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Application of big data in 
ophthalmology
Zhi Da Soh1,2, Ching‑Yu Cheng1,2,3,4*

Abstract:
The advents of information technologies have led to the creation of ever‑larger datasets. Also known 
as big data, these large datasets are characterized by its volume, variety, velocity, veracity, and value. 
More importantly, big data has the potential to expand traditional research capabilities, inform clinical 
practice based on real‑world data, and improve the health system and service delivery. This review 
first identified the different sources of big data in ophthalmology, including electronic medical records, 
data registries, research consortia, administrative databases, and biobanks. Then, we provided an 
in‑depth look at how big data analytics have been applied in ophthalmology for disease surveillance, 
and evaluation on disease associations, detection, management, and prognostication. Finally, we 
discussed the challenges involved in big data analytics, such as data suitability and quality, data 
security, and analytical methodologies.
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Introduction

The advents in information technologies 
(IT), such as the internet-of-things 

(IoT) and artificial intelligence (AI), 
have fundamentally changed the way 
we live and work. The IoT allows data 
from interconnected digital devices (e.g., 
smartwatches and electronic medical 
records  [EMR]) to be amalgamated 
seamlessly in real time, leading to the 
creation of ever larger datasets or big 
data.[1]

Big data refer to the rapid aggregation 
of  a  large amount  of  diverse  and 
constantly changing data points that are 
too complex or “big” to be handled by 
traditional methods.[1] In general, big data 
is characterized by its volume  (how big), 
variety (how diverse), velocity (how fast), 
veracity  (how accurate), and value  (how 
useful).[2] Although “big” is emphasized in 
big data, the sheer amount of data per se do 

not provide significant advantages. Instead, 
it is the ability to draw in‑depth knowledge 
from big data that is germane.

In  this  aspect ,  the  advents  of  AI , 
especially its sub‑domains of machine 
learning  (ML) and deep learning  (DL), 
have been instrumental in translating the 
messy “sea of information” in big data into 
meaningful and actionable insights.[3,4] For 
example, although conventional statistical 
methods remain imperative in analyzing 
structured quantitative data, they are 
unable to analyze unstructured data like 
text recordings in medical records and 
scan images. In contrast, ML techniques 
such as natural language processing 
and convolutional neural network were 
developed specifically to analyze free 
text and images respectively.[5,6] This 
allows the full spectrum of data collected 
to be analyzed simultaneously to draw 
insights that were not possible previously. 
Consequently, the application of AI 
techniques to big data are seen as the 
backbone of mankind’s fourth industrial 
revolution.[7]
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Benefits of Big Data Analytics

The ability to leverage big data may bring about 
significant benefits to biomedical research, clinical 
practice, and health system strengthening.[8,9] First, 
big data analytics may expand the boundaries of 
traditional research methodologies and enhance our 
ability to generate new knowledge. Big data are better 
powered statistically to generate scientific insights into 
hypotheses that may otherwise by unanswered due to the 
prohibitive cost of primary data collection or answered 
inadequately due to limited funding and sample 
size.[10,11] This includes detection of novel biomarkers, 
analysis of subtle or inconclusive risk factors, longer 
term observation on pharmacodynamics, and greater 
understanding of disease pathogenesis through the 
inclusion of socio‑economical, environmental, and 
molecular data.[9,12] In addition, the diversity of big 
data further aids in improving the generalizability of 
findings.[11,12]

Second, big data analytics may inform and improve 
clinical practice through the development of 
sophisticated algorithms.[1] These algorithms may come 
in the form of a screening tool for timely detection, or 
as a decision support tool that provides diagnostics 
and/or therapeutic suggestions based on real‑time 
analysis of aggregated inputs from fellow physicians 
and/or other resources.[9] As a result, these algorithms 
aid in harmonizing the standard‑of‑care among 
practitioners.[10]

Third, big data analytics may be utilized to identify 
gaps and evaluate the quality and efficiency of public 
health policies and healthcare delivery.[12] For example, 
big data analytics is projected to create a value of more 
than US$300 billion annually for the United States (US) 
healthcare system, the majority of which would come 
in the form of reduced healthcare expenditure.[13] 
Furthermore, big data obtained from digital devices, such 
as smart watches, are now delivering health information 
directly to individuals. This not only empowers 
individuals to play a more active role in managing their 
health but may also alter the way in which health‑care 
services are sought and delivered.[10]

Sources of Big Data

Ophthalmology is well‑placed to benefit from the insights 
curated from big data analytics due to the sheer amount 
of data generated in clinical and research settings. This 
includes clinical and surgical notes, pharmacology 
records, reimbursement claims, test measurements (e.g., 
refractive error, intra‑ocular pressure), two‑dimension 
images (e.g., fundus photographs), and three‑dimension 
scans (e.g., optical coherence tomography [OCT]).

Electronic medical records and data registry
Medical records and auxiliary test results are increasingly 
digitalized into electronic format (i.e., EMR) in healthcare 
settings across the world.[14] The advents of IoT further 
enable different EMRs and databases to be linked 
automatically in real‑time.[15] This creates a “one‑stop” 
portal and data registry that allows physicians to track 
the pattern and effectiveness of care, administrators 
to identify gaps and efficiency in service delivery, and 
researchers in analyzing disease trends in real‑world 
settings.

Intelligent Research in Sight  (IRIS) is a cloud‑based 
ophthalmic data registry developed in 2014 by the 
American Academy of Ophthalmology.[16] The aim 
of IRIS was to improve the provision of eye care 
services, promote population health through adequate 
eye coverage, and generate evidence‑based scientific 
knowledge.[17] Clinical data from participating clinics 
are aggregated automatically in real‑time and comprise 
fifteen control measures and 22 outcome measures from 
over sixty million patients.[17]

The Sight Outcomes Research Collaborative (SOURCE) 
ophthalmic data registry was initiated by various 
academic ophthalmology institutions across the US to 
share de‑identified EMR and diagnostic test data for 
research and quality improvement projects.[18]

The Save Sight Registries (SSR) is made up of different 
specific registries, such as the Fight Corneal Blindness!, 
Fight Glaucoma Blindness!, Fight Tumor Blindness!, 
and Fight Retinal Blindness  (FRB!).[19] The FRB! is the 
flagship database of SSR and was developed in 2009 
to track data on the outcomes of retinal diseases (e.g., 
age‑related macular degeneration and macular edema) 
from Asia, Europe, and the Middle East.[20] The FRB! 
further incorporates data from observational studies 
to establish treatment regimens that are feasible and 
effective for routine clinical practice. This is unlike 
treatment regimens used in pivotal clinical trials where 
patients and practitioners are unlikely to comply even 
if they wanted to.[21]

Administrative database
In healthcare, administrative and insurance databases 
provide a vital source of information for epidemiology, 
pharmacoepidemiologic and health economic 
evaluations.[12] For example, insurance databases have 
been used to identify surgery trend and safety profiles 
of ophthalmic drugs.

In Europe, the EPISAFE collaboration program utilized 
the French national health insurance database, the 
système national d’information interrégimes de 
l’assurance maladie, to evaluate the epidemiology and 



Taiwan J Ophthalmol - Volume 13, Issue 2, April-June 2023	 125

safety of interventions used in ophthalmology.[22] Other 
administrative databases used for similar evaluation 
in the West include the US Medicare,[23] the UK clinical 
practice research datalink,[24] and the régie d’assurance 
maladie du québec in Canada.[25]

In Asia, data from the national health insurance program 
in South Korea and Taiwan are frequently utilized for 
research purpose.[26,27] In South Korea, a database was 
created to include 2%  (~1 million) of data from the 
Korean National Health Insurance Service, along with 
other cohort studies to provide de‑identified data on 
claims, health screening, and mortality.[27]

Research consortium
Research consortium or network is collaborative 
initiatives that bring researchers across different domains 
and/or countries together in a shared platform to 
build and share research capabilities. In epidemiology, 
consortia research provides an aggregated view of 
the burden of diseases and its impact in a particular 
geographical region. In addition, the increased statistical 
power from combined databases is often used to evaluate 
research questions that are answered inadequately by 
individual groups.

Internationally, the Vision Loss Expert Group (VLEG), 
which comprises of 78 leading ophthalmologists, 
optometrists, and epidemiologists from across the 
world, was formed by the Global Burden of Disease in 
2007.[28] The aim of VLEG was to conduct retrospective 
and prospective, consistent, and comparative systematic 
reviews on the burden of disease, injuries, and risk 
factors due to vision impairment. Other international 
consortium includes the Meta‑analysis for Eye Disease 
study group,[29] the International Rare Disease Research 
Consortium,[30] and the International Eye Disease 
Consortium.[31]

In Europe, the European Eye Epidemiology  (E3) 
consortium consists of 29 study groups from twelve 
European countries.[32] This includes population‑based 
studies, such as the Rotterdam study from the 
Netherlands, and the Guttenberg Health study from 
Germany. The E3 consortium was set up to promote 
research collaboration and sharing of data in Europe, 
and to focus on standardizing methods for future 
research.

In Asia, the Asian Eye Epidemiology Consortium (AEEC) 
is a collaborative network of forty population‑based 
study groups from nine Asian countries.[33] This includes 
the Beijing Eye Study from China and the Singapore 
Epidemiology or Eye Diseases study from Singapore.[34] 
The overall aim of AEEC was to utilize big data analytics 
to generate deeper insights into the trends and associated 

risk factors of major age‑related eye diseases among 
Asians.

Biobank
Handling of biospecimens has evolved from storage in a 
few freezers and manual handling, to large repositories 
with computerized databases and robotic processing of 
samples. These advancements led to the emergence of 
biobanks, which may include biological samples from 
epidemiology studies, clinical trials, and diagnostic 
studies.

The UK biobank is a large‑scale multi‑site cohort study 
that was established to investigate the effects of genetic, 
lifestyle, and environmental risk factors on a wide 
range of diseases.[35,36] The UK biobank eye and vision 
data include phenotypic data, biomarker variables, 
dense genotyping, and lifestyle variables, as well as a 
large collection of fundus photographs and OCT scan 
images. The open‑access nature of the UK biobank 
allows comparative research to be conducted, and the 
rich diversity of data allows for the evaluation of novel 
disease etiology and biomarkers.

Importantly, data from the UK biobank has been made 
available for application with a fee, unlike the other 
sources described above. The application includes 
selecting the data fields required, and indicating the 
personnel with access to the data.[37] Thereafter, a material 
transfer agreement will be initiated along with a fee 
based on the number and type of data fields applied. In 
addition, there are also various open‑source databases 
made available for ophthalmology research.[38] This 
includes fundus photographs from the Asia Pacific 
Tele‑Ophthalmology Society (n = 5590 images) and Eye 
Picture Archive Communication System  (n  =  88,702), 
and OCT scans from Duke OCT  (n  =  38,400) and 
Kermany (n = 109,312).[38]

Hybrid databases
Big data from different sources may not be confined 
solely to one of the above categories. For example, 
the Vision and Eye Health Surveillance System in 
the US incorporates data from the IRIS data registry, 
along with other national surveys, population‑based 
studies, and administrative databases.[39] This virtual 
surveillance system was initiated to estimate the 
prevalence of vision loss and eye diseases at the local 
and national levels, identify disparities in access to eye 
care, monitor trends of eye disease, and promote eye 
health education.

Application of Big Data

Big data analytics is gaining increased prominence in 
healthcare and has been applied in eye care for disease 
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surveillance, and evaluation on disease associations, 
detection, management, and prognostication [Figure 1].

Service utilization and improvement
Big data analytics have been applied to analyze the 
utilization of eye care services, and the profile of 
patients seeking eye care services. In India, the L. V. 
Prasad Eye Institute developed and utilized an EMR 
system to evaluate the distribution of patient workload, 
demographic characteristics of patients, and the type 
and frequency of ocular diseases seen in its operation 
network.[40,41]

This system has also been used to evaluate the profile 
and magnitude of diabetic retinopathy  (DR) in its 
patient pool,[42] and in assessing the biogeographical 
distribution of senile cataracts and its association 
with environmental factors, such as terrain altitude 
and ultraviolet exposure.[43] These analyses show that 
although there was gender equality in seeking eye care 
services,[40] increased provision of eye care services in 
high altitude terrains may be needed to improve the 
detection of senile cataracts.[43] Furthermore, anterior 
segment diseases and refractive errors comprised 

two‑thirds of consultations, suggesting the need for more 
resource allocation in these domains.[40] As a result, this 
application informed administrators and physicians on 
the gaps in service provision, barriers to access eye care 
services, and resource planning.

In addition, data registries have been used to inform and 
improve operational processes. For example, SOURCE 
data were used to develop an algorithm that could 
search for ocular diseases based on both structured and 
unstructured data instead of relying solely on billing 
codes.[44] This algorithm was subsequently tested on 
its effectiveness in searching for pseudo‑exfoliation 
syndrome and achieved a positive predictive value of 
95% and negative predictive value of 100%. Crucially, 
60% of cases identified would have been missed if 
the algorithm had relied solely on billing codes. The 
SOURCE data were further used to develop an algorithm 
to triage patient appointments during the COVID‑19 
pandemic.[45] This algorithm weighted the risk of disease 
progression due to delayed care  (i.e., postponement 
of appointment) to the morbidity risk of COVID‑19. 
Consequently, this algorithm was not only applied to 
identify cases that could be safely postponed during the 

Figure 1: Input and output of big data analytics
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pandemic but also in prioritizing appointments during 
the reopening phase.

Likewise, a patient appointment system from a university 
hospital EMR was used in simulation analyses, and 
the best model derived was found to reduce the total 
waiting time of patients by 21% upon implementation.[46] 
Furthermore, EMR data from a glaucoma clinic have 
been used to establish reference values for monitoring 
glaucoma in a virtual clinic.[47]

Disease surveillance
Several big data analytics have been applied to 
evaluate the burden and impact of eye diseases 
on various populations. For example, EMR data 
from 28 optometry centers were combined with 
an administrative database of a large European 
lens manufacturer to estimate the distribution of 
refractive error  (Rx).[48] When matched by age and 
gender, estimates obtained from this approach were 
comparable to those reported by the E3 consortium, 
suggesting the viability of using these big data sources 
as an alternative to population surveys.

The E3 consortium further reported that Rx affected 
slightly over half of all European adults with the greatest 
burden being myopia.[49] In addition, the prevalence of 
myopia was found to be higher in later birth cohorts and 
was associated with higher education levels.[50] Likewise, 
the prevalence of high myopia and high progressive 
myopia was reported to impose a relatively high burden 
on adults in the US based on data triangulated from 
the IRIS registry, US population census, and NHANES 
database.[51]

The VLEG utilized further aggregated data and 
estimated that 65% of blind and 76% of moderate 
and severe visual impairment  (VI) cases were either 
preventable or treatable.[52] This big data analysis 
further identified the higher risk of blindness among 
women, and the increasing risk of blindness due to 
Rx and age‑related diseases  (e.g., age‑related macular 
degeneration, glaucoma). The VLEG has further reported 
on the effective coverage rate for Rx globally,[53] as well as 
the prevalence and cause of blindness and VI in various 
geographical regions.[54‑57]

Disease association
Big data analytics have also been applied to evaluate 
the socioeconomical, systemic, and genetic risk factors 
of eye diseases. For example, data from the UK biobank 
found that moderate VI was associated with older age, 
and observed more in females and ethnic minorities.[58] 
In addition, all causes of VI were associated with poorer 
social outcome measures, as well as impaired general and 
mental health.[59] These findings highlight the importance 

of considering non‑clinical variables in the clinical course 
of eye diseases and the comorbidities of VI.

The genetic data available in UK biobank has also 
been used, either in silos or in combination with other 
genetic databases, to assess the risk of age‑related eye 
diseases.[60‑63] These databases include the Australian 
and New  Zealand Registry of Advanced Glaucoma, 
the National Eye Institute Glaucoma Human Genetics 
Collaboration consortium, and the International 
Glaucoma Genetic consortium.[64] For example, in 
glaucoma, the genome‑wide analysis identified 101 
significant single nucleotide polymorphisms associated 
with intraocular pressure, and the top decile of allele 
score was associated with a 5.6‑fold increase in odds 
of glaucoma.[65] Using genome‑wide polygenic risk 
score  (PRS), the prevalence of primary angle closure 
glaucoma  (PACG) was observed to increase with 
each decile of higher PRS, and the use of psychotropic 
medication was further associated with a higher risk of 
PACG at each decile of PRS.[61] In a separate work, the 
top PRS decile reached an absolute risk for glaucoma 
10 years earlier than the bottom decile, and had a 15‑fold 
increase in the risk of developing advanced glaucoma.[60] 
Separately, the AEEC has aggregated data to evaluate 
findings that were inconclusive from individual studies. 
For example, the consortium’s meta‑analysis suggested 
the association between chronic kidney disease and 
primary open‑angle glaucoma (POAG) may be present 
only among East Asians.[66] In addition, a separate 
meta‑analysis from AEEC confirmed the inverse 
association between body mass index and DR reported 
in three previous studies that were not included in their 
meta‑analysis.[67] When analyzed individually, this novel 
but rather controversial finding may be downplayed due 
to the lack of statistical power. However, the finding 
from AEEC increased credibility and the importance of 
further evaluation.

In addition, AEEC reported different normative 
distributions of retinal nerve fiber layer (RNFL) among 
Asians and suggested the need for population‑specific 
normative databases.[33] The E3 consortium further 
reported on the association between systemic vascular 
and neurovascular diseases and reduced peripapillary 
RNFL thickness,[68] while data from the UK biobank 
suggested an association between thinner RNFL and 
poorer cognitive function.[69]

Disease detection
Big data is particularly useful in the development of 
deep‑learning algorithms for disease detection. In 
ophthalmology, DL algorithms are often developed to 
detect diseases, such as DR and glaucoma, from ocular 
images.[70,71] For example, SELENA + is a DL algorithm 
that was approved in Singapore for screening DR. This 
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algorithm was developed using close to half a million 
fundus photographs from the Singapore National DR 
Screening Programme and ten cohort studies.[72]

In addition, EMR data from eight ophthalmic centers and 
data from two cohort studies were utilized to develop 
an ML algorithm to predict the development of high 
myopia among school children in China.[73] This ML 
algorithm achieved an area‑under‑the‑curve of >0.80 in 
predicting the onset of high myopia (defined as spherical 
equivalent [SE] ≤‑6D) in 3, 5 and 8 years, as well as the 
onset of high myopia at 18 years old in both internal 
testing and external validation. Furthermore, 95% of 
predicted Rx by the algorithm were within 0.50–0.80D 
of the true SE measured at year 8.

Disease management
Big data obtained from real‑world registries are often used 
to analyze the pattern of care among fellow physicians in 
real‑world practice. For example, data from IRIS showed 
that 73% of myopic choroidal neovascularization cases 
were treated within 1 year of diagnosis, of which 99.3% 
were treated with anti‑vascular endothelial growth 
factor  (VEGF) injections.[51] The FRB! Data further 
showed that the prescription rate for Ranibizumab and 
Aflibercept was similar among physicians in Australia 
although the former was prescribed more often in older 
patients while the latter was in eyes with larger lesions.[74]

In addition to management pattern, longitudinal 
analysis of prescription trends has also been reported. 
For example, FRB! data showed that the use of macular 
lasers and intra‑vitreal triamcinolone in treating 
diabetic macular edema (DME) declined progressively 
after 2009.[75] This decline coincided with the shift in 
preference towards anti‑VEGF injection. By 2015, 99% 
of DME were treated with anti‑VEGF, with the choice 
of anti‑VEGF changing from Bevacizumab (2009–2011) 
to Ranibizumab (2012–2015) and Aflibercept from 2016 
onwards.

Furthermore, pattern‑of‑care in academic and 
non‑academic settings has also been compared using 
big data from data registry. For example, data from 
IRIS showed more black patients and more severe 
cases of POAG cases were seen in academic settings.[76] 
Gonioscopy, pachymetry, and VF testing were performed 
more often in academic settings, as well as shunt 
procedures as compared to microinvasive glaucoma 
surgery and endoscopic cyclophotocoagulation were 
preferred in nonacademic settings. Such analyses not 
only summarize the changing of pattern‑of‑care over 
time but also highlight disparities in care provision. For 
example, gonioscopy remained under‑performed in 
nonacademic settings despite the continued emphasis 
on the AAO’s preferred practice patterns.

Treatment outcome
Big data analytics have been applied extensively to 
evaluate the effectiveness and safety of interventions 
in real‑world practice, especially in cataract surgery 
and anti‑VEGF treatment. For example, the SOURCE 
data showed that mean signed prediction errors in 
the modern intra‑ocular lens  (IOL) formulas were 
significantly affected by gender, with more hyperopic 
prediction in males and vice versa for females.[77] 
This suggested the need for gender consideration in 
optimizing lens constantly to reduce prediction errors 
in formulas such as SRK/T and Hoffer Q. Separately, 
data from IRIS showed that 1.3% of monofocal toric 
IOL implants required repositioning in 1st  year 
postsurgery, with younger adults at higher risk.[78] The 
risk of repositioning was also higher in TECNIS (3.1%) 
as compared to Acrysof toric IOL (0.6%). Furthermore, 
analysis on IRIS and the US Medicare database showed 
that the rate of endophthalmitis was between 0.08% 
and 0.14%, respectively.[79] The risk of endophthalmitis 
4 weeks’ postsurgery was similar between people who 
underwent sequential cataract surgery in both eyes and 
those with cataract surgery delayed by ≥1 day in the 
second eye.[80]

In anti‑VEGF treatment, data from FRB! showed that 
eyes treated with Bevacizumab initially before switching 
to either Ranibizumab and Aflibercept over a 1‑year 
period did not improve visual outcomes despite further 
reduction in macular thickness.[81] Similarly, data from 
IRIS showed that all 3 types of anti‑VEGF improved 
visual acuity similarly in neovascular age‑related 
macular degeneration over 1 year of mono‑therapy,[82] 
while FRB! data further showed similar vision outcomes 
over 3 years.[83] In addition, similar vision outcome was 
also observed at month 12 and 24 in fixed bimonthly 
and treat‑and‑extend regimen.[84] Nonetheless, higher 
rates of non‑infectious endophthalmitis were observed 
with Bevacizumab as compared to Ranibizumab and 
Aflibercept.[85]

Interpretation and Consideration

Although significant benefits can be derived from 
big data analytics, careful consideration on the 
infrastructures and processes needed to adopt big data 
and understanding the potential limitations and biases 
in results interpretation is imperative.

Data quality and suitability
First, the aggregation of large and diverse data is 
inherently messy, especially if appropriate systems 
and handling protocols are not in place.[86,87] This raises 
questions with regard to the quality and suitability of 
big data for analytical purposes. For example, EMR was 
not developed for research purposes, and recording 



Taiwan J Ophthalmol - Volume 13, Issue 2, April-June 2023	 129

in a standardized format is not mandatory, leading to 
incomplete documentation and difficulties in combing 
disparate data.[12,88] In addition, the majority of EMR 
data are likely to be unstructured (e.g., free text), which 
may be missed in systems that rely solely or heavily on 
diagnostic codes, such as the international classification 
of diseases codes, during data extraction.[88,89] In 
addition, misclassification, error in coding, and 
inadequate representation of diseases may happen 
during documentation.[89]

Data security
Second, data security is a major concern in big data 
analytics, and proper data governance and ethics 
are imperative to build trust in using this tool.[87] For 
example, protocols and audit trail to ensure only 
de‑identified data are used for evaluation are needed 
to preserve data privacy.[12] Furthemore, these large 
databases are attractive targets for cyber theft.[90] Thus, 
a secured and scalable data security network, along 
with protocols to handle cyber threats, must be in place 
beforehand.

Data analysis
Third, the results obtained from bigger data analysis 
should be interpreted with caution. For instance, the 
sheer amount of data in big data analytics inherently 
results in smaller P values, thereby indicating statistical 
significance.[91] However, considerations of the clinical 
significance or implications remain vital during 
interpretation.[91] In addition, it is important to look out 
for undesirable practices, such as performing multiple 
testing to obtain p‑significant outcomes, in big data 
analytics.[92] Also known as p‑hacking or p‑fishing, 
these practices increase the risk of false‑positive 
results that are not only not reproducible but also 
misleading.[93]

Furthermore, common research considerations, such 
as confounding, selection and measurement bias, or 
reverse causation, are not eliminated by simply using 
big data.[93] The adage “garbage in, garbage out” remains 
relevant in big data analytics. Thus, careful consideration 
of study methodology remains imperative in mitigating 
these shortcomings. For example, EMR data depend 
on the catchment area of the institution and may not 
appropriately or adequately represents the general 
population for epidemiology evaluation.[12] Similarly, 
EMR from a specialized institution contains much higher 
risk of detection bias as compared to a general practice, 
and as such, may be more appropriate in analyzing risk 
factors rather than the burden of diseases. Nonetheless, 
study design and statistical methods to mitigate these 
errors are available. This includes the use of propensity 
score adjustment, and the use of sensitivity and stratified 
analyses when appropriate.[94,95]

Conclusion

Ophthalmology is well‑placed to benefit from big 
data. Multiple sources of big data already exist and are 
increasingly utilized to expand research capabilities, 
inform clinical practice, and improve service provision. 
Nonetheless, big data must be harnessed systematically 
in safe and secured infrastructures, and proper 
consideration for data suitability and quality, as well as 
analytical methodologies, are imperative.
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