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Introduction: The role of procurement biopsies in deceased donor kidney evaluation is debated in light of

uncertainty about the influence of biopsy findings on recipient outcomes. The literature is filled with

conflicting and ambiguous findings typically derived from small studies focused on short-term outcomes

or reliant on biopsies prepared by methods impractical in the time-sensitive context of organ procurement.

Methods: After manual data entry of DonorNet attachments from 4480 extended criteria donors (ECDs)

recovered in the United States from 2008 to 2012, we applied causal inference methods in a Cox regression

framework to estimate independent effects of glomerulosclerosis (GS), interstitial fibrosis, and vascular

changes on long-term kidney graft survival. Kidney discard rates from 2018 to 2019 were evaluated to

characterize contemporary kidney utilization patterns.

Results: Effects of interstitial fibrosis and vascular changes were largely attenuated after adjusting for

potentially confounding donor and recipient variables, although conclusions are less certain for severe

levels due to smaller sample sizes. By contrast, significant effects of GS (>10% vs. 0%–5%) persisted even

after adjustment (all-cause, hazard ratio [HR] 1.18; 95% CI 1.06, 1.28; death-censored, HR 1.28; 95% CI 1.08,

1.46) but plateaued beyond 10%. By contrast, kidney discard rates increased precipitously as GS rose

>10%.

Conclusion: Despite being obtained under less than ideal conditions, estimated GS from a procurement

biopsy is independently associated with long-term graft survival, above and beyond standard clinical

parameters, in ECD transplants. However, the disproportionately high likelihood of discard for kidneys

with GS >10% is unjustified. The outsized effect of GS on kidney utilization should be tempered and

commensurate with its effect on outcomes.
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T
he international kidney transplant community
continues to debate the value and consequences of

obtaining procurement biopsies for evaluating the
transplant quality of donated kidneys.1,2 The reliability
of biopsy data obtained during the time-pressured
environment of deceased donor organ procurement
has been challenged on several fronts: use of frozen
sections,3,4 unclear optimal sampling technique (e.g.,
needle vs. wedge),5–8 varying sample quality,9,10
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interpretation by nonexperts,11–13 poor reproduc-
ibility,3 and low interrater agreement.14

Yet, despite being relied on minimally else-
where,15,16 procurement biopsies continue to be per-
formed routinely in the United States. More than half
of kidneys recovered for transplant are biopsied,17 a
figure that rose during the 2000s as the donor pool
broadened18 but has plateaued.19 Procurement biopsy
findings continue to be associated with the decline and
discard of kidneys offered for transplant,9,17,19–23

whereas some patients die waiting for a transplant.24

Given their limitations, should procurement biopsies
play any role in determining the transplant suitability
of kidneys?
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Whether biopsy findings have a clinically mean-
ingful, independent association with transplant recip-
ient outcomes beyond more easily obtained clinical
parameters remains elusive, as the literature is filled
with conflicting findings.3,25–37 Conclusions are often
drawn from small, single-center studies. Statistical
interpretation is often over-reliant on arbitrary P value
thresholds, instead of a more nuanced approach
mindful of type II errors.38

Research has often focused on short-term, rather
than longer-term, post-transplant survival. Some
studies are based on biopsy samples prepared using
methods that are impractical in the context of deceased
donor procurement.4,29 The scope of many studies is
limited to GS without consideration of the other com-
partments. Moreover, GS tends to be evaluated solely
in arbitrary, discrete categories (0%–5%, 6%–10%,
etc.) instead of along its biological continuum, sacri-
ficing statistical power and precluding precise charac-
terization of potential nonlinear effects.

The BARETO (Biopsy, Anatomy, and Resistance Ef-
fects on Transplant Outcomes) study aims to overcome
these shortcomings and reliably estimate the
independent effects of procurement biopsy findings on
long-term graft survival. The conventional approach of
using multivariable regression to estimate the inde-
pendent (i.e., “adjusted”) effects of an exposure relies
on strong assumptions: not only that all potential
confounders are included but also that their true
(possibly nonlinear) functional relationships with the
outcome are adequately specified. Commonplace causal
inference methods, such as those involving propensity
scores,39 avoid this challenge but come with their own
assumptions and limitations. A newer approach to
causal inference, doubly robust regression (DRR),
combines multivariable regression and propensity
scores weighting to provide valid inference on an
exposure variable if either the multivariable model or
the propensity model are properly specified, offering a
hedge against producing misleading results.40

By applying doubly robust Cox regression to a large,
novel data set of routinely biopsied kidneys, this study
seeks to estimate the degree to which the 3 central
biopsy compartments (GS, interstitial fibrosis, and
vascular changes) are independently associated with
long-term outcomes above and beyond standard clin-
ical factors.
METHODS

This study used data from the Organ Procurement and
Transplantation Network (OPTN). The OPTN data
system includes data on all donors, waitlisted candi-
dates, and transplant recipients in the United States,
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submitted by the members of the OPTN.41,42 The
Health Resources and Services Administration, US
Department of Health and Human Services, provides
oversight to the activities of the OPTN contractor.
Data, including DonorNet attachments, were released
to United Network for Organ Sharing by the OPTN
subsequent to Institutional Review Board approval
from Virginia Commonwealth University Ethics Board.
DonorNet is the online application that organ pro-
curement organizations use to send electronic organ
offers to transplant hospitals.43

This was a cohort study after transplant recipients
for up to 10 years. A total of 8126 ECDs44 were
recovered during 2008 to 2012, but not all these kid-
neys were biopsied or transplanted. DonorNet attach-
ments were manually reviewed and biopsy findings
entered into a REDCap45 database according to a pro-
tocol (Supplementary Figure S1) aligned with Banff
definitions6 for 4480 ECD donors recovered during
2008 to 2012 with at least 1 kidney reported as having
been biopsied and transplanted. Of these, 3851 (86.0%)
had at least 1 kidney transplanted and a corresponding
biopsy attachment found. Among these transplanted
donors, 2870 (74.5%) had both kidneys transplanted,
whereas 981 (25.5%) had just 1 kidney transplanted.
ECD donors, which we found to be almost always
biopsied (93.2%) during this period, were chosen to
avoid selection bias resulting from the inclusion of for-
cause biopsies.6 If nonroutinely biopsied kidneys were
included, the clinical indications (e.g., visual defects)
leading to the decision to biopsy could introduce bias
through unmeasured confounding (Figure 1: Consoli-
dated Standards of Reporting Trials diagram46).

The 3 biopsy dimensions reported with highest
reporting frequency on attachments and studied as
exposure variables were GS (99% reported), interstitial
fibrosis (91%), and chronic vascular changes (aka,
arterial intimal thickening, or arteriosclerosis, or
vascular narrowing) (82%). Because it is unknown
which of multiple biopsy reports was used for decision-
making, for kidneys with multiple biopsy attachments
(9.1%), we chose the attachment with the fewest
missing or unknown data elements among the exposure
variables. Sample preparation method was reported
51% of the time: 94% were frozen sections, 6% per-
manent/fixed. Sample type was reported 44% of the
time: 67% were wedge, 33% core/needle.

The primary outcome was all-cause graft failure up
to 10 years post-transplant. Death-censored graft fail-
ure was also analyzed. Outcomes were censored as of
the earlier of the last reported patient follow-up or at 10
years post-transplant. Among nonfailed grafts, the
median follow-up was approximately 8.5
years, whereas the “reverse Kaplan-Meier” median
1851



Figure 1. BARETO study survival analysis cohort derivation CONSORT diagram. Cohort selection flow diagram for biopsy, anatomy, and
resistance effects on transplant outcomes observational study using the CONSORT format. #, number; CONSORT, Consolidated Standards of
Reporting Trials; ECD, extended criteria donor; GS, glomerulosclerosis; I/F, interstitial fibrosis; KP, kidney-pancreas; tx, transplant; V/C, vascular
changes.
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time-to-censoring estimates ranged from 9.0 to 9.8
years, indicating negligible loss to follow-up47,48

(Table 1).
In addition to Kaplan-Meier analysis, Cox multivari-

able regression and causal inference methods were used
to serve the study’s central aim of characterizing the
independent associations between the 3 exposure vari-
ables and long-term graft survival. Our primary findings
were derived using DRR,40 which combines the
strengths of propensity score-based inverse probability
weighting49 and multiple regression to adjust for
measured confounders. Propensity score methods
involve building models that predict the likelihood of a
case belonging to a particular exposure group (e.g., GS
0%–5% vs. 6%–10% vs. 11%þ). These scores are then
used in one of several ways, including 1:1matching, that
is, selecting cases with similar propensity scores in
different treatment groups, which generally leads to
1852
similar distributions of patient characteristics across
groups, allowing for fair/unbiased comparisons. Alter-
natively, cases can be “weighted” in the analysis by the
inverse probability of being in a particular exposure
group, with the same aim—covariate balance across
exposure groups in the weighted sample.39 DRRweights
were based on covariate balancing propensity scores.50

HRs derived from unadjusted, inverse probability
weighting, and multiple regression analyses are pro-
vided for comparison. Following Stensrud and
Hernan,51 we interpret the HR estimates as reflecting the
weighted average of the true HRs during the 10 years
after transplant. Evidence values (i.e., “E-values”) were
computed to quantify the degree to which unmeasured
confounding would need to be present to nullify esti-
mated effects.52–54

Statistical inference was derived by bootstrapping
(1000 iterations55) the entire DRR process, including
Kidney International Reports (2022) 7, 1850–1865



Table 1. Sample sizes, graft outcomes, and length of follow-up

Exposure
N

Graft outcomes Length of follow-up (yr)

All-cause
graft failures

Recipient
deaths

Graft failures
without
recipient
death

Deaths with
functioning

graft
Median

(failures, all cause)
Median

(all cases)
Median

(nonfailures)
Median

(“reverse KM”) MaxCount % Count % Count % Count % Count %

Glomerulosclerosis

0%–5% 3617 60.3 2038 58.0 1597 57.9 441 58.3 974 56.6 4.1 6.2 8.8 9.1 10

6%–10% 1322 22.0 781 22.2 606 22.0 175 23.1 390 22.7 3.8 5.7 8.5 9 10

11%–15% 592 9.9 398 11.3 317 11.5 81 10.7 200 11.6 3.8 5.3 8.4 9.8 10

16%–20% 247 4.1 160 4.6 130 4.7 30 4.0 91 5.3 3.8 5.3 8.5 9.2 10

21%–30% 153 2.6 100 2.8 78 2.8 22 2.9 52 3.0 3.9 5.4 8.4 9.1 10

31%þ 66 1.1 38 1.1 30 1.1 8 1.1 13 0.8 3.9 6.5 8.9 9.2 10

Interstitial fibrosis

Absent/minimal 3328 60.2 1902 58.7 1472 58.3 430 60.1 955 59.9 3.9 6 8.7 9 10

Mild 2037 36.8 1231 38.0 972 38.5 259 36.2 588 36.9 4 6 8.9 9.4 10

Mild-moderate 161 2.9 105 3.2 79 3.1 26 3.6 52 3.3 4 5.5 8.1 9.6 10

Severe 2 0.0 0 0.0 0 0.0 0 0.0 0 0.0 NA 6.9 6.9 NA 10

Vascular changes

Absent/minimal 2472 49.9 1430 48.8 1103 48.5 327 50.0 690 48.2 4.1 6.2 8.8 9 10

Mild 1994 40.2 1188 40.6 936 41.2 252 38.5 577 40.3 3.7 5.6 8.7 9.1 10

Mild-moderate 466 9.4 293 10.0 219 9.6 74 11.3 157 11.0 4.3 6.1 8.8 9.8 10

Severe 23 0.5 17 0.6 16 0.7 1 0.2 9 0.6 3.8 4.4 6.8 NA 10

KM, Kaplan-Meier; Max, maximum; NA, not available.
Sample sizes (number of transplants) for each exposure variable level along with recipient follow-up time distribution statistics and graft failure type counts. The median follow-up time,
excluding graft failures, was between 8 and 9 years, with maximum follow-up of 10 years due to administrative censoring. The primary study outcome was all-cause graft failures. For
death-censored analyses, deaths with a functioning graft were censored.
Reverse KM ¼ reverse Kaplan-Meier estimate measuring the median censoring time. This is the preferred approach to quantifying length of follow-up in survival analyses.48
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single imputation of missing data using the MICE al-
gorithm56,57 (Supplementary Figure S2), and calculating
percentile-based 95% CIs.58 Supplementary Tables S1,
S2, and S3 illustrate the degree of missingness for each
covariate. GS was modeled categorically (levels were
chosen to be consistent with OPTN data collection
forms) and continuously, using a restricted cubic
spline59 to capture nonlinearity. Pointwise CIs were
generated at integer GS values (0%, 1%, 2%, .,
30%).

Potentially confounding covariates were chosen by
clinical hypothesis generation, published literature,
exposure variable versus covariate correlation analysis,
and a philosophy of erring on the side of inclusion
while leveraging opportunities for parsimony (e.g.,
omitting some variables already included in the Kidney
Donor Profile Index [KDPI]60 or estimated post-
transplant survival score61). Twenty donor, recipient,
and kidney-related covariates were included in
modeling (Supplementary Tables S1, S2, and S3). Other
recipient factors considered but ultimately omitted due
to statistically insignificant correlation with biopsy
parameters included gender, education, diagnosis,
body mass index, race/ethnicity, insurance type, al-
bumin, and HLA matching. Potential collinearities
among covariates were not of concern because our aim
was to conduct causal inference on exposure variables
(GS, interstitial fibrosis, vascular changes), not produce
an explanatory, multivariable model.
Kidney International Reports (2022) 7, 1850–1865
The number of glomeruli observed varied from 1
to 474. To account for the reduced statistical preci-
sion10 in a GS value based on a small number of
glomeruli, as a sensitivity analysis, we used empirical
Bayes estimation—also known as best linear unbiased
prediction or “shrinkage” estimation.62 Shrunken
estimates were obtained by modeling GS as a bino-
mial proportion and estimating the random kidney
effects. Conceptually, these shrunken estimates
reflect a weighted average between the observed GS
for a particularly kidney and the overall sample mean
GS of 5.95%.

Supplementary Figure S3 illustrates the relationship
between the nominal and shrunken GS values. The
greater the number of glomeruli observed, the less
shrinkage toward the overall mean. For example, the
nominal GS of 53% (55 of 104) found in purple only
shrunk to 49% due to the large denominator; by
comparison, the nominal GS of 60% (3 of 5) found in
red shrunk dramatically to 19%. Empirical Bayes es-
timators have been found to yield statistically better
estimates in numerous contexts.63,64

Spline modeling was repeated using shrunken esti-
mates. For 20 (0.3%) kidneys, the observed GS was
used because shrinkage estimation was not possible
due to unreported number of glomeruli observed.

Left versus right laterality concordance was assessed
using correlation analysis for GS and the Kappa statistic
for interstitial fibrosis and vascular changes. Histology
1853



Figure 2. Ten-year, Kaplan-Meier all-cause graft survival by GS (3
levels: 0%–5%, 6%–10%, 11%þ). Estimated graft survival rates for
5997 extended criteria donor kidney transplants occurring between
2008 and 2012 are illustrated by 3 levels of GSs. Survival curves are
statistically different between the 3 groups (P < 0.0001), with the GS
0% to 5% group having superior unadjusted graft survival compared
with 6% to 10% and 11%þ groups. The survival curves suggest a
dose-response relationship, where graft survival declines as GS
increases. GS, glomerulosclerosis.

CLINICAL RESEARCH DE Stewart et al.: Kidney Biopsy Findings and Outcomes
was examined by laterality for transplanted kidneys in
which the mate kidney was discarded.

Contemporary kidney utilization practice was char-
acterized by calculating discard rates—the proportion
of kidneys recovered for transplant but not
transplanted—for biopsied, ECD kidneys recovered in
2018 to 2019.

We used R Software Version 4.1.0,65 including most
notably the following analytical packages: WeightIt,66

cobalt,67 covariate balancing propensity scores,68

mice,69 survival,70 rms,71 prodlim,72 and lme4.73

RESULTS

Unadjusted, Kaplan-Meier graft survival was statisti-
cally lower (P < 0.0001) for higher GS in a dose-
response relationship (Figure 2: all-cause;
Supplementary Figure S4: death-censored). GS 0% to
5% was associated with 10-year graft survival of
34.2% (95% CI: 32.3%, 36.0%), compared with 24.4%
(21.3%, 27.6%) for GS 11% or higher. Survival curves
were also statistically different (P < 0.0001) when
analyzing GS in 5 levels, but the dose-response pattern
deteriorated above 10% (Supplementary Figure S5).

Several notable associations were found between
GS and potentially confounding factors—KDPI (P <
0.0001), donor hypertension (P ¼ 0.0086), donor
1854
diabetes (P < 0.0001), interstitial fibrosis (P < 0.0001),
vascular changes (P < 0.0001), arterial plaque
(P ¼ 0.0007), and recipient estimated post-transplant
survival (P < 0.0001) (Supplementary Table S1).
Though the association between GS and KDPI is sta-
tistically significant, the correlation is weak (rho ¼
0.12, Supplementary Figure S6).

The 10-year, unadjusted graft failure HR for GS
11%þ versus 0% to 5% of 1.29 (95% CI: 1.18, 1.40)
was only partially attenuated after adjusting for 20
potential confounders: DRR-adjusted HR 1.18 (1.06,
1.28). Adjusted results were remarkably similar (iden-
tical out to 2 decimal places) using propensity
weighting (HR 1.18; 1.07, 1.28) and multivariable
regression (HR 1.18; 1.07, 1.28), suggesting robustness
of these findings (Figure 3). The adjusted hazard of
death-censored graft failure was also higher for GS
11%þ versus 0% to 5% (DRR HR 1.28; 1.08, 1.46). E-
values of 1.49 and 1.66 were obtained for the 1.18 all-
cause and 1.28 death-censored HR estimates,
respectively.

When modeling continuous GS, a sharp, statistically
significant increasing hazard was observed when GS
rose from 0% to approximately 10%, but the effect
plateaued for GS values beyond 10%. This pattern
manifested in both unadjusted and adjusted results
(Figure 4) and in 5-level categorical analysis
(Supplementary Figure S7). Though propensity-
weighted and DRR-based results suggest, prima facie,
a counterintuitive decline in graft failure risk as GS
increases beyond 10%, statistical inference reveals that
this surprising improvement in outcomes does not
reach statistical significance: the CI for the graft failure
hazard beyond GS of 20% is wide and overlaps sub-
stantially with the estimated hazard at GS of 10%.
Given the a priori clinical assumption that more GS, all
else equal, does not portend better outcomes, these
results should be not be interpreted to suggest that
graft failure risk improves with rising GS but rather
that the strength of the relationship substantially ta-
pers beyond approximately 10% compared with the
steep slope observed <10%.

Figure 5 reveals a sharp discordance on the rela-
tionship between GS and graft failure risk, which
tapered after approximately 10%, and the kidney
discard rate, which rose precipitously beyond 10%. If,
instead of being discarded 54.1%, 64.7%, and 85.8%
of the time, the discard rate for kidneys with GS 11%
to 15%, 16% to 20%, and 20%þ had matched the
45.4% rate observed in the 6% to 10% group, an
additional 412 ECD kidneys would have been trans-
planted per year during 2018 to 2019.

A sensitivity analysis using Empirical Bayes
“shrunken” GS values adjusting for number of
Kidney International Reports (2022) 7, 1850–1865



Figure 3. The unadjusted and adjusted associations between 3-level GS and 10-year, all-cause graft failure risk. The figure illustrates all-cause
graft failure hazard ratios and 95% CIs comparing 3 levels of GS using the following 4 different analyses: unadjusted Cox regression (top left
panel), propensity weighted Cox regression (top right), standard multivariable regression (bottom left), and doubly robust regression (DRR;
bottom right). In unadjusted analysis, the risk of graft failure was 29% higher with GS 11%þ compared with the reference group, GS 0% to 5%.
All 3 risk adjusted methods reveal that though GS effect was tempered after adjusting for correlations with donor and recipient factors, a
statistically and clinical significant effect of GS persisted. In DRR analysis, the graft failure hazard ratio for GS 11%þ (vs. 0%–5%) was 1.18 (1.07,
1.28). DRR, doubly robust regression; GS, glomerulosclerosis.
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glomeruli observed revealed essentially the same find-
ings as the nominal GS analysis: a steep increase in
graft failure hazard that tapers beyond approximately
10% (Supplementary Figure S8).

Unadjusted graft survival differences by 3 levels of
interstitial fibrosis were of borderline statistical sig-
nificance (P ¼ 0.052; Figure 6) but were fully attenu-
ated after adjusting for potential confounders
(Figure 7). In DRR analysis, the graft failure hazard for
mild interstitial fibrosis was statistically no different
from absent/minimal (HR 0.99; 95% CI: 0.91, 1.08). The
hazard for mild-moderate/severe was also statistically
similar from absent/minimal (HR 1.13; 95% CI 0.83,
1.39), although this estimate has greater statistical un-
certainty. Death-censored graft survival did not differ
Kidney International Reports (2022) 7, 1850–1865
statistically by interstitial fibrosis (P ¼ 0.49;
Supplementary Figure S9).

Similarly, unadjusted graft survival differences by 3
levels of vascular changes were of borderline statistical
significance (P ¼ 0.052; Figure 8) but effects were
attenuated after adjustment (Figure 9). In DRR analysis,
the graft failure hazard for mild vascular changes was
statistically no different from absent/minimal (HR 1.03;
95% CI: 0.93, 1.15). The hazard for mild-moderate/
severe was also statistically similar to absent/minimal
(HR 1.06; 95% CI 0.90, 1.26), but again with greater
statistical uncertainty. However, both unadjusted (P ¼
0.031; Supplementary Figure S10) and DRR-adjusted
analyses suggest a possible death-censored graft sur-
vival decrement for mild-moderate/severe vascular
1855



Figure 4. The associations between continuous GS and 10-year, all-cause graft failure risk, modeled as a nonlinear function. The figure il-
lustrates the estimated relationship between GS along a continuum from 0% to 30%, as modeled by nonlinear splines using the following 4
analytical approaches: unadjusted Cox regression (top left panel), propensity weighted Cox regression (top right), standard multivariable
regression (bottom left), and doubly robust regression (DRR; bottom right). Though all 3 risk adjusted methods revealed that the GS effect was
somewhat attenuated after adjusting for correlations with donor and recipient factors, a statistically and clinical significant effect of GS
persisted. The relationship between GS and graft failure risk is clearly nonlinear, with a steep effect between 0% and approximately 10%,
followed by a plateauing effect beyond 10%. CIs (found in gray) indicate that the apparent declining risk for higher GS is not statistically
significant. DRR, doubly robust regression; GS, glomerulosclerosis.

CLINICAL RESEARCH DE Stewart et al.: Kidney Biopsy Findings and Outcomes
changes versus absent/minimal (DRR HR 1.30; 95% CI
1.02, 1.62). This effect seems to be driven largely by
graft failures occurring beyond the 8 post-transplant
year.

Red data points found in Love plots74

(Supplementary Figures S11, S12, and S13) reveal
particularly high correlations (large standardized dif-
ferences among exposure groups) among biopsy
1856
compartments and between GS and KDPI. Teal data
points indicate highly successful covariate balancing
among exposure groups after propensity weighting,
with all standardized differences falling near or below
0.1.75

Biopsy findings’ concordance was high among bio-
psied kidneys from the same donor: GS (rho ¼ 0.55;
Supplementary Figure S14), interstitial fibrosis
Kidney International Reports (2022) 7, 1850–1865



Figure 5. The discordant relationship between GS, all-cause graft survival, and kidney discard. The figure illustrates the estimated, nonlinear
relationship between GS and 10-year graft failure risk, based on extended criteria donor transplants from 2008 to 2012. Kidney discard rates
among ECD donors by GS category are superimposed using a second vertical axis. To provide a meaningful comparison, both analyses are
unadjusted. The steep relationship between kidney discard rates for GS beyond 10% stands in sharp relief juxtaposed against the tapered
relationship between GS and graft failure risk. CIs are found in blue. ECD, extended criteria donor; GS, glomerulosclerosis.
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(kappa ¼ 0.78; Supplementary Table S4), and vascular
changes (k ¼ 0.75; Supplementary Table S5).
Discarded mate kidneys tended to have higher GS and
“worse” interstitial fibrosis and vascular changes
(Supplementary Table S6). Though the number of
glomeruli observed tended to be higher for wedge
versus needle biopsies, the GS distributions were quite
similar (Supplementary Table S7).

DISCUSSION

After rigorous adjustment for possible confounders, the
BARETO study found a clinically and statistically sig-
nificant effect of GS on 10-year graft survival among
ECD kidney transplants. Kidneys having GS > 10%
were found to have 18% higher risk of graft failure
compared with kidneys with GS of 0% to 5%. Ac-
cording to the familiar kidney donor risk index, an
approximately 18% increased graft failure hazard is
akin to the increased risk associated with a history of
diabetes in the donor; a 0.7 higher creatinine (e.g., 1.4
vs. 0.7); or 7 additional years in donor age.76,77

Crucially, though a dose-response relationship be-
tween GS and graft failure risk was evident from 0% to
Kidney International Reports (2022) 7, 1850–1865
10%, the effect waned beyond 10%, suggesting little
or no incremental risk associated with a GS of 20%
compared with a GS of 10%. These findings echo
death-censored, 5-year survival results published by
Cheungpasitporn et al.77

Though we found no independent effect of mild
(1%–25%) arteriosclerosis, this study suggests a
possible, meaningfully large effect of mild-moderate
(>25%) or worse vascular changes on long-term graft
survival. This result echoes Kayler, who found reduced
1-year graft survival in ECD kidneys with moderate
arteriosclerosis.78 However, because our finding man-
ifested only in death-censored (not all-cause) analyses
was of only borderline statistical significance and seems
to be driven largely by a cluster of graft failures
occurring after the 8 post-transplant year, interpreta-
tive caution is warranted and further study is needed.

By contrast, the apparent effects of interstitial
fibrosis on graft survival were greatly attenuated after
covariate-adjustment, suggesting this compartment
provides minimal, if any, prognostic value above and
beyond the usual donor quality parameters. This
finding is consistent with the systematic review of
1857



Figure 6. Ten-year, all-cause Kaplan-Meier graft survival by inter-
stitial fibrosis. Estimated graft survival rates for 5528 extended
criteria donor kidney transplants occurring between 2008 and 2012
are found by 3 levels of interstitial fibrosis. Differences between
survival curves are of borderline statistical significance (P ¼ 0.052),
with the “absent/minimal” group having slightly superior unadjusted
graft survival compared with the other groups. The survival curve for
“mild-moderate/severe” transplants stands out to some degree as
lower than the other groups but is based on a comparatively modest
sample size.
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Wang et al.,29 which concluded “the balance of the
evidence does not currently support an association
between tubular interstitial damage and GF, DGF, or
long-term graft function.” This lack of association may
reflect the more subjective nature of grading interstitial
fibrosis in contrast to the more concretely defined
(though still subject to error) GS. Despite evidence that
frozen section preparation can exaggerate interstitial
fibrosis,11 we were unable to identify a statistically
significant, independent effect of this parameter on
graft outcomes.

This study reveals that despite limitations such as
varying sampling technique, quality, and interpreta-
tion, GS from procurement biopsies provides mean-
ingful prognostic information beyond basic clinical and
demographic parameters, such as donor age and KDPI.
Yet, current practice suggests that data from biopsies
may be doing more harm than good, perhaps because
the degree to which these results affect graft outcomes
has remained elusive.

A controlled experiment on transplant decision-
making using hypothetical kidney offers found that
“good” biopsy findings (compared with no biopsy) led
to a sharp rise in acceptance of acute kidney injury
kidneys, suggesting use of biopsies to rule-in kidneys
in this clinical context.21,79 However, that same study
found that “good” biopsy findings (compared with no
biopsy) had virtually no effect on kidney transplant
1858
surgeons’ and nephrologists’ likelihood of ruling-in
moderate-to-high KDPI kidneys. Lentine et al.17

found that performing a biopsy was not associated
with a reduction in the discard rate among KDPI >
85% kidneys.

Currently, clinicians may currently be relying on
questionable rules of thumb, such as GS > 20%9 or
resistance > 0.4,80 to decline viable kidneys for
transplantation. Though higher GS was found to be
independently associated with graft failure risk, this
study casts doubt on the justification for unilaterally
relying on a GS > 20% threshold for declining a kid-
ney, given the diminished decrement to graft survival
beyond GS of 10%. Moreover, generally speaking,
neither GS nor any other clinical parameter should be
used in isolation to reject a transplant-quality kidney.
Rather, a better approach is to leverage carefully
developed multivariable risk predictions that empiri-
cally combine information to reduce decision-maker
subjectivity and avoid double-counting correlated
variables, compared with the “all or nothing” approach
based on single-variable thresholds.

All else equal, offer acceptance rates were found to
be 37% lower when interstitial fibrosis was reported as
mild-moderate compared with absent in a controlled
experiment.21 Our study found that the apparent
increased risk associated with interstitial fibrosis is
largely, if not entirely, accounted for by other factors.
Clinical prediction models statistically adjust for such
correlations to avoid the double counting trap.

The next phase of the BARETO study aims to incor-
porate biopsy, anatomy, and pumping parameters into
augmented clinical prediction models, such as KDPI. If
the practice of routinely obtaining a procurement biopsy
in these kidneys is going to continue, incorporation of GS
into an improved KDPI and/or other transplant predic-
tion models81–83 may help allow “good” biopsy findings
to help rule-in kidneys that might otherwise be dis-
carded. Research has revealed that the KDPI is highly
associated with organ discard rates and that changes in
the KDPI “numeric label” itself can make a difference in
kidney utilization decisions.84,85

The incorporation of GS into clinical prediction
scores may help reduce discards by tempering the
outsized effect this parameter has on transplant
decision-making, particularly beyond 10%.86,87 If cli-
nicians began to rely on new-and-improved, biopsy-
informed prediction models for decision-making,
knowing that the biopsy findings were already
included in an evidence-based way, the unjustifiably
high discard rates associated with high GS values
(Figure 4) might also begin to taper. In fact, our anal-
ysis of contemporary kidney utilization practices sug-
gests that upward of 400 more ECD kidneys could be
Kidney International Reports (2022) 7, 1850–1865



Figure 7. The unadjusted and adjusted associations between interstitial fibrosis and 10-year, all-cause graft failure risk. The figure illustrates
all-cause graft failure hazard ratios and 95% CIs comparing 3 levels of interstitial fibrosis using the following 4 different analyses: unadjusted
Cox regression (top left panel), propensity weighted Cox regression (top right), standard multivariable regression (bottom left), and doubly robust
regression (DRR; bottom right). In unadjusted analysis, the risk of graft failure was 21% higher with “mild-moderate/severe” interstitial fibrosis
compared with the reference group, “absent/minimal.” However, apparent effect of interstitial fibrosis was greatly tempered after adjusting for
correlations with donor and recipient factors. In DRR analysis, the graft failure hazard ratio for “mild-moderate/severe” (vs. “absent/minimal”)
was 1.13 (0.83–1.39). DRR, doubly robust regression.
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transplanted annually in the United States if the
runaway GS effect was tamed through more evidence-
driven decision-making.

The BARETO study overcomes some of the limita-
tions found in previously published biopsy analyses.
Leveraging national registry data provided large sam-
ple sizes for increased statistical power. Using biopsy
data uploaded into DonorNet reflects the real-world
context in which biopsies are obtained and used.
Our focus on ECD kidneys—which are universally
almost always biopsied—reduces concerns about se-
lection bias potentially introduced by for-cause biopsy
data. Analysis of 10-year graft survival aligns more
closely with outcomes that are meaningful to patients
compared with the 1-year horizon typically reported.
The ability to study GS along its continuum, instead of
Kidney International Reports (2022) 7, 1850–1865
solely in arbitrary categories, has provided novel in-
sights into an apparent tempering of the dose-response
relationship between this parameter and graft
survival.

Still, though rigorous causal inference methods were
used, the usual limitations of observational studies still
apply. It is conceivable that unmeasured variables and
selection bias resulting from decisions to transplant
versus discard kidneys may affect the results. How-
ever, the onus falls on the skeptic to postulate the
existence of clinically plausible, unaccounted for fac-
tors that are sufficiently and independently correlated
with both GS and graft survival, to cast serious doubt
on the existence of a meaningfully large effect of GS
>10% versus <5%. Effect sizes as large as our calcu-
lated E-values (e.g., HRs of 1.5–1.7) on long-term
1859



Figure 8. Ten-year Kaplan-Meier, all-cause graft survival by
vascular changes. Estimated graft survival rates for 4995 extended
criteria donor kidney transplants occurring between 2008 and 2012
are illustrated by 3 levels of vascular changes. Differences between
survival curves are of borderline statistical significance (P ¼ 0.052),
with the “absent/minimal” group having slightly superior unadjusted
graft survival compared with the other groups.
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kidney graft survival are unusual,76,81 suggesting un-
measured confounding that is sufficiently and inde-
pendently associated with both GS and graft failure to
negate our estimated GS effects is highly unlikely. The
combination of selection bias and small sample sizes
likely explains the counterintuitive (though not quite
statistically significant) apparent decline in hazard for
GS beyond 20%; our findings should not be inter-
preted as suggesting outcomes actually improve with
higher GS, but merely that the strong effect observed
among lower GS values seems to attenuate quite
sharply above approximately 10%.

Other study limitations include smaller sample sizes
for the most extreme values of the 3 biopsy dimensions,
particularly interstitial fibrosis (n ¼ 163, mild-
moderate/severe). The absence of statistical signifi-
cance, which at times may merely reflect small sample
sizes, should not nullify the potential importance of
extreme findings—including GS values beyond
approximately 30%—in organ utilization decisions.
The central findings of this study should not be
construed as a call to reduce the information provided
in a biopsy report (e.g., by only reporting GS). In fact,
the OPTN is currently proposing both the augmenta-
tion and standardization of data reported from pro-
curement biopsies to aid in decision-making.88

Due to varying reporting standards on biopsy
reports, we were also unable to stratify results by
wedge versus needle, frozen versus permanent, or
expert versus general pathologist. Inference from our
1860
study only applies to older, marginal donor kidneys,
which are routinely biopsied; further research that
carefully avoids selection bias driven by for-cause
biopsies could help verify findings in non-ECD
kidneys.

The US transplant community is divided on whether
routine biopsies do more harm than good in the context
of evaluating the suitability of marginal (e.g., ECD or
high KDPI) kidneys for transplantation.1,89 The UK’s
National Health Service is conducting a trial to deter-
mine whether routine use of biopsies through a
centralized histopathology service will boost or hamper
kidney utilization.90 Some have rightly questioned
whether the additional information gained from pro-
curement biopsies is worth the added cost and time in
the context of an already pressing organ donation and
transplant process.2

Should the European model of limited reliance on
biopsies15 be universally adopted, or should transplant
systems aim to standardize and improve on both the
criteria for performing a biopsy23 and techniques used
to obtain, interpret, and share biopsy information?91–96

The goal of both camps is the same: to improve out-
comes for patients with end-stage renal failure through
timely and successful transplantation.

Given the widely recognized challenge of accurately
predicting transplant outcomes,77,97,98 if biopsies do
indeed contain statistically and clinically significant
information beyond standard parameters, then they
can improve our limited ability to risk stratify donor
kidneys. However, though in theory more information
should lead to better decisions, in the case of biopsy
findings, more information may currently be causing
more harm than good.1

If procurement biopsies are routinely used, a more
evidence-driven approach to characterizing biopsy
findings’ association with recipient outcomes to inform
(and at times, temper) their use in clinical decision-
making has the potential to reduce discards and in-
crease the number of successful transplants. In this
way, more data can yield what we would hope and
expect—better, not worse, decisions on behalf of pa-
tients with renal failure.
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