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Abstract

Social network analysis is increasingly applied to understand animal groups. However, it is

rarely feasible to observe every interaction among all individuals in natural populations.

Studies have assessed how missing information affects estimates of individual network

positions, but less attention has been paid to metrics that characterize overall network

structure such as modularity, clustering coefficient, and density. In cases such as groups

displaying fission-fusion dynamics, where subgroups break apart and rejoin in changing

conformations, missing information may affect estimates of global network structure differ-

ently than in groups with distinctly separated communities due to the influence single individ-

uals can have on the connectivity of the network. Using a bat maternity group showing

fission-fusion dynamics, we quantify the effect of missing data on global network measures

including community detection. In our system, estimating the number of communities was

less reliable than detecting community structure. Further, reliably assorting individual bats

into communities required fewer individuals and fewer observations per individual than to

estimate the number of communities. Specifically, our metrics of global network structure

(i.e., graph density, clustering coefficient, Rcom) approached the ‘real’ values with increasing

numbers of observations per individual and, as the number of individuals included

increased, the variance in these estimates decreased. Similar to previous studies, we rec-

ommend that more observations per individual should be prioritized over including more

individuals when resources are limited. We recommend caution when making conclusions

about animal social networks when a substantial number of individuals or observations are

missing, and when possible, suggest subsampling large datasets to observe how estimates

are influenced by sampling intensity. Our study serves as an example of the reliability, or

lack thereof, of global network measures with missing information, but further work is

needed to determine how estimates will vary with different data collection methods, network

structures, and sampling periods.
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Introduction

Social network analysis permits an in-depth understanding of population-level social structure

and has been widely applied to study the organization of animal groups [1–3]. Social groups

may vary in size, composition, and structure, and large groups may show hierarchical organi-

zation, with higher order groups comprised of subgroups [4,5]. These subgroups are not

always static in structure, demonstrating fission-fusion dynamics, as they merge and split

through space and time, and consistencies in subgroup composition may result in the delinea-

tion of social communities [6–8]. Social communities, hereafter ‘communities’, are defined by

the appearance of social preference among discrete clusters of individuals that associate more

strongly with members of the same community than with members of other communities [9].

For fission-fusion societies, individuals can interact to varying extents with conspecifics from

multiple social communities making the identification of community boundaries difficult.

Community structure can still be delineated, when sufficient data exists, based on repeated or

consistent subgroup composition and associations among individuals. An understanding of

the degree to which associations between individuals persist, and the locations where associa-

tions occur, can provide insight into whether community formation is the result of passive

processes such as use of a common resource, or active processes such as social preference

among conspecifics, among other factors [1,2,10–12]. Testing hypotheses about social struc-

ture in groups with fission-fusion dynamics requires sufficient data on interactions among

individuals to reliably assign community membership [3].

A common challenge for studies using social network analysis in natural systems is collect-

ing enough data to reliably estimate elements of the group’s social structure, particularly as

they relate to social communities. Specifically, the proportion of a group, or total number of

individuals sampled, and the number of observations per individual must be sufficient to

reflect the dynamics of the true network. In a recent review of social network literature, Web-

ber & Vander Wal [3] identified the median number of individuals included per network was

15 (range 4–1406), but many studies did not indicate what proportion of the overall popula-

tion this may represent. Further, the minimum number of observations included per individ-

ual varies widely among studies and can have important effects on network estimates. For

example, based on assessment of individual network metric performance, Farine and Strand-

burg-Peshkin [13] recommended that there should be at least 20 observational periods where a

pair of individuals is observed either together or apart [see also 8,14–17]. Other studies select a

median number of observations per individual as a decision rule [i.e., 9], which, in well sam-

pled populations, may unnecessarily omit individuals or pairs of individuals that have fewer

observations than the designated threshold. In contrast, in poorly sampled populations, the

median number of observations per individual may retain individuals that do not have suffi-

cient information with which to estimate their network position. Generally, increasing the

minimum number of observations required per individual reduces the number of individuals

that can be included in an analysis, effectively decreasing the estimated network size and

increasing the proportion of the population that is analytically considered as ‘missing’ [18].

Multiple studies have assessed the effect of missing data on the estimation of animal social net-

works, largely focusing on impacts on estimates of an individual’s position in the network

(e.g., degree, centrality) [14,15,17,19]. Specific thresholds can vary based on the network met-

rics of interest and the type of network, but important broad patterns relating to the effect of

missing data are consistent across most studies. Across all network sizes, studies have sug-

gested minimums of 10–50% of the population sampled and unsurprisingly, the more observa-

tions that can be obtained of these individuals, the better [14,17]. However, Davis et al. [20]

also note that in some systems, increased sampling may not be a priority because at some
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point networks become ‘saturated’ such that further sampling does not markedly increase esti-

mate accuracy unless all individuals or interactions can be observed, a nearly impossible feat in

many animal groups. Importantly, requirements of a minimum number of observations per

dyad or median threshold should vary with the type and timing of the social system being stud-

ied [19], the behaviour or interaction of interest and the method of sampling that is applied

[20]. Thus, recommendations may vary among different social systems (e.g., those displaying

fission-fusion or multilevel dynamics). It has also been recommended to more intensely sam-

ple a smaller proportion of the population when resources are limited [14,17]. However, for

fission-fusion societies, the potential for ephemeral social connections, which can impact the

functions and consequences of animal societies (e.g., information transfer and disease trans-

mission [21]), differs from societies with more stable community composition. Meanwhile,

too few observations per individual may lead to spurious estimates of the strength of connec-

tions between individuals and approximations of network structure. Further work is needed to

determine the suitability of these recommendations across different types of animal groups.

We therefore expect a need to balance minimum requirements for observations to accurately

assess individual connections, while also including as many individuals as possible to model a

larger proportion of the overall population.

When investigating a new system, various strategies can be applied to assess the robustness

of estimates to missing data, and to determine what amount of data is needed for a desired

level of confidence. Bootstrapping is the simplest method to apply, where aspects of the net-

work are repeatedly assessed to derive multiple estimates of a statistic to characterize its distri-

bution [14,22]. This technique, particularly that of resampling with varying numbers of

samples included, is integral to the community assortativity estimate process described by Shi-

zuka and Farine [22]and has also been applied to assess the robustness of network measures

[14,17]. Further, a variation of bootstrapping, jackknifing, in which data is systematically

removed, is commonly used to assess the error associated with estimates of lagged associate

rates [8]. Bayesian methods can be applied to assess the uncertainty around edge weight esti-

mates [13].

Here, we use bootstrapping to examine the impact of varying number of observations per

individual and number of individuals included in social network analysis on estimates of

global network structure, particularly as they relate to the presence of communities, in a group

displaying fission-fusion dynamics. Generally, it is expected that sample size is inversely corre-

lated with the discrepancy between the true network structure and estimates of it, but that rea-

sonable estimates can be obtained with missing data. Using an empirical dataset of a large

group of little brown myotis (Myotis lucifugus) displaying fission-fusion dynamics, we quanti-

fied the impacts of two distinct sampling considerations on estimates of global network met-

rics and community structure. Specifically, we assessed how variation in each of the number of

individuals and number of observations per individual affected the discrepancy of the sub-

sampled network in estimates of graph density, clustering coefficient, the number of commu-

nities, and the assortment of individuals into communities.

Materials and methods

Sample population

We used data from a long-term study of wild little brown myotis roosting in artificial struc-

tures at Salmonier Nature Park, Newfoundland, Canada in 2016. Individuals were implanted

with passive integrated transponder (PIT) tags and readers (Trovan, Ltd. United Kingdom)

were deployed at 11 roost boxes within a�1 km2 area of the park, each of which were regularly

used throughout the study period. Other natural and anthropogenic roosts existed in the area
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that were not monitored. Readers recorded observations of when individuals entered and

exited roost boxes and the last observation before sunrise constituted the assigned daytime

roost locations of individual bats. Dyadic associations were based on the gambit-of-the-group

assumption [8], such that individuals were assumed to associate if they roosted in the same

box on the same day. This assumption in commonly used in studies of bat roosting behaviours

[examples include 23–25]. It is known that there were missing observations and that at least

50% of individuals in the population were not tagged nor included in this study. Although it

may, this dataset is not intended to represent the true population as characterization of the

actual true population is not the purpose of this study. Rather, our aim is to quantify differ-

ences in estimates between samples where all available information is included, to those with

only partial data.

All animal handling protocol was approved by the animal care committee of Saint Mary’s

University, Halifax, Nova Scotia (AUP #16–12). Wildlife scientific research permits were also

obtained from the Government of Newfoundland and Labrador, Department of Fisheries and

Land Resources, Forestry and Wildlife Branch (# WLR2016-12).

Generating the ‘observed’ network

All detections were filtered for adult female bats that were each observed on� 40 days, which

resulted in 99 individuals. For each individual, 40 of their observations (day records of an indi-

vidual bat in a particular roost) were randomly selected to generate a balanced dataset (all indi-

viduals observed an equal number of times, albeit not on the same days) from which we

calculated an ‘observed’ social network that spanned 131 observation days. These numbers

were selected to provide more observations per individual than has been assessed in other

studies, e.g., Franks et al. [14] which assessed reliability up to a maximum of 20 censuses, while

still allowing multiple levels of sub-setting of the number of individuals included. Although a

network with a maximum of 40 observations removes additional information on individuals

in an already incomplete dataset, we used this threshold to remove any impact of individuals

with uneven numbers of available observations. Further, the ‘observed’ network was not

assumed to be a reliable estimate of the true underlying population, and as such, all findings

and implications focus on discrepancies between metrics of the observed network with esti-

mates based on sub-sampled networks.

From our data, we calculated an observed network based on the instances of co-roosting,

which represent individuals observed in the same roost on the same day. We first calculated

the Half Weight Index (HWI) [8] between all dyads based on the proportion of days spent

roosting together or apart using package “asnipe” [26]. The HWI represented edges in the net-

work. We selected HWI, as opposed to the simple ratio index (SRI), as our association index of

choice based on the sampling regime of our study. Although SRI is being increasingly recom-

mended as an association index, the HWI accounts for missing individuals within a given sam-

pling period [8]. In this system, it is likely there are a number of unmonitored roosts within

the study area and given we allowed for a maximum of 40 observations out of a possible 131

nights on which observations were possible, it is reasonable to expect there are many days

when only one bat in a given dyad is detected. Based on our observed network, we calculated

three global social network metrics. First, we calculated modularity (Q), which is a measure of

the number of edges within communities compared to the expected number if all edges were

placed randomly [5]. Based on network modularity, we estimated the number of communities

using the “igraph” package cluster_fast_greedy community detection algorithm [27], a process

which iteratively divides the network until the ratio of within to among community connec-

tions peaks. Second we calculated the clustering coefficient (function: transitivity), defined as
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the proportion of triads that have three edges compared to the number of triads with two

edges [28]. Third, we calculated graph density (function: edge_density), defined as the number

of observed edges across the whole network divided by the number of possible edges [28].

Both graph density and clustering coefficient were calculated using the R package “igraph”

[27].

We then assessed evidence for the division of the network into communities. We generated

1000 random networks using “spatsoc” [29] to randomly swap individuals among roosting

subgroups on a given day, while maintaining the number of available roosting boxes and indi-

viduals constant within days, generating distributions of Q, clustering coefficient, and graph

density values. These parameters were held constant to create null model networks that rea-

sonably approximated possible network structure if all roosting decisions were random. A p-

value was calculated, via Monte Carlo methods, based on the percent of random network Q

values that fell above that of the original ‘observed’ network, where a p-value of< 0.05 indi-

cated significant evidence for community structure. This measure may only support an infer-

ence that there is evidence for community structure and does not provide confidence in the

estimated number of communities or the assignment of individuals to these communities.

Next, using a metric proposed by Shizuka and Farine [22], we examined the confidence in the

assignment of individuals to communities by calculating a community assortativity coefficient

(Rcom). The Rcom method uses bootstrapping of the ‘observed’ network to calculate consistency

in individual community assignment, resulting in a network-level value between -1 and 1.

Values closer to 1 indicate high confidence in community assortment while values closer to 0

indicate little confidence in community assortment. Shizuka and Farine [22] recommend a

threshold of 0.5 for reasonable confidence in community assortment. We used 1000 bootstraps

to calculate Rcom and this process was repeated 10 times to obtain an average value for the

‘observed’ network.

Sampled networks

In this study, we assessed the influence of two distinct sampling considerations, the number of

individuals included, and the number of observations included per individual. All sample net-

works were based on randomly selecting a subset of individuals and observations from the

above generated ‘observed’ network. Individuals were randomly sampled to generate subsets

of 5, 10, 15, 20, 25, 35, 50, 75, and 99 (all) individuals. Within each of these network sizes, we

randomly selected 1, 5, 15, 10, 20, 30, or 40 (all available from ‘observed’ network) observations

for each individual to generate balanced sample networks. This sampling process was repeated

100 times for each combination of number of individuals and number of observations per

individual. A sample network of 99 individuals with 40 observations per individual was not

created as this would represent the complete ‘observed’ network.

For all sample networks, the number of subgroups and Q were estimated as above for the

‘observed’ network. P-values of Q were calculated by generating 1000 random networks for

each sample network and comparing the distribution of Q values via Monte Carlo methods as

above. These random networks shuffled the roost in which an individual bat roosted on a par-

ticular day, and were generated with “spatsoc” as above [29]. Those with a p-value< 0.05, indi-

cating significant evidence for subgroups structure were assigned a YES (1), while those with a

p-value > 0.05 were assigned a NO (0). In all sample networks, we also estimated network

graph density and clustering coefficient as for the ‘observed’ network.

For each of the 100 sample networks related to each sampling regime, we assessed the accu-

racy in assignment of dyads to communities compared to the observed. Specifically, we gener-

ated individual-by-individual matrices, each of which indicated whether a dyad was estimated
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to occupy the same or different communities and whether this assignment was consistent with

the observed network. We then generated a proportional measure of similarity. The similarity

measure was a proportion that ranged from 0 to 1, where 0 indicated that no dyads were

assigned to communities correctly based on the ‘observed’ network, and 1 indicated that all

dyads were correctly assigned to communities compared to the ‘observed’ network.

Finally, Rcom values were also calculated as outlined by Shizuka and Farine [22]. The num-

ber of bootstraps was set to 1000, regardless of the network size. Although this may be redun-

dant in smaller networks, this ensured sufficient subsampling for all sample networks. On

occasion, particularly in networks with only 1 observation per individual, no connections

between individuals were present in the sample network, resulting in a Q value of zero and

returning a network where the number of detected communities was equal to the number of

individuals present. This scenario does not constitute community structure and because there

was no ability to assign individuals to communities the community logistic value was coded as

a NO (0) while Rcom values were set to 0.

Statistical analyses

To assess how sampling regime affected estimates of community structure, the absolute value

of the difference in estimated number of communities between the ‘observed’ network and the

sample networks was calculated. Multiple linear regression was used to assess whether the

independent variables of the number of observations, the number of individuals, and the inter-

action between these factors influenced the difference between the sample and ‘observed’ net-

work in estimated number of communities. Both response and independent variables were

log-transformed to meet model assumptions of heteroscedasticity of residuals. We also applied

a multiple linear regression to assess the influence of these factors on the proportion of similar-

ity of dyadic community assignment between sample networks and the ‘observed’ network.

For all sample networks, we calculated the absolute difference from the ‘observed’ network

for measures of graph density and clustering coefficient. Here, we also applied multiple linear

regressions of the number of individuals, the number of observations per individual, and the

interaction of these terms to assess their impact on these metric estimates. For our assessment

of graph density, both independent and response variables were log transformed to meet

assumptions of homoscedasticity of residuals. The transformation was not required for the

analysis of clustering coefficient.

Often, network analysis simply aims to determine whether there is sufficient evidence of

community structure in a study population [e.g. 24]. A logistic regression was performed on

whether there was evidence for community structure (p< 0.05) in the sample networks as

there was in the ‘observed’ network. Number of individuals, number of observations per indi-

vidual, and their interaction were used as the independent variables and the response variable

was whether there was significant evidence for community structure (1), or insufficient evi-

dence (0; p> 0.05).

We also tested how different sampling regimes affected the ability to confidently assort

individuals based on community assortativity (Rcom > 0.5; Shizuka & Farine, 2016). Other

assortativity measures, measures of how strongly nodes associate with those most like them-

selves, have been reported to be artificially high in poorly sampled systems [14]. Thus, a line-

arly increasing Rcom value was not expected with the addition of more information. We

therefore tested the probability of obtaining a Rcom estimate that indicated confidence in indi-

vidual assortment (Rcom� 0.5), without overestimating this confidence by exceeding the value

of the ‘observed’ network. Values within this range were coded as acceptable (1) while those

above or below this range as unacceptable (0). A logistic regression was then performed with
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this binary response variable and the number of observations, number of individuals, and the

interaction between these factors as independent variables. All sampling, randomizations, net-

work metric calculation, and statistical analysis were performed in R version 4.0.0 [30].

Results

Relationship between sampling regime and global network measures

The ‘observed’ network of 99 individuals with 40 observations per individual was estimated,

with significant support to have community structure (Q = 0.285, p< 0.0001) with 3 commu-

nities estimated. The ‘observed’ network also had a graph density of 0.675, a clustering coeffi-

cient of 0.828 and a Rcom of 0.858, indicating a high-level of confidence in the assortment of

individuals into communities. Across all sample networks, the estimated number of communi-

ties ranged from 2 to 95 (median = 4, SE ± 0.177). Multiple linear regressions revealed that

each of the number of individuals (β = 1.069, SE = 0.012, p< 0.001), number of observations

per individual (β = 0.297, SE = 0.0166, p< 0.001), and the interaction between these terms (β
= -0.368, SE = 0.005, p< 0.001) explained discrepancy between the estimated number of com-

munities in the ‘observed’ network and the number estimated by sample networks (p< 0.001,

R2 = 0.871). Generally, error associated with our estimates was large (range 0–92, SE = 0.376)

when the number of observations was low (< 10) and increased when more individuals were

included with few (< 10) observations (Fig 1). Regardless of the number of individuals

included the number of communities was consistently estimated to be between 2 to 4 (within

one of the ‘observed’ network) when at least 15 observations per individual (96.4%) were

included compared to when 10 or fewer observations were included (14.6%) in the analysis.

Across all numbers of individuals, the confidence in estimates of the number of communities

exceeded 50% only when 20 or more observations per individual (of the 40 possible) were

available and was at or near 0 with less than 10 observations for all numbers of individuals

(Table 1).

The absolute difference in graph density estimates between the ‘observed’ and sample net-

works was significantly correlated (R2 = 0.797, p< 0.001) with the number of observations

per individual (β = -0.108, SE = 0.003, p< 0.001), the number of individuals (β = 0.009,

SE = 0.002, p< 0.001), and the interaction between these terms (β = -0.008, SE = 8.987 x 10−4,

p< 0.001) in the log transformed model. Graph density estimates increased towards the true

value of 0.675 with increasing numbers of observations per individual while variance in esti-

mates decreased with more individuals included (Fig 2B, 2D, 2F and 2H). Clustering coeffi-

cient changed similarly, with the absolute difference between ‘observed’ and sample estimates

related to the number of observations per individual (β = -0.021, SE = 2.467 x 10−4, p< 0.001),

the number of individuals (β = -0.003, SE = 1.037 x 10−4, p < 0.001), and the interaction

between these terms (β = 5.604 x 10−5, SE = 5.730 x 10−6, p< 0.001) in a linear model (R2 =

0.690, p< 0.001). Mean estimates of clustering coefficient generally increased similarly with

more observations per individual, regardless of the number of individuals, while increasing the

number of individuals reduced the variance in clustering coefficient estimates (Fig 2A, 2C, 2E

and 2G).

Relationship between sampling regime and evidence for community

structure

Analysis of the p-values of Q indicated a significant increase in the probability of correctly con-

cluding the presence of community structure with additional individuals (β = 0.004,

SE = 0.002 p = 0.010) and observations (β = 0.050, SE = 0.005, p< 0.001), and an interactive
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Fig 1. Variation in the estimated number of communities under various scenarios of number of individuals

sampled and the number of observations per individual (panels A-H). Point sizes are scaled based on the number of

times a value occurred. The red horizontal line represents the actual number of communities in the ‘observed’

population from which all other scenarios were sampled (subgroups = 3). Note, the changing y-axis scale among

panels.

https://doi.org/10.1371/journal.pone.0252471.g001
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effect between these variables (β 0.005, SE = 2.709 x 10−4, p < 0.001). With < 10 observations

per individual, the probability of correctly concluding the presence of community structure

did not exceed 75% even with all individuals included. With� 10 observations per individual,

the probability of detecting community structure exceeded 50% with< 30 individuals sampled

(Fig 3A). At least 10 observations per individual were required to detect the presence of com-

munity structure in at least 50% of replicates using the p value of Q (Table 1).

Table 1. All sampling regimes (number of individuals and number of observations per individual) where there was sufficient evidence to detect community struc-

ture in at least half of all 100 replicates.

Number of Individuals Number of Observations Evidence for Community Structure (p<0.05) Acceptable Rcom Correct # of Communities

5 40 50 25 6

10 20 60 56 67

10 30 81 59 55

10 40 95 55 44

15 15 62 77 39

15 20 80 68 53

15 30 96 74 67

15 40 100 63 58

20 15 76 72 44

20 20 94 72 49

20 30 99 78 65

20 40 100 59 71

25 10 54 72 2

25 15 88 66 35

25 20 99 78 44

25 30 100 74 68

25 40 100 58 70

35 10 77 58 0

35 15 98 62 29

35 20 100 79 50

35 30 100 84 61

35 40 100 61 68

50 10 95 33 6

50 15 100 79 31

50 20 100 91 43

50 30 100 75 62

50 40 100 52 68

75 10 100 40 3

75 15 100 91 25

75 20 100 93 52

75 30 100 83 66

75 40 100 57 85

99 10 100 46 3

99 15 100 98 24

99 20 100 97 54

99 30 100 96 89

Sufficient evidence for community structure was based on a p < 0.05 when comparing values of Q in sample networks to that of randomized networks. The number of

replicates (0–100) with a community assortativity (Rcom) value considered acceptable at greater than the minimum threshold of 0.5 but less than the ‘observed’ network

(0.858) are reported and the number of replicates (0–100) that correctly estimated the presence of 3 communities.

https://doi.org/10.1371/journal.pone.0252471.t001
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Fig 2. Influence of number of individuals and number of observations per individual on estimates of network

clustering coefficient (panels A, C, E, and G) and graph density (panels B, D, F, and H). Boxes represent the 25th to

75th percentile of values with the center line representing the median value. The horizontal red line indicates observed

values of graph density (0.675) and clustering coefficient (0.828) based from the ‘observed’ network. Full figures for

each measure with all tested numbers of observations per individual can be found in S1 and S2 Figs.

https://doi.org/10.1371/journal.pone.0252471.g002
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Relationship between sampling regime and community assignment

Rcom values ranged from 0 to 1 (median = 0.669, SE ± 3.810 x 10−3) across all sampling

regimes. We observed a significant relationship between the probability of obtaining a Rcom

value indicating reasonable ability to assort individuals into communities (0.5< Rcom <

0.858) and the independent variables of number of individuals (β = 0.006, SE = 0.001, p = 0.01)

and number of observations per individual (β = 0.043, SE = 0.003, p< 0.001; Fig 3B). The

interaction term between the two independent variables was also significant (β = 7.066 x 10−4,

SE = 9.248 x 10−5, p< 0.001). At least 15 observations per individual were needed to obtain

a Rcom value above 0.5 but less than the ‘observed’ network value of 0.858 in at least 50% of

replicates (Table 1). The proportion of Rcom estimates that fell within this range occasionally

decreased with more observations per individual due overestimates (Fig 4D). With 10 observa-

tions or fewer, Rcom was overestimated relative to the observed network in 33.0% of replicates.

With 15 or more observations per individual, estimates of Rcom fell within the acceptable range

in 68.7% of replicates and overestimated in 16.9% regardless of the number of individuals

included (Fig 4A, 4C, 4E and 4G).

The proportion of dyads correctly assigned to communities based on the ‘observed’ net-

work significantly increased with increasing numbers of observations per individual (β = 0.005

x 10−3, SE = 1.637 x 10−4, p< 0.0001) and was also significantly affected by the interaction

between the number of observations per individual and the number of individuals included in

the model (β = 7.061 x 10−5, SE = 3.803 x 10−6, p< 0.0001). The number of individuals was

not a significant predictor of the correct assortment of dyads (p = 0.887). As with graph density

and clustering coefficient, increases in similarity were seen with more observations per indi-

vidual, while the inclusion of more individuals reduced the variance in similarity results (Fig

4B, 4D, 4F and 4H).

Discussion

In most studies of animal behaviour, it is recommended to include as much information as

possible to estimate characteristics with the greatest probability of accuracy and to ensure

Fig 3. Probability of detecting community structure (A) and confident assortment of individuals (B). Detection of

communities (A) is based on the p-value of modularity (Q; p< 0.05) and confident assortment of individuals (B) is

based on obtaining a community assortativity coefficient (Rcom) value that indicates a reasonable ability to assort

individuals into communities (� 0.5) without overestimating this ability based on the ‘observed’ network (� 0.858).

https://doi.org/10.1371/journal.pone.0252471.g003
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Fig 4. Distribution of community assortativity coefficients (Rcom; panels A, C, E, and G) and proportion of

correctly assigned dyads (panels B, D, F, and H) as a factor of the number of individuals and the number of

observations per individual included in the network. Boxes represent the 25th to 75th percentile of values with the

center line representing the median value. In panels A, C, E, and G, the blue line indicates the suggested minimum
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reliable inference. Social network analysis is no exception, particularly when the gambit-of-

the-group method is applied to deducing social connections [14]. However, in ecological stud-

ies, sampling is often limited by factors such as logistical challenge and cost. We quantified the

effects of both the number of individuals and the number of observations per individual on the

reliability of metrics that characterize a fission-fusion social network created using the gambit-

of-the-group assumption. When looking at other global network metrics including graph den-

sity, the number of connections compared to the number of possible connections, and cluster-

ing coefficient, a metric based on the connections among triads, discrepancies from the

observed network decreased most notably when including more observations per individual,

while including more individuals reduced the variance in estimates. Further, the ability to

detect community structure, assort individuals into communities, and estimate the number of

communities in the network improved with the inclusion of more data but the addition of

more individuals and more observations did not have equal impacts on these different esti-

mates. Thus, when designing studies of animal behaviour, there can be considerable trade-offs

between these two sampling considerations and the metrics of interest.

Our results are consistent with prior studies based on estimates of individual network posi-

tion [15,17] that recommended only including individuals for which a minimum number of

observations have been recorded, and that adding more individuals cannot make up for a lack

of repeated observations of individuals or interactions [31]. We found that the presence of

communities and confidence in individual assortment into communities could often be esti-

mated with missing data but, in our dataset, 15 or more observations per individual were

needed to consistently achieve an estimate within 2 of the ‘observed’ number of communities

present, regardless of the number of individuals present. Additionally, including a larger num-

ber of individuals with less than 10 observations per individual greatly increased the average

discrepancy between sample estimates and the ‘observed’ network. As these results demon-

strate, including many individuals with insufficient information per individual has the poten-

tial to result in increased error when estimating group-level metrics. Yet, the use of overly

conservative minimum observation thresholds when estimating network properties may

reduce our ability to detect weak connections, which can be essential for understanding other

aspects of the overall network structure [21]. It is therefore important to balance including as

many individuals as possible with ensuring that all included individuals have been sampled

sufficiently.

To select a sampling regime with sufficient potential to estimate animal social networks,

our results demonstrate the potential error that can occur. We suggest that other studies with

sufficiently large data sets perform similar subsampling tests to assess how their estimates

respond to missing data and provide some suggestion of how requirements may change based

on study objectives. For most studies interested in aspects of global network structure, the pri-

ority is to determine whether the network shows evidence of any community structure. In our

‘sample’ populations, conclusions consistent with the ‘observed’ population regarding the

presence of community structure could be made with as few as 10 observations and less than

50% of the population sampled, when using Monte Carlo methods to obtain a p-value for Q.

The number of observations per individual had a strong impact on the ability to detect com-

munity structure, as networks with< 10 observations with any number of individuals were

threshold of Rcom (0.5) and the red line indicates the Rcom value of the ‘observed’ network (0.858). Values that fell

within this range were deemed acceptable and therefore represent sample networks with reasonable confidence in the

assortment of individuals into subgroups. Full figures for each measure with all tested numbers of observations per

individual can be found in S3 and S4 Figs.

https://doi.org/10.1371/journal.pone.0252471.g004
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not reliable and could not detect the presence of communities without nearly all individuals

being sampled and even then, still demonstrated some uncertainty. These findings support

the recommendations of Franks et al. [14], who suggested that when resources are limited,

researchers should prioritize sampling fewer individuals more intensely rather than sampling

more individuals less intensely and support that network metrics can be robust to missing

individuals when enough observations are provided [19]. However, these results do not pro-

vide information on whether the estimated number of communities is accurate, or how well

the estimated communities assort individuals.

To accurately estimate the number of communities present in this social network, far more

information, and therefore a more intense sampling regime, was required than was needed to

simply detect that communities were present. Overall, our ability to accurately estimate the

number of communities was limited. Success for any particular sampling regime did not

exceed 80% with the exception of having 30 observations per individual and 100% of individu-

als included or 40 observations per individual and 75 of 99 individuals included. A feat that

may be unreasonable for many ecological studies. Estimates of the number of communities

did generally improve with the inclusion of more individuals or more observations per indi-

vidual but it was again important that at least 10 observations per individual were included.

With 20–30 observations, the correct number of communities was estimated over 50% of the

time, even with only 15 individuals included. These findings are again in agreement with the

recommendation of Franks et al. [14]to ensure a sufficient number of observations per individ-

ual. Further, it has been previously demonstrated that the ability to estimate attributes of ani-

mal networks, and therefore the amount of information needed to detect a biological effect, is

dependent on the relative effect size of the attribute under study [31]. Given the densely over-

lapping nature of communities in fission-fusion societies, it is possible that estimates of com-

munities numbers would perform better in less highly connected networks with the same

sampling regime [19,32], as community delineation would be more pronounced in these

instances.

Silk et al. [17] suggested that global measures of social networks would perform poorly

when individuals are missing from a network. With both global estimates of network graph

density and clustering coefficient, our results suggest that missing observations had more

impact on estimated values than missing individuals. Further, the ability to provide significant

evidence for the presence of community structure based on p-values of Q and the modest abil-

ity to estimate the number of communities present despite missing individuals, provided suffi-

cient numbers of observations shown here contradicts Silk et al. [17]’s proposition. This may

be due to the fact that some global metrics can be greatly influenced by the omission of single

individuals that bridge two subgroups or communities [17,33] however those connections are

more likely to be missed if only a small number observations of individuals are recorded. Our

results suggest that when selecting a social network metric to determine the presence of com-

munities for populations that are under-sampled, Q may be a robust choice in the face of miss-

ing information, while measures such as clustering coefficient showed little accuracy with

limited numbers of observations, and great uncertainty with limited numbers of individuals.

However, further work is needed to ensure that the performance of these metrics is not unique

to our specific network structure. Additionally, the performance of global metrics may vary

based on the type of sampling method used in a given study, and the definition of edges in a

network [20].

Regardless of the number of communities, the ability to consistently assort individuals to

communities is useful for understanding network structure and asking questions about mech-

anisms of group and community formation. Although assignment of individuals to communi-

ties can be uncertain, even with only 3 observations per individual and 5 individuals, dyads
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were generally assigned correctly over 50% of the time. The proportion of similarly assigned

dyads increased most obviously with the addition of more observations per individual and was

less variable with more individuals included thus showing a relationship similar to that of net-

work graph density and clustering coefficient. Rcom suitably increased with greater similarity

in dyad assignment to communities based on the ‘observed’ network. Rcom provides an oppor-

tunity to estimate the confidence in the assortment of individuals to specific communities [22]

when the underlying network is not available for comparison as we have here. Generally, our

analysis of Rcom demonstrated the performance of assigning individuals to communities was

more variable than detecting communities via p-values of Q, but more consistent than estimat-

ing the exact number of communities within any given sampling regime. There was a tendency

to overestimate the Rcom, a similar result to other assortativity measures, such as assortment

into groups by sex or other traits of the individuals [14]. It is unsurprising that the Rcom may

be vulnerable to the same issues. Specifically, we found that Rcom was often overestimated

when individuals were observed < 10 times. This may be due to less variation between boot-

strap removals of individuals when networks contained fewer observations. As the number of

observations increased beyond 20 per individual, we found that Rcom stabilized, a result which

is corroborated by Franks et al. [14] and emphasizes the benefit of increasing the sampling

intensity for each individual.

Unlike other studies on the effects of missing information on network estimates, we do not

suggest any specific thresholds for estimation of global network metrics as our results may not

be reflective of the exact error trends in other study systems. Specifically, our ‘observed’ net-

work has only a small number of communities, and it is expected that with more communities,

estimates from subsamples would be more variable, and the ability to assort individuals in

these communities would decline. Thus, more subdivided networks may require a larger pro-

portion of the population to be sampled, and/or more observations per individual to appropri-

ately characterize the network community structure. In addition, the difference in average

strength of connections within and among communities may be more variable in other net-

works. In networks where communities are less connected, such as those of other bat species,

Thyroptera tricolor [34], fewer observations per individual may be appropriate to delineate

communities. Important considerations for differences in the rate of interactions and variabil-

ity in network structure will also impact sampling protocols [20]. Finally, our ‘observed’ net-

work does not contain all individuals and interactions that occur in the population, and thus it

is unknown how well our ‘observed’ network represents the true, underlying population of

bats in our study area. This topic would benefit from further study on how global network esti-

mates preform when the underlying population is known with more certainty, for example,

using captive populations that are continuously monitored. As our network serves as only an

example of how estimates of global network metrics may vary in a specific type of fission-

fusion system, we recommend that, as these types of larger datasets become more readily avail-

able, researchers continue to assess how subsampling and therefore missing data influences

network estimates. There may be additional benefits to testing how community detection,

Rcom, the estimated number of communities, and accuracy of assignment to communities vary

with network size, as the effect of sampling effort on the accuracy of other network measures

has been found previously to vary with overall network size [17]. Given that our ‘observed’ net-

work of 99 tagged individuals was much smaller than what is expected in the true population,

and in some other social networks assessed to date (exceeding 1000 individuals [3]), predictive

ability may be higher in actual bat social networks when the same proportions of the popula-

tion are observed. Another potential avenue of future research is to assess how Rcom can be

adapted for less stable animal social societies, including those of bats. It is likely that increasing

connectivity among communities despite high densities of connections within subgroups, as is
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typical in fission-fusion societies, negatively influences our ability to correctly assort individu-

als to a subgroup. A modification of Rcom has been suggested for instances where an individual

is a part of multiple communities simultaneously [35], and perhaps a similar modification is

needed for societies displaying fission-fusion dynamics. Further study is necessary to deter-

mine how both network size and structure can influence the consequences of sampling and

data filtering prior to generating network models based on a portion of the overall population

[17,19].

The temporal extent of data collection also has the potential to influence social network

structure and assignment of individuals to communities. Specifically, our data were collected

over a relatively long period of time (131 days) representing the full range of dates when at

least one animal was observed in the study area. This results in the multiple observations of an

individual not necessarily occurring on the same days as observations for other individuals.

Although it is likely that days where individuals were not observed occurred when individuals

were not present in the system and therefore not associating with the observed animals. Always

observing individuals synchronously, as is the case in many animal network study systems, is

expected to improve network estimates and possibly result in fewer observations per individual

being required to achieve comparable levels of reliability [20]. A shorter, more heavily sampled

time period should provide increased confidence in Rcom and estimates of the number of com-

munities but, shorter time-periods represent only a snapshot of the social environment. Net-

works are inherently dynamic systems and inferences across too narrow a temporal window

may overestimate the strength of relationships between individuals and communities or miss

important transient connections [36–39]. Further, obtaining 20 observations but over a very

long time-period would likely be insufficient as more samples would be needed to appropri-

ately reflect such a dynamic system throughout the entire study period. Thus, when designing

studies, researchers must carefully consider the temporal period of network formation that is

biologically relevant for their study species (e.g. reproductive period or breeding season), and

the expected rate of interactions or behaviour of interest, and select an appropriate sampling

method and frequency for the designated period [20].

Conclusions

Overall, our study suggests that global metrics, including the detection of community structure

and appropriate assortment of individuals into communities, can be robust to missing infor-

mation while estimating the exact number of communities is less reliable. When designing a

study, results in our system support the suggestion of Franks et al. [14] to prioritize sampling a

smaller part of the population with greater intensity when resources are limited, rather than

more of the population at lower intensity. For some measures, accuracy to the true value

improves with more observations per individual, while variation in estimates decreases with

more individuals included. Generally, we recommend that researchers include as many indi-

viduals and observations as is feasible, but we urge caution when including individuals with

limited numbers of observations. To best design sampling protocol, researchers must consider

their study system, sampling logistics, decide which measures are most important, and deter-

mine what level of reliability is desired. The levels of reliability that we present here reflect that

of a highly connected, fission-fusion group and results may differ for different network sizes

and characteristics [19]. Our results represent a clear example of the uncertainty in global met-

ric estimates that may exist in samples of animal social networks and continued work is needed

to determine how the effects of missing information vary with different types of animal socie-

ties. As large datasets becoming increasingly available, and when it is uncertain whether

enough individuals or observations have been collected, we demonstrate a benefit to
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subsampling and repeatedly calculating network metrics, as we have here, to determine if esti-

mates stabilize as the full available sample size is approached.

Supporting information

S1 Fig. Influence of number of individuals and number of observations per individual on

estimates of clustering coefficient (all observation levels). Horizonal red line represents the

value of the ‘observed’ network at 0.828.

(TIF)

S2 Fig. Influence of number of individuals and number of observations per individual on

estimates of graph density (all observation levels). Horizontal red line represents the value

of the ‘observed’ network at 0.675.

(TIF)

S3 Fig. Influence of number of individuals and number of observations per individual on

estimates of community assortativity (Rcom; all observation levels). Horizontal blue line

represents the threshold value of 0.5 and the horizontal red line indicates the value of the

‘observed’ network at 0.858.

(TIF)

S4 Fig. Influence of number of individuals and number of observations per individual on

the proportion of similarity in dyad assignment (all observation levels).

(TIF)
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