 6. The size of most occurring aggregates of particles for
powder “Pyro” estimated as 5.0 µm, for powder “Pyro_05Poly”-12.1 µm and for powder
“Pyro_10Poly”-12.5 µm.
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Figure 6. Particle size distribution of powders prepared in mechanical activation conditions
from calcium lactate pentahydrate Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate
Ca(H2PO4)2·H2O, disaggregated in acetone medium, after heat treatment at 600 ◦C.

According to XRD data for ceramic samples based on powders “Pyro”, “Pyro_05Poly”
and “Pyro_10Poly” fired at 900 ◦C, 1000 ◦C, and 1100 ◦C, the phase composition of all sam-
ples was presented by β-calcium pyrophosphate β-Ca2P2O7. XRD data for ceramic samples
“Pyro”, “Pyro_05Poly”, “Pyro_10Poly” after firing at 900 ◦C, 1000 ◦C and 1100 ◦C can be
found in Supplementary Materials at XRD data for ceramic samples after firing at 1100 ◦C
are presented in Figure 7. So, we can conclude that presence of calcium polyphosphate
Ca(PO3)2 up to 10 mol% introduced via excess of monocalcium phosphate monohydrate
Ca(H2PO4)2·H2O cannot be detected using XRD analysis.
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Figure 7. XRD data for ceramic samples “Pyro”, “Pyro_05Poly”, and “Pyro_10Poly” fired at 1100 
°C: β—β-Ca2P2O7 (PDF card 9-346). 

At the same time, Figure 8 (“Pyro”), Figure 9 (“Pyro_05Poly”), and Figure 10 
(“Pyro_10Poly”) present SEM micrographs of surface and cross-section of samples, allow-
ing us to conclude the obvious influence of firing temperature and quantity of sintering 
additive on the microstructure of ceramics. 

(a) Pyro 900 (b) Pyro 1000 

Figure 7. XRD data for ceramic samples “Pyro”, “Pyro_05Poly”, and “Pyro_10Poly” fired at 1100 ◦C:
β—β-Ca2P2O7 (PDF card 9-346).

At the same time, Figure 8 (“Pyro”), Figure 9 (“Pyro_05Poly”), and Figure 10 (“Pyro_10Poly”)
present SEM micrographs of surface and cross-section of samples, allowing us to conclude
the obvious influence of firing temperature and quantity of sintering additive on the
microstructure of ceramics.
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Figure 7. XRD data for ceramic samples “Pyro”, “Pyro_05Poly”, and “Pyro_10Poly” fired at 1100 
°C: β—β-Ca2P2O7 (PDF card 9-346). 

At the same time, Figure 8 (“Pyro”), Figure 9 (“Pyro_05Poly”), and Figure 10 
(“Pyro_10Poly”) present SEM micrographs of surface and cross-section of samples, allow-
ing us to conclude the obvious influence of firing temperature and quantity of sintering 
additive on the microstructure of ceramics. 
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Figure 8. SEM micrographs of surface (a–c) and cross-section (d) of ceramic samples “Pyro” fired at 
900 °C (a), 1000 °C (b), and 1100 °C (c,d). 

The grain size of ceramics increased both with the growth in firing temperature and 
with decreasing Ca/P molar ratio of powder mixtures. The grain size of ceramic samples 
based on powder “Pyro” (Figure 8) increased from 1 µm after firing at 900 °C (Figure 8a) 
to 2 µm after firing at 1100 °C (Figure 8c,d). It should be noted that impressions from the 
microstructure of surface and microstructure of cross-section after firing at 1100 °C are 
very much similar. 
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Figure 8. SEM micrographs of surface (a–c) and cross-section (d) of ceramic samples “Pyro” fired at
900 ◦C (a), 1000 ◦C (b), and 1100 ◦C (c,d).
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based on powder “Pyro” (Figure 8) increased from 1 µm after firing at 900 °C (Figure 8a) 
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Figure 9. SEM micrographs of surface (a–c) and cross section (d) of ceramic samples “Pyro_05Poly”
fired at 900 ◦C (a), 1000 ◦C (b) and 1100 ◦C (c,d).
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Figure 10. SEM micrographs of surface (a–c) and cross section (d) of ceramic samples “Pyro_10Poly”
fired at 900 ◦C (a), 1000 ◦C (b), and 1100 ◦C (c,d).

The grain size of ceramics increased both with the growth in firing temperature and
with decreasing Ca/P molar ratio of powder mixtures. The grain size of ceramic samples
based on powder “Pyro” (Figure 8) increased from 1 µm after firing at 900 ◦C (Figure 8a)
to 2 µm after firing at 1100 ◦C (Figure 8c,d). It should be noted that impressions from the
microstructure of surface and microstructure of cross-section after firing at 1100 ◦C are very
much similar.

The grain size of ceramic samples based on powder “Pyro_05Poly” (Figure 9) increased
from ~0.5–1 µm after firing at 900 ◦C (Figure 9a) to ~2 µm after firing at 1100 ◦C (Figure 9c,d).
It should be noted that the sample despite the same development in grain size as it was for
ceramics based on powder “Pyro” looks sintered to a greater extent. Microstructure of cross-
section of the ceramic sample after firing at 1100 ◦C (Figure 9d) give us the opportunity to
conclude that it formed at the presence of liquid phase. Temperatures of firing 1000 and
1100 ◦C are higher than eutectic temperature (970 ◦C) in the CaO-P2O5 system according to
literature data [16]. So, the presence of calcium polyphosphate Ca(PO3)2 with the preset
quantity of 5 mol.% creates the conditions for liquid phase sintering in ceramics based on
powder “Pyro_05Poly”.

The microstructure of ceramics based on powder “Pyro_10Poly” (Figure 10) demon-
strates the influence of additive provoking liquid phase sintering. One can see grains with
dimensions 1–4 µm on the surface of the ceramic sample after firing at 900 ◦C (Figure 10a).
Some grains have an elongated form. After firing at 1000 ◦C (Figure 10b), grains on the
surface of the ceramic sample based on powder “Pyro_10Poly” have dimensions 2–4 µm;



Materials 2022, 15, 3105 15 of 23

after firing at 1100 ◦C on the surface, one can see grains 2–4 µm (Figure 10c). Images of
surfaces of ceramic samples bases on powder “Pyro_10Poly” after firing at 1000 ◦C and
1100 ◦C give us an opportunity to suppose that grains grew up in the direction above the
surface. These phenomena were quite possible because the firing temperature 1000 ◦C and
1100 ◦C were higher than both the melting point (~984 ◦C) of calcium polyphosphate and
eutectic point (~970 ◦C) in the quasi binary system Ca2P2O7-Ca(PO3)2 [16,54]. It is also
well known that vapor pressure of polyphosphate melts is quite high [55]. Micrograph
of cross-section (Figure 10d) of ceramics based on powder “Pyro_10Poly” after firing at
1100 ◦C does not show any grains and determination of their dimensions is not possible.
One can see closed pores with dimensions 1–4 µm. The microstructure of cross-section
gives us an opportunity to make a conclusion about presence of the melt in the ceramic
sample based on powder “Pyro_10Poly” during firing at 1100 ◦C.

Dependences of relative diameter (D/D0, %) and apparent density (g/cm3) of ceramic
samples from firing temperature are presented in Figure 11.
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Figure 11. Dependences of relative diameter (a) and an apparent density (b) of ceramic samples from
firing temperature.

Linear shrinkage (Figure 11a) increased for all samples with the growth in firing
temperature. The maximum linear shrinkage of ceramics based on powder “Pyro” was
~10% after firing at 1100 ◦C. The maximum linear shrinkage of ceramics based on powder
“Pyro_05Poly” was ~13% after firing at 1100 ◦C. The linear shrinkage of ceramics based on
powder “Pyro_10Poly” increased from 4% at 900 ◦C to 17% at 1100 ◦C.

Density of ceramic samples (Figure 11b) prepared from the powders “Pyro_05Poly”
and “Pyro_10Poly” increased with growth in firing temperature from 1.4 g/cm3 and
1.51 g/cm3 at 900 ◦C to 1.7 g/cm3 (55%) and 1.9 g/cm3 (60%) at 1100 ◦C, respectively. The
density of ceramic samples based on powders “Pyro” achieved 1.6 g/cm3 (50%) after firing
at 1000 ◦C; after firing at 1100 ◦C, this value became the same. In comparison with theoreti-
cal density of β-calcium pyrophosphate (3.12 g/cm3), we have to admit that as a result, we
prepared quite porous ceramic samples from fine powders of γ-calcium pyrophosphate.

The results of the MTT-test are presented in Figure 12. The MTT assay showed
the viability assay of NCTC L929 cells in the presence of liquid extracts from ceramic
samples under investigation, i.e., “Pyro”, “Pyro_05Poly”, and “Pyro_10Poly” after 48 h
cultivation sample and control. The Mann–Whitney U test was performed to assess the
significance of the effect of liquid extracts from ceramic samples under investigation
i.e., “Pyro”, “Pyro_05Poly”, and “Pyro_10Poly”, on the cell viability assay. There was
no significant difference between the groups “Pyro_05 Poly” and “Pyro_10 Poly” when
comparing control. The effect of liquid extracts from ceramic samples “Pyro” (*) obtained
results is significantly different from the control sample.
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Figure 12. The MTT viability assay of NCTC L929 cells in the presence of liquid extracts from ce-
ramic samples (firing temperature 1100 °C) under investigation, i.e., “Pyro”, “Pyro_05Poly”, 
“Pyro_10Poly”, control, and 10% DMSO after 48 h cultivation (mean ± SD, n = 10). 

The results of determining the viability of cells cultured on the surface of the studied 
materials on the second (Figure 13) and on the second and seventh day (Figure 14) con-
firmed that the proliferative activity of cells was observed on the surface of all the samples 
studied. 
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Figure 12. The MTT viability assay of NCTC L929 cells in the presence of liquid extracts from ceramic
samples (firing temperature 1100 ◦C) under investigation, i.e., “Pyro”, “Pyro_05Poly”, “Pyro_10Poly”,
control, and 10% DMSO after 48 h cultivation (mean ± SD, n = 10).

The results of determining the viability of cells cultured on the surface of the stud-
ied materials on the second (Figure 13) and on the second and seventh day (Figure 14)
confirmed that the proliferative activity of cells was observed on the surface of all the
samples studied.
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Figure 13. The appearance of the dental pulp stem cells on the surface of ceramic samples (firing 
temperature 1100 °C) under investigation, i.e., ceramic samples prepared based on powders “Pyro” 
(a,b), “Pyro_05Poly” (c,d), “Pyro_10Poly” (e,f), and control (g,h) after direct contact procedure for 
2 days. Fluorescent staining was made with SYTO 9 (a,c,e,g) and propidium iodide (b,d,f,h). Bar 
100 µm. 
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Figure 13. The appearance of the dental pulp stem cells on the surface of ceramic samples (firing
temperature 1100 ◦C) under investigation, i.e., ceramic samples prepared based on powders “Pyro”
(a,b), “Pyro_05Poly” (c,d), “Pyro_10Poly” (e,f), and control (g,h) after direct contact procedure
for 2 days. Fluorescent staining was made with SYTO 9 (a,c,e,g) and propidium iodide (b,d,f,h).
Bar 100 µm.
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Figure 13. The appearance of the dental pulp stem cells on the surface of ceramic samples (firing
temperature 1100 °C) under investigation, i.e., ceramic samples prepared based on powders “Pyro” 
(a,b), “Pyro_05Poly” (c,d), “Pyro_10Poly” (e,f), and control (g,h) after direct contact procedure for 
2 days. Fluorescent staining was made with SYTO 9 (a,c,e,g) and propidium iodide (b,d,f,h). Bar 
100 µm. 
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Figure 14. The appearance of the dental pulp stem cells of the surface of ceramic samples (firing
temperature 1100 ◦C) under investigation, i.e., “Pyro” (a,b), “Pyro_05Poly” (c,d), “Pyro_10Poly” (e,f),
and control (g,h) after direct contact procedure for 2 (a,c,e,g) and 7 (b,d,f,h) days. Fluorescent staining
was made with SYTO 9. Bar—100 µm.

Normal morphology of DPSC 32 cells is observed on all the studied samples. However,
the density of the cell layer on the surface of the studied samples after cultivation for two
or seven days was slightly lower than in the control (on the cover glass). This phenomenon
was apparently due to the conditions of initial cell adhesion. Nevertheless, the absence of
dead cells whose nuclei are stained with propidium iodide indicates the absence of cytotoxic
effects of the ceramic materials prepared based on powders “Pyro”, “Pyro_05Poly”, and
“Pyro_10Poly”. The density of the cell layer on the surface of the studied samples after
cultivation for seven days (Figure 14b,d,f) demonstrate the slight dependence from preset
Ca/P molar ratios in starting powders and ceramic samples. The lower the Ca/P molar
ratio, the lower the density of cell layer. This phenomenon can be explained with the more
acidic nature of ceramic samples (“Pyro_05Poly”, “Pyro_10Poly”) containing the calcium
polyphosphate phase in a very slight quantity not detected by XRD analysis.
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Figure 15 presents micrographs of cells fixed to the ceramic surface after cultivation
for two days.
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Figure 15. SEM images of cells on the surface of ceramic samples (firing temperature 1100 ◦C) under
investigation, i.e., “Pyro” (a), “Pyro_05Poly” (b), “Pyro_10Poly” (c) after 2 days of cultivation.

These images (Figure 15) demonstrate the good adhesion of cells on the surface of
β-calcium pyrophosphate β-Ca2P2O7 ceramic samples prepared based on powders “Pyro”
(a), “Pyro_05Poly” (b), and “Pyro_10Poly” (c).

Data from in vitro biological experiments confirmed the biocompatibility of the ob-
tained β-calcium pyrophosphate β-Ca2P2O7 ceramic materials and their ability to support
cells proliferation.

4. Conclusions

The original method of γ-calcium pyrophosphate γ-Ca2P2O7 powder preparation
was used. To prepare powders of γ-calcium pyrophosphate γ-Ca2P2O7 with preset molar
ratios Ca/P = 1, 0.975, and 0.95 powder mixtures based on calcium lactate pentahydrate
Ca(C3H5O3)2·5H2O and monocalcium phosphate monohydrate Ca(H2PO4)2·H2O were
treated in an aqua medium in mechanical activation conditions, dried, disaggregated in
acetone, and heat-treated at 600 ◦C. The addition of more excess of monocalcium phosphate
monohydrate Ca(H2PO4)2·H2O (with appropriate molar ratio of Ca/P = 1) to the mixture of
starting components resulted in lower dimensions of γ-calcium pyrophosphate γ-Ca2P2O7
individual particles. Porous ceramic samples with the relative density of 50% (“Pyro”),
55% (“Pyro_05Poly”), and 60% (“Pyro_10Poly”) in the CaO-P2O5 system were created from
prepared powders after firing at 1100 ◦C. The grain size of ceramic samples increased both
with the growth in firing temperature and with decreasing molar ratio Ca/P of powder
mixtures. Calcium polyphosphate (t melt =984 ◦C), which formed from monocalcium phos-
phate monohydrate Ca(H2PO4)2·H2O, acted similar to a liquid phase sintering additive. It
was confirmed by tests in vitro, that prepared ceramic materials with preset molar ratios
Ca/P = 1, 0.975, and 0.95 and phase composition presented by β-calcium pyrophosphate
β-Ca2P2O7 were biocompatible and could maintain bone cells proliferation.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15093105/s1. Figure S1: (XRD data for ceramic samples
“Pyro” fired at 900 ◦C, 1000 ◦C and 1100 ◦C: β—β-Ca2P2O7 (PDF card 9-346)); Figure S2: (XRD
data for ceramic samples “Pyro_05Poly” fired at 900 ◦C, 1000 ◦C and 1100 ◦C: β—β-Ca2P2O7 (PDF
card 9-346)); Figure S3: (XRD data for ceramic samples “Pyro_10Poly” fired at 900 ◦C, 1000 ◦C, and
1100 ◦C: β—β-Ca2P2O7 (PDF card 9-346)).
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