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Abstract: Atherosclerosis (AS) is a chronic progressive inflammatory disease of the vascular wall and the primary pathological basis 
of cardiovascular and cerebrovascular disease. Focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2), two highly 
homologous members of the FAK family kinases, play critical roles in integrin signaling. They also serve as scaffolding proteins that 
contribute to the assembly of cellular signaling complexes that regulate cell survival, cell cycle progression, and cell motility. Research 
indicates that the FAK family kinases is involved in the gene regulation of vascular cells and that aberrant expression of this family is 
associated with pathological changes in vascular disease. These findings establish the FAK family kinases as a critical signaling 
mediator in atherosclerotic lesions and inhibition of its activity has the potential to attenuate the pathological progression of AS. This 
review highlights the indispensable role of the FAK family kinases in abnormal vascular smooth muscle cell proliferation, endothelial 
cell dysfunction, inflammation, and lipid metabolism associated with AS. We also summarize therapeutic targets against the FAK 
family kinases, providing valuable insights into therapeutic strategies for AS. 
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Introduction
Cardiovascular disease (CVD) has a significant impact on mortality and morbidity worldwide, with atherosclerosis (AS) 
being the primary pathological basis of CVD.1 Atherosclerosis involves the development of fibrofatty lesions within the 
arterial wall and is characterized by arterial wall thickening, intimal lipid deposition, and luminal narrowing.2 The risk 
factors contributing to the development of AS include hypertension, smoking, diabetes mellitus, hyperlipidemia, 
inflammation, aging, and genetic predisposition.3 Advances in cellular and molecular biology have greatly contributed 
to our understanding of AS and offer new perspectives for clinical management. Endothelial cells (EC), inflammatory 
cells, and vascular smooth muscle cells (VSMC) play pivotal roles in AS progression, with pathogenesis revolving 
around endothelial dysfunction, abnormal lipid metabolism, inflammatory response, oxidative stress, and macrophage 
polarization.4 Recent research has indicated that the focal adhesion kinase (FAK) family kinases and its signaling 
pathways play critical roles in these pathogenic mechanisms, suggesting that the FAK family kinases is a potential 
target for AS therapy. This review presents the primary advances in the last 20 years, starting with the discovery of FAK 
family kinases and ending with the idea of using FAK family kinases as a potential therapeutic target for AS (Table 1).

FAK and proline-rich tyrosine kinase 2 (Pyk2) are members of the FAK family kinases and are key protein tyrosine 
kinases involved in integrin signaling. FAK was discovered in 1992 and named after its prominent localization in focal 
adhesions.5,16,17 FAK has been implicated in various biological processes, including embryonic development, and several 
diseases, including CVD and cancer, through its regulation of cell migration. In 1992, Pyk2 was independently isolated 
as a focal adhesion protein similar to FAK, which is typically distributed throughout the cytoplasm but is enriched in the 
perinuclear region.18 Pyk2 regulates downstream signaling through protein phosphorylation and plays a role in cell 
survival, migration, epithelial-mesenchymal transition, and carcinogenesis.19 Currently, there is no comprehensive review 
explaining the specific roles of the FAK family kinases in AS progression. This review aims to address this gap.
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This review summarizes the existing literature on the important role of the FAK family kinases in AS. Here, we 
review the structure, function, and activation pathways of the FAK family kinases. We then discuss the pathological 
involvement of the FAK family kinases in AS, focusing on four interrelated processes: VSMC proliferation, EC 
dysfunction, foam cell formation, and the development of inflammatory responses. In addition, we provide an overview 
of drugs that inhibit the FAK family of kinases.

Overview of the FAK Family Kinases
Structure of the FAK Family Kinases
FAK (gene symbol: PTK2) and Pyk2 (gene symbol: PTK2B) exhibit a similar structural composition, comprising three 
primary elements: a central kinase domain, an N-terminal FERM domain, and a C-terminal fragment domain that 
contains an adhesion-targeting sequence (Figure 1). The FERM domain comprises three distinct substructures (F1, F2, 
and F3).19 The nuclear localization sequence within the F2 lobe of the FERM structural domain and the nuclear export 
sequence in the kinase structural domain play crucial roles in facilitating the shuttling of FAK and Pyk2 between the 
nucleus and cytoplasm of the cell.20 The proline-rich FAT structural domain targets FAK to the adhesion complex, where 
both FAK and Pyk2 localize to integrin-containing sites by binding paxillin and talin, resulting in focal adhesion 
formation.21 However, Pyk2 exhibits reduced adhesion localization because of its inability to bind talin. Further, the 
FAT region contains the tyrosine phosphorylation sites Y861 and Y925 that are phosphorylated by Src kinase. FAK and 
Pyk2 possess three proline-rich regions: one situated between the FERM and central kinase structural domains, and the 
other two located between the central kinase and FAT structural domains.

Table 1 Advances in Understanding the Mechanism of FAK Family Kinases-Mediated Atherosclerosis

Study Results Ref.

Hanks et al, 1992 Chicken and mouse FAK(PTK2) cDNA is cloned. [5]
Whitney et al, 1993 Human FAK cDNA is cloned. [6]

Schaller et al, 1994 Y397 autophosphorylation site of FAK binds to SH2 domain of Src. [7]

Rocic et al, 2001 PYK2 regulates VSMC protein synthesis. [8]
Nowakowski et al, 2002 The structures of kinase domains for FAK are the first determined. [9]

Ceccarelli et al, 2006 Two crystal structures of an NH2-terminal fragment of FAK containing the FERM domain. [10]

Sayers et al, 2008 FRNK expression promotes SMCs maturation during vascular development and following vascular injury. [11]
Son et al, 2014 Petunidin directly suppresses FAK activity attenuate aortic SMCs migration. [12]

Yurdagul et al, 2016 Macrophage recruitment and VCAM-1 expression were decreased in FAK-KD (Cre+) mice. [13]
Jeong et al, 2019 VS-4718 induced loss of FAK activity and increased nuclear FAK blocks neointimal hyperplasia. [14]

Velatooru et al, 2021 FAK K152 SUMOylation plays a key role in endothelial activation and senescence. [15]

Figure 1 The structure of the FAK Kinase Family. TFAK and Pyk2 consist of three structural domains: the central kinase structural domain, the N-terminal FERM structural 
domain, and a C-terminal structural domain containing an adhesion targeting sequence. The central kinase structural domain is flanked by three proline-rich regions. The 
nuclear localization sequence (NLS) of the FERM structural domain and the nuclear export sequence (NES) of the kinase structural domain facilitate the shuttling of FAK and 
Pyk2 between the nucleus and the cytoplasm. Key sites for tyrosine phosphorylation (P) are marked in yellow.
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Biochemical Mechanisms for FAK Family Kinases Activation
FAK activation involves key steps such as autophosphorylation of Tyr397 and site-specific dimerization. The recruitment 
of FAK to the adhesion foci is facilitated by either the FAT or FERM structural domains. This recruitment leads to the 
dissociation of the latter from the catalytic structural domain, relieving autoinhibition and initiating initial kinase 
activation. Subsequently, dimer formation occurs via FERM-FERM or FERM-FAT interactions,22 allowing FAK 
autophosphorylation on Tyr397.23 Tyr397, which is adjacent to the first proline-rich sequence, plays a significant role 
in mediating phosphorylation and triggering maximal activity of the FAK catalytic region. In addition, it serves as 
a docking site for highly active Src family kinases (SFKs).24

Further, FAK is activated through growth factor signaling-mediated cell adhesion. It directly interacts with the 
cytoplasmic portion of various growth factor receptors, such as Met proto-oncogene receptor tyrosine kinase (rearranged 
during transfection), epidermal growth factor receptor, and vascular endothelial growth factor (VEGF). Integrin signal-
ing, on the other hand, can activate FAK through the plasma membrane lipid phosphatidylinositol 4.5-bisphosphate. The 
binding of phosphatidylinositol 4,5-bisphosphate to a crucial region of the regulatory FERM structural domain triggers 
FAK aggregation in the lipid bilayer that induces FAK autophosphorylation. Phosphorylation of Src in the FAK 
activation loop results in release of the FERM/kinase chain and full catalytic activation of FAK.25

Pyk2 activation does not rely solely on the recruitment of focal adhesions. The activation of Pyk2 is regulated by 
cytokines, growth factors, and, critically, by an elevation in cytoplasmic Ca2+ levels induced by various ligands, such as 
antidiuretic hormone and platelet-derived growth factor (PDGF).26 Experimental evidence for the inhibitory interaction 
between the FERM domain and the structural domain of Pyk2 kinase remains unavailable,27,28 although key tyrosine 
residues within Pyk2 may play a crucial role in SFK-mediated phosphorylation.

Biological Functions of FAK Family Kinases
FAK and Pyk2, members of the FAK family kinases, serve as downstream substrates for kinase phosphorylation, transmit 
cellular signals, and act as scaffolding proteins in the assembly of signaling complexes. Activation of the FAK family 
kinases is modulated by various stimuli and plays a crucial role in regulating processes such as cell survival, prolifera-
tion, and motility.29 FAK modulates the actin cytoskeleton to regulate cell adhesion and directional motility. Similarly, 
Pyk2 contributes to the regulation of cell phenotype and modulates the cytoskeleton during cell attachment and 
spreading.30 FAK is actively involved in the growth and development of the heart, kidneys, and nervous system. Pyk2 
does not affect embryonic growth or development. However, it plays a vital role in the developmental regulation of the 
immune system in mice, with Pyk2 deficiency leading to defective humoral immune responses in marginal B-zone 
cells.31 FAT of the Pyk2 structural domain is involved in regulating bone resorption, and its deficiency in mice 
contributes to AS development.32

The FAK Family Kinases are Involved in Atherosclerosis
FAK family kinases are involved in atherosclerotic disease progression through multiple signaling cascades (Figure 2) 
that we will address in detail in subsequent sections to provide a theoretical basis for the use of the FAK family of kinases 
for treating AS.

Regulation of FAK Family Kinases in VSMCs
VSMCs are located in the medial layer of the arterial wall and play a crucial role in regulating vascular tone, blood 
pressure, and blood flow.33 While VSMCs residing in mature vessels have low proliferative and migratory activity, 
VSMCs may migrate from the medial to the intimal layer of the arterial wall in response to physical and inflammatory 
stimuli that cause damage to the vascular endothelium and undergo a phenotypic switch from a “contractile” to a highly 
“synthetic” phenotype. This phenotypic transition involves the proliferation and migration of VSMCs and production of 
extracellular matrix components.34 Targeted regulation of VSMC proliferation and migration is instrumental in effec-
tively mitigating AS. FAK plays a critical role in regulating VSMC proliferation and migration. Inhibiting FAK 
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phosphorylation at the Tyr397 and Tyr925 sites and reducing Src phosphorylation (a downstream target of FAK) 
significantly attenuated VSMC migration and proliferation.35,36

Role of FAK Family Kinases in VSMC Proliferation
FAK interacts with nuclear transcription factors, including tumor suppressor P53, GATA-binding protein 4(GATA4), and 
TATA-box-binding protein-associated factor 9. Knockdown of GATA4 via shRNA attenuates endothelial hyperplasia 
induced by filamentous thread injury and promotes SMC proliferation by upregulating the transcription of the cell cycle 
protein D137 In healthy arteries, FAK is predominantly localized in the nuclei of smooth muscle cells. However, FAK is 
activated and redistributed to the cytoplasm after injury. Inhibition of FAK catalytic activity retains FAK in the nucleus, 
leading to reduced GATA4 protein expression in injured arteries. This inhibition also hampers GATA4-mediated 
transcription of the cell cycle protein D1, effectively blocking SMC proliferation and hyperplasia.14

Activation of FAK phosphorylation promotes cell-cell adhesion, cell-peripheral extracellular matrix adhesion, and 
cell proliferation, facilitating neointima formation. Deletion of Rac1, specifically in SMCs, leads to reduced cell 
proliferation and neointima formation following vascular injury. The Rho kinase family plays a role in focal adhesions 
and stress fiber formation, and inhibition of Rho kinase activity prevents neointima formation after vascular injury.38 

FAK governs the aforementioned cellular processes by activating the downstream small GTPases, Rac and Rho.
Pyk2 serves as an upstream regulator of multiple signaling pathways involved in Ang II–induced VSMC growth. 

The formation of the Pyk2-grb2/Src-shc-grb2 complex governs the ERK1/2 pathway by activating Ras. In addition, 

Figure 2 Potential role of FAK family kinases in atherosclerosis. FAK family kinases are involved in the pathogenesis of atherosclerosis by regulating VSMC phenotypic 
switching, EC dysfunction, foam cell formation, and inflammatory response mechanisms. 
Abbreviations: Gab-1, grb2-associated binders; PKCθ, protein kinase Cθ; ATF2, activating transcription factor 2; MCP-1, monocyte chemoattractant protein-1; ICAM-1, 
intercellular adhesion molecule 1; VCAM-1, vascular cellular adhesion molecule-1; IP-10, induced protein 10; MAPK, mitogen-activated protein kinase; CREB, cyclic 
adenosine monophosphate response element–binding protein; IL-17, interleukin-17A; RAF, rapidly accelerated fibrosarcoma; MEK, mitogen-activated extracellular signal- 
regulated kinase; ERK1/2, extracellular signal-regulated kinases 1 and 2; PI3K, phosphatidylinositol 3-kinase; PDGF, platelet-derived growth factor; GATA4, GATA-binding 
protein 4; DNMT3A, DNA methyltransferases 3A; 5-mC, 5-methylcytosine; MAPK, mitogen-activated protein kinase; VEGFA, vascular endothelial growth factor A; VEGFR1, 
vascular endothelial growth factor R1; MCU, mitochondrial calcium uniporter; ROS, reactive oxygen species.
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Pyk2-dependent tyrosine phosphorylation, coupled with the interaction of p130 Cas, induces the activation of PI3K 
kinase.39 By downregulating Pyk2 expression in Ang II–induced VSMCs, inhibition of both ERK1/2 and PI3K/Akt 
activation was achieved. Therefore, targeting Pyk2 phosphorylation is an essential molecular strategy for controlling 
VSMC growth.8

Role of FAK Family Kinases in VSMC Dedifferentiation
Under physiological conditions, VSMCs maintain a highly differentiated contractile resting state. However, in the 
presence of hypoxia and inflammation, VSMCs undergo dedifferentiation and transition from a contractile to 
a differentiated phenotype. This phenotypic switch is accompanied by reduced contractile capacity, enhanced prolifera-
tion and migration, and downregulated expression of SMC-specific contractile genes.40 Inhibition of FAK leads to its 
nuclear translocation, resulting in reduced DNMT3A stability via ubiquitination and proteasomal degradation specificity. 
Consequently, this intervention reduces 5-mc levels, promotes SMC differentiation, and enhances the expression of SMC 
contractile genes.41

Role of FAK Family Kinases in VSMC Migration
Pyk2 downregulation hampers PDGF-induced AKT and ERK1/2 phosphorylation, inhibits cell cycle progression, and 
impedes VSMC proliferation.42 Hepatocyte growth factor (HGF) within the plaques acts as a chemokine for VSMCs, 
thereby stimulating their migration. In VSMCs, HGF induces a time-dependent activation of FAK and Pyk2 phosphor-
ylation, thereby facilitating VSMC migration.43

In conclusion, the FAK family kinases play an important role in regulating the phenotypic transition of VSMC during 
AS, making them a promising therapeutic target for AS.

Regulation of FAK Family Kinases in ECs
ECs are capable of producing vasodilators (such as NO, PG I2, and H2S) as well as vasoconstrictor molecules, which 
contribute to the regulation of arterial structure and remodeling by ensuring a balance between vasodilators and 
vasoconstrictors, thereby sustaining vascular tone.44,45 The microstructure of ECs, specifically the endothelial glycoca-
lyx, plays a key role in maintaining their integrity.46 Low endothelial permeability was observed under uniform flow 
conditions with high physiological shear stress in which the glycocalyx remained intact. Conversely, increased endothe-
lial permeability has been observed in disturbed flow states with low physiological shear stress, leading to a reduction in 
the glycocalyx. Additionally, ECs exhibit metabolic activity and sustain their proliferation and vasodilatory functions 
through various metabolic pathways. Alterations in EC metabolism can induce EC proliferation and inflammation, 
thereby initiating AS.47

Role of FAK Family Kinases in EC Migration
Enhanced neovascularization within atherosclerotic plaques can worsen plaque instability. Overexpression of Sema7A in 
human umbilical vein ECs (HUVECs) markedly upregulates VEGFA/VEGFR2, stimulating EC migration and promoting 
neovascularization within the plaques. Mechanistic studies have shown that Sema7A increases FAK expression through 
a β1 integrin-dependent mechanism, thereby facilitating VEGFA/VEGFR2-mediated neovascularization. FAK inhibitors 
significantly inhibit EC migration and intraplaque neovascularization.48

Role of FAK Family Kinases in EC Senescence
The disturbed flow (d-flow) promotes ROS production, EC inflammation, and apoptosis, ultimately contributing to 
endothelial cell dysfunction.49 d-Flow stimulates ROS production through NADPH oxidase activity. In addition, it 
activates p90RSK, which upregulates FAK K152 SUMOylation and subsequent phosphorylation of VaV2, promoting 
FAK phosphorylation. Introducing a mutation at the lysine 152 site of FAK sumoylation to replace it with arginine 
demonstrated a significant reduction in apoptosis and diminished levels of the cellular senescence marker β-galactosidase 
(SA-βgal) induced by d-flow. In addition, it mitigated EC activation and senescence.15
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Role of FAK Family Kinases in EC Apoptosis
Increased EC apoptosis is evident in regions susceptible to AS, and this apoptotic process can further worsen AS 
progression. ECs form a lining on the interior surface of blood vessels and are vulnerable to apoptosis triggered by 
external environmental stimuli such as hypoxia, hyperoxia, oxidative stress, and inflammatory factors,50 which subse-
quently aggravate AS progression.51 The modulation of mitochondrial calcium uniporter (MCU) phosphorylation by 
Pyk2 participates in the regulation of mitochondrial Ca2+ uptake, ROS production, and EC apoptosis, thus contributing to 
the exacerbation of atherosclerotic disease progression. Pyk2/MCU protein expression is upregulated in a mouse model 
of AS. Similarly, increased levels of Pyk2/MCU were observed in a model of H2O2-induced HUVEC injury. 
Additionally, shRNA targeting Pyk2 effectively shielded ECs from H2O2-induced damage. Rosuvastatin exerted 
a protective effect in both the AS mouse model and the H2O2-induced HUVEC injury model by inhibiting the Pyk2/ 
MCU pathway, reducing mitochondrial damage and ROS generation, and preventing EC apoptosis. In conclusion, 
targeting the Pyk2/MCU pathway may represent a novel approach to prevent AS progression.52

Taken together, these findings suggest that the FAK family kinases is capable of inducing EC dysfunction in response 
to a variety of stimuli and that inhibition of FAK activity reduces atherosclerotic lesions.

Involvement of the FAK Family Kinases in the Inflammatory Response to 
Atherosclerosis
AS is a progressive inflammatory disease of the blood vessel wall driven by innate immunity. During the early stages of 
AS, the inflammatory process begins with EC activation. These cells express inflammatory factors, including interleukin- 
8 (IL-8), ICAM-1, and monocyte chemoattractant protein-1 (MCP-1). During the advanced stages of AS, macrophages 
and other inflammatory cytokines infiltrate the vessel wall. They degrade collagen fibers within the extracellular matrix 
of plaques by secreting matrix metalloproteinases, resulting in plaque rupture and hemorrhage.53 Consequently, modula-
tion of inflammation mitigates the development of AS and its associated complications.54

The suppression of FAK or Pyk2 expression results in decreased TNF-α-induced activation of ERK and JNK and 
reduced expression of CAMs. In a carotid artery ligation model using ApoE-/- mice, activation of FAK/Pyk2 promoted 
the migration of macrophages to the vascular endothelium. Administration of dual inhibitors targeting FAK/Pyk2 resulted 
in decreased expression of inflammatory cell adhesion factors and reduced the recruitment of macrophages.55

FAK facilitates NF-kB activation, which leads to upregulation of VCAM-1 expression and promotes monocyte 
adhesion through the ERK-RSK-IKKβ pathway.13 Inhibition of FAK activation in ECs exposed to oxidized low-density 
lipoprotein (ox-LDL) inhibits atherosclerosis by downregulating VCAM-1 and ICAM-1 expression and reducing 
monocyte adhesion.56

Cyclic adenosine monophosphate response element–binding protein (CREB) plays a vital role in orchestrating the 
inflammatory response and facilitating THP1 cell migration and endothelial cell adhesion. CREB activation depends on 
the essential function of Pyk2 activity. 15(S)-HETE induces THP1 cell migration and adhesion, thereby initiating the 
activation of the Pyk2 signaling pathway that ultimately results in CREB activation and the production of IL-17.57

Taken together, these findings suggest an important role for FAK family kinases in promoting AS and inflammation, 
and that inhibition of FAK activity reduces atherosclerotic lesions.

FAK Family Kinases are Involved in Lipid Accumulation in Atherosclerosis
Lipid uptake is facilitated by scavenger receptors such as CD36, lectin-like ox-LDL receptor-1 (LOX-1), and scavenger 
receptor A1.58 Upon endothelial injury, LDL traverses the endothelial monolayer and undergoes modification, resulting 
in the formation of ox-LDL. Macrophages take up ox-LDL through scavenger receptor-mediated phagocytosis and 
cytophagocytosis at the cell membrane, leading to increased lipid accumulation and foam cell formation.59 Strategies 
aimed at modulating lipid levels constitute mainstream therapies for AS, and targeting the reduction in foam cell 
formation by blocking lipid uptake holds promise for the treatment of this condition.

Prothrombin-induced foam cell formation was observed in peritoneal macrophages of ApoE-/- mice. 
Immunofluorescence staining of cross-sections of mouse aortic roots showed increased Pyk2 phosphorylation and 
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CD36 expression in ApoE-/- mice. In vitro studies showed that thrombin-induced CD36 expression in RAW264.7 cells, 
in a clock-dependent pattern resulted in foam cell formation. PYK2 activation plays a key role in thrombin-induced 
CD36 expression and foam cell formation. Thrombin promotes tyrosine phosphorylation of Pyk2 (Tyr402), and Pyk2 
inhibition attenuates thrombin-induced activation of CD36 expression and foam cell generation.60

In conclusion, regulation of lipid metabolism by inhibition of FAK family kinase activity is also a potential 
therapeutic strategy for AS.

FAK Family Kinases Inhibitors Find Various Applications
Currently, the development of FAK inhibitors is a research hotspot in academia and pharmaceutical companies, with a primary 
focus on oncology, where small molecules inhibit FAK phosphorylation, block intracellular signaling in the cell membrane, 
and inhibit cancer cell proliferation. To date, two compounds, namely GSK2256098 (NCT02523014, NCT02428270) and 
Defactinib (NCT01951690) are in Phase II trials, while Conteltinib (NCT05580445) is in Phase IB/II trials; VS-4718 
(NCT01849744), PF-562271(NCT00666926), IN10018 (NCT05327231), and APG-2449 (NCT03917043) are in Phase 
I trials. Many inhibitors are being investigated in preclinical studies, such as BJG-03-025, PF-573228, and Y15.61–63 

Although clinical trials on the association between FAK inhibitors and AS have not been widely conducted, the relevant 
basic research provides corresponding evidence for this. We reason that drug research targeting the regulation of FAK for the 
treatment of AS and cardiovascular diseases will progress significantly.

Pf-562271
PF-562271 is a dual inhibitor of FAK/Pyk2 that reduces VCAM-1 and ICAM-1 expression, monocyte migration, and 
macrophage recruitment in ApoE-/- mice and HAOEC ECs. The FAK/Pyk2 inhibitor, PF-562271, has anti-inflammatory 
properties and shows promise as a potential therapeutic agent for atherosclerotic disease.55

Vs-4718
GATA4 plays a role in SMC differentiation and vascular endothelial hyperplasia. The FAK inhibitor VS-4718 is currently 
in clinical development as a cancer therapy. In the femoral arterial wire injury model, VS-4718 induced a loss of FAK 
activity and increased nuclear FAK accumulation, thereby blocking neointimal hyperplasia via reduced GATA4 and 
cyclin D1 expression. These research findings suggest that VS-4718 may also be evaluated as a potential therapy for 
vessel wall-narrowing diseases.14

Acarbose
In a rabbit AS model, acarbose dose-dependently inhibited FAK phosphorylation, downregulated the PI3K/Akt signaling 
pathway, inhibited aberrant proliferation and migration of VSMCs, and attenuated the extent of aortic AS lesions.64

Isatinidilol
The novel third-generation β-adrenergic receptor blocker, isatinidilol, demonstrated a dose-dependent inhibition of 
PDGF-induced proliferation in ECs. It also exhibited inhibitory effects on intimal hyperplasia and VSMC proliferation 
and migration in a rat carotid artery balloon injury model. Mechanistic investigations revealed that isatinidilol hindered 
Pyk2 phosphorylation in a concentration-dependent manner, reduced the coupling of PKC-ERK1/2 to Pyk2, reduced the 
intracellular calcium ion concentration, and attenuated intimal thickening by suppressing VSMC proliferation.65

Pelargonidin
Pelargonidin is a novel FAK inhibitor that has demonstrated a dose-dependent inhibition of PDGF-BB-induced cell 
proliferation in HASMCs. Mechanistic studies have revealed that pelargonidin directly targets FAK and binds to it in an 
adenosine triphosphate-competitive manner. This binding inhibits the phosphorylation of FAK at the Tyr397, Tyr576, and 
Tyr577 sites induced by PDGF-BB. Consequently, pelargonidin effectively inhibits FAK activity and shows potential 
preventive effects against AS.66 Similarly, petunidin, another anthocyanin, has a preventive effect on AS. In vivo studies 
showed that petunidin inhibited neointima formation induced by carotid balloon injury. In vitro studies showed its 
inhibitory effect on PDGF-BB-induced FAK phosphorylation and abnormal migration of HASMCs.12
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Alginate Oligosaccharides
Alginate oligosaccharides (AOS) are polysaccharide polymers extracted from seaweed that inhibit the FAK/PI3K 
signaling pathway and protect HUVECs from H2O2-induced oxidative stress damage, providing a new alternative 
strategy for the prevention of AS.67

Ginsenoside Rg3
Ginsenoside Rg3 effectively inhibited AS plaque formation and improved lipoprotein abnormalities in ApoE-/- mice. In vivo 
studies revealed that ginsenoside Rg3 may protect ECs and inhibit AS by up-regulating PPARγ via repressing FAK-mediated 
pathways, thus inhibiting the expression of VCAM-1 and ICAM-1 in intima, protect ECs, and inhibit AS.56

Rubiarbonone C
Rubiarbonone C, the primary active ingredient of Lobelia philippinensis, belongs to the triterpenoid class. Recent studies 
have demonstrated that rubiarbonone C inhibits VSMC migration by suppressing FAK activation and reducing F-actin 
reorganization. Thus, rubiarbonone C shows great potential as a therapeutic candidate for the treatment of AS.68

Mulberry Aqueous Extracts
Mulberry aqueous extracts contain polyphenolic compounds that have been shown to possess anti-hyperglycemic and 
lipid-modulating effects that help in the prevention of cardiovascular disease. The aqueous extract of mulberry was found 
to reduce the interaction between integrin-β3 and FAK, inhibit VSMC migration, and prevent the development of high- 
cholesterol diet-induced AS in a rabbit model.69

1-Deoxynojirimycin
1-Deoxynojirimycin (DNJ) is the active ingredient found in Morus alba that effectively inhibits lipid accumulation. In 
A7r5 cells cultured under a diabetic hyperglycemic condition, DNJ was found to reduce FAK phosphorylation and 
VSMC migration in a dose-dependent manner. DNJ was also found to inhibit glucose-stimulated migration of VSMCs by 
activating the AMPK/RhoB pathway and suppressing FAK pleiotropy.70

In summary, current researchers have conducted a large number of studies on FAK inhibitors, but there are still gaps 
and shortcomings. First, the dose-response relationship of FAK inhibitors has yet to be explored, and some studies have 
shown that FAK inhibitors can promote angiogenesis and antagonize their own antitumor effects at low concentrations.71 

Second, single-target FAK inhibitor therapy suffers from insufficient efficacy because the disease is associated with 
multiple abnormal mechanisms. In future, researchers should focus on multi-target drug development, such as FAK/Pyk2, 
FAK/IGF-1 receptor, FAK/EGF receptor, and FAK/CDK4/6 pathways. The application of computer-aided drug design, 
pharmacophore modeling, and molecular docking approaches to develop multi-target FAK inhibitors are other new 
directions in drug discovery. Finally, future studies still need to conduct in-depth research on regulatory mechanisms of 
the FAK family of kinases to assist in the development of novel and more selective inhibitors.

Discussion
The FAK family of kinases plays a crucial role in regulating many aspects of normal cellular behavior and has emerged 
as a promising therapeutic target for a wide range of diseases. This review summarizes the progress of research on FAK 
family kinases in AS, where activation of FAK phosphorylation has been found to exacerbate the progression of AS to 
various pathogenetic outcomes. However, there are some limitations to the current review. First, most animal models 
employed in current basic research only involve the early developmental stages of AS, and it is not clear whether FAK 
can regulate AS after plaque formation. There is also a lack of reports on the clinical application of FAK kinase inhibitors 
in AS, and the clinical efficacy of FAK kinase inhibitors needs to be verified by large-scale randomized controlled trials. 
Although the mechanism of action of FAK family kinases in AS has been extensively investigated, further studies are 
needed to address these open questions and overcome existing barriers. FAK is predominantly present in the nucleus of 
VSMCs in healthy arteries, and injury promotes FAK cytoplasmic relocalization and FAK activation in vivo. Little is 
known about how FAK re-localization occurs. Second, integrin signaling regulates FAK localization, and how integrins 
regulate FAK localization in different types of vascular cells in healthy and diseased states needs to be further 
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investigated and considered. Third, ER stress induces ox-LDL-mediated phenotypic transformation of VSMCs that 
involves reciprocal regulation between FAK and ER stress. Whether FAK is involved in the phenotypic transformation of 
VSMCs via reciprocal regulation with ER stress remains to be investigated. In conclusion, FAK family kinases are 
potential therapeutic targets for AS, and we hope to see more FAK and Pyk2 research within the AS field in the future.
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